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Abstract. A multispecies, collisionless plasma is modeled by the Vlasov-Poisson system. Assuming the

plasma is neutral and the electric field decays with sufficient rapidity as t → ∞, we show that solutions can
be constructed with arbitrarily fast, polynomial rates of decay, depending upon the properties of the limiting

spatial average and its derivatives. In doing so, we establish, for the first time, a countably infinite number

of asymptotic profiles for the charge density, electric field, and their derivatives, each of which is necessarily
realized by a sufficiently smooth solution and exceeds the established dispersive decay rates. Finally, in each

case we establish a linear L∞ scattering result for every particle distribution function, namely we show that

they converge as t → ∞ along the transported spatial characteristics at increasingly faster rates.

1. Introduction

We consider a plasma comprised of a large number of charged particles. If there are N ∈ N distinct
species of particles within the plasma, then those of the αth species (for α = 1, ..., N) have charge qα ∈ R,
mass mα > 0, and are distributed in phase space at time t ≥ 0 according to the function fα(t, x, v) where
x ∈ R3 represents particle position and v ∈ R3 particle velocity. Assuming that electrostatic forces dominate
collisional effects, the time evolution of the plasma is described by the multispecies Vlasov-Poisson system

(VP)



∂tf
α + v · ∇xfα +

qα
mα

E · ∇vfα = 0, α = 1, ..., N,

ρ(t, x) =

N∑
α=1

qα

∫
R3

fα(t, x, v) dv

E(t, x) = ∇x(∆x)−1ρ(t, x) =
1

4π

∫
R3

x− y
|x− y|3

ρ(t, y) dy

with prescribed initial conditions fα(0, x, v) = fα0 (x, v) ≥ 0 for each α = 1, ..., N . Here, E(t, x) represents
the electric field induced by the charged particles, and ρ(t, x) is the associated density of charge within the
plasma. A quantity that will play a significant role throughout this paper is the total net charge

(1) M :=

∫
ρ(0, x) dx =

N∑
α=1

∫∫
qαf

α
0 (x, v) dvdx

which, in fact, is preserved at later times t > 0.
It is well-known that given smooth initial data with either compact support in phase space or finite

moments, (VP) possesses a global-in-time smooth solution [26, 33, 35]. Though well-posedness has been
intensely studied, the large time behavior of solutions to (VP) has only recently become better understood.
Partial results for the Cauchy problem are known in some special cases, including small data [2, 13, 22, 23, 39],
monocharged and spherically-symmetric data [21, 30], and lower-dimensional settings [3, 6, 16, 17, 18, 37].
Additionally, an understanding of the intermediate asymptotic behavior was obtained in [5], namely that
there are solutions for which the L∞ norms of the charge density and electric field can be made arbitrarily
large at some later, finite time regardless of their initial size. For general background concerning (VP) and
associated kinetic equations, we refer the reader to [15, 34].
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Due to the dispersive properties imparted upon the system by the transport operator ∂t + v · ∇x and the
velocity averaging inherent to the observables, one generally expects that the charge density and electric field
decay to zero like t−3 and t−2, respectively, as t→∞ for all smooth solutions of (VP). In fact, both small
data and spherically-symmetric solutions have been shown to exhibit exactly this behavior, and it is known,
at least in lower dimensions, that the Cauchy problem does not possess smooth steady states [19]. In the
periodic case (x ∈ Td), phase mixing can further drive these quantities to decay exponentially fast to zero,
depending upon the regularity of the solution, by creating filamentation through a process known as Landau
damping [27], and this has been shown for perturbations of a neutral plasma around a spatially-homogeneous
equilibrium on the torus. In contrast, the results concerning Landau damping for (VP) with x ∈ R3 remain
somewhat limited [24] and do not prove decay of the maximal electric field faster than t−2. Indeed, as shown
in [31, Theorem 1.1], non-neutral plasmas (M 6= 0) cannot experience decay that is faster than the rates
provided by the dispersive mechanisms in the system. Though, via Theorem 1.2, this same paper determined
that faster rates can occur in a neutral plasma (M = 0) should the limiting charge density vanish.

The current paper significantly extends this idea to demonstrate that solutions attain decay rates of
any polynomial order greater than those attributed to the dispersive properties of the system. Namely,
we show for the first time that neutral plasmas may attain decay rates of any integer order between the
dispersive regime (E ∼ t−2, ρ ∼ t−3) and the phase mixing rates (E, ρ ∼ e−γt, γ > 0), which closes the gap
between the behavior attributed to solutions in the whole space in comparison to those of the periodic or
screened [4] system. In this way, we demonstrate that the system allows for infinitely many different regimes
of asymptotic behavior, though the scattering behavior of the distribution function can only assume two
distinct states (linear and modified).

Of course, the dynamical behavior of the system depends intrinsically upon establishing decay of the
electric field. To date, the best a priori rate known [40] for the electric field stemming from arbitrary
solutions of (VP) is

‖E(t)‖∞ ≤ C(1 + t)−1/6,

and this is derived from precise estimates of the growth of the maximal velocity on the support of f(t),
from which the estimate of ‖E(t)‖∞ is deduced. Unfortunately, this resulting estimate is far from what is
believed to be the optimal decay rate. Additionally, while maximal velocity support estimates have been
beneficial to improving the field decay rate [12, 29, 36], even a sharp estimate (i.e, a uniform bound) on the
support cannot allow one to conclude a sharp decay rate of the field. So, it appears that we are quite far
from obtaining precise a priori estimates of the field. Therefore, the goal of the current work is to estab-
lish the precise large-time dynamical behavior of solutions to (VP) whenever the electric field is known to
decay with sufficient rapidity and demonstrate the wide variety of asymptotic behavior displayed by solutions.

Organization of the paper. Section 1 is dedicated to the introduction of the problem and the statement
of our main results, as well as an overview of previous results and the strategy of the proofs. In Section
2, we prove some preliminary lemmas that provide asymptotic bounds (as t → ∞) on the charge density
ρ(t, x) and electric field E(t, x), as well as their derivatives. Then, these bounds are used to prove the two
main theorems in Section 3. A rather long argument establishing asymptotic bounds for derivatives of gα is
postponed until Section 4 in order to facilitate the exposition.

1.1. Overview. Due to the global existence theorem, all quantities of interest are bounded for finite time;
thus, we are only concerned with large time estimates. Hence, we use the notation

A(t) . B(t)

to represent the statement that there is a constant C > 0, independent of t, such that A(t) ≤ CB(t) for all
t sufficiently large. Furthermore, the notation

A(t) ∼ B(t)

indicates

A(t) . B(t) and B(t) . A(t).
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Field decay assumption. We assume that the dispersive effects or other physical phenomena, such as
charge cancellation, in the system induce a strong decay of the electric field, namely that

(A) ∃ p > 5

3
such that: ‖E(t)‖∞ . t−p.

We note that this assumption is known to be satisfied for monocharged, spherically-symmetric initial data
[21, 30] and for all previously constructed perturbative solutions (e.g., [2, 23]) regardless of the number or
type of species involved.

Though we will assume compactly-supported initial data, this may not be necessary as velocity, spatial,
and transported moments [11, 12, 26, 28, 29] have all been used in lieu of this assumption to develop the
existence theory. Due to the Taylor series expansion we will employ later, the use of transported moments
would be very natural in the context of understanding the large time behavior. In addition, the regularity
assumptions on initial data may be weakened to arrive at similar convergence results in weaker topologies
(see [23]). The novelty herein is that solutions are obtained with faster field and charge density decay rates
than previously exhibited in the whole space, and the precise asymptotic profile of the electric field, its
derivatives, and the charge density are obtained for each associated solution. Additionally, our methods
display the crucial dependence on the spatial support and velocity derivatives of the distribution function
when translated along free-streaming spatial characteristics. Finally, our results apply directly to general
conditions that may be satisfied by any neutral plasma and not merely to small data solutions.

1.2. Review of Previous Results. To facilitate the presentation of our novel theorems, we first quote
some recent results which serve as a starting point for our findings.

1.2.1. Modified Scattering. Under the assumption (A), we first summarize the previous results of [31] that
the scaled charge density and field converge to limits based upon the limiting spatial average, namely

Theorem 1.1 ([31]). Consider a solution fα ∈ C2((0,∞) × R6) of (VP) with initial data fα0 ∈ C2
c (R6).

Assume that (A) holds. Then, we have the following:

(a) For each α = 1, ..., N there exists Fα,0∞ ∈ C1
c (R3) such that the spatial average

Fα,0(t, v) =

∫
fα(t, x, v) dx

satisfies Fα,0(t, v)→ Fα,0∞ (v) uniformly as t→∞ with

‖Fα,0(t)− Fα,0∞ ‖∞ . t−1 ln4(t).

Moreover, the net density

ρ0(t, x) =

N∑
α=1

qαF
α,0
(
t,
x

t

)
converges at the same rate to

ρ0,∞

(x
t

)
=

N∑
α=1

qαF
α,0
∞

(x
t

)
,

which satisfies

(2)

∫
ρ0,∞(v) dv =M,

where M is given by (1).
(b) Define E0,∞(v) = ∇v(∆v)

−1ρ0,∞(v). Then, we have the self-similar asymptotic profiles

sup
x∈R3

∣∣∣t2E(t, x)− E0,∞

(x
t

)∣∣∣ . t−1 ln4(t),

sup
x∈R3

∣∣∣t3∇xE(t, x)−∇vE0,∞

(x
t

)∣∣∣ . t−1 ln6(t),

sup
x∈R3

∣∣∣t3ρ(t, x)− ρ0,∞
(x
t

)∣∣∣ . t−1 ln5(t).
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(c) For each α = 1, ..., N there is fα∞ ∈ C1
c (R6) such that

fα
(
t, x+ vt− qα

mα
ln(t)E0,∞(v), v

)
→ fα∞(x, v)

uniformly as t→∞, namely we have the convergence estimate

sup
(x,v)∈R6

∣∣∣∣fα(t, x+ vt− qα
mα

ln(t)E0,∞(v), v

)
− fα∞(x, v)

∣∣∣∣ . t−1 ln4(t).

Furthermore, for all α = 1, ..., N we have

Fα,0∞ (v) =

∫
fα∞(x, v) dx.

If the plasma is non-neutral, i.e. M 6= 0, then ρ0,∞ 6≡ 0 due to (2) and these estimates are sharp, up
to a correction in the logarithmic powers of the error terms. Hence, ‖ρ(t)‖∞, ‖∇xE(t)‖∞ ∼ O

(
t−3
)

and

‖E(t)‖∞ ∼ O
(
t−2
)
. However, when the plasma is neutral, i.e. M = 0, it is possible that the limiting

density ρ0,∞ (and hence, the limiting field E0,∞) is identically zero, which implies stronger decay of ‖ρ(t)‖∞,
‖E(t)‖∞, ‖∇xE(t)‖∞, and related quantities. Indeed, as we will show these quantities can decay at any
polynomial rate greater than the above powers, depending upon the behavior of the limiting charge density.
Note that a nontrivial neutral plasma is necessarily comprised of more than one species of charged particles,
so that N ≥ 2 in what follows.

Theorem 1.2 ([31]). Under the assumptions of Theorem 1.1, if additionally M = 0 and ρ0,∞ ≡ 0, then the
asymptotic behavior described above is altered in the following manner:

(a) We have the improved estimates

‖Fα,0(t)− Fα,0∞ ‖∞ . t−2, α = 1, ..., N, ‖E(t)‖∞ . t−3,
‖∇xE(t)‖∞ . t−4 ln(t), ‖ρ(t)‖∞ . t−4, G1v(t) + G1x,v(t) . 1.

(b) The distribution functions scatter linearly, namely for each α = 1, ..., N there is fα∞ ∈ C1
c (R6) such that

fα(t, x+ vt, v)→ fα∞(x, v)

uniformly as t→∞ with the convergence estimate

sup
(x,v)∈R6

|fα(t, x+ vt, v)− fα∞(x, v)| . t−1.

Of course, the upper bounds listed above do not guarantee a sharp rate of decay or an identification of the
correct asymptotic behavior of these quantities. For instance, ρ(t, x) = E(t, x) ≡ 0 satisfy these estimates
and can be constructed from a rudimentary initial profile in a neutral plasma, for example, in which the
distributions of all positive and negative charges overlap everywhere in phase space. Therefore, we now turn
our attention to stating new results that every order of decay is actually attained by some solution of (VP).

1.2.2. Polyhomogeneous Expansions. Recently, a growing interest has emerged in understanding the precise
asymptotic behavior of small data solutions to (VP), e.g. in [10, 23, 38]. More specifically, authors have
focused on studying expansions of the charge density and field that include higher order terms beyond ρ0,∞
and E0,∞ defined above. As in previous works, one key tool is a change of reference frame, defining

(3) gα(t, x, v) = fα(t, x+ vt, v)

for α = 1, ..., N . In this new frame the charge density and field can be expressed, respectively, as

(4) ρ(t, x) = t−3
N∑
α=1

qα

∫
R3

gα
(
t, y,

x− y
t

)
dy,

and

(5) E(t, x) =
1

4πt2

N∑
α=1

qα

∫∫
ξ

|ξ|3
gα
(
t, y,

x− y
t
− ξ
)
dydξ.
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To arrive at these representations, one merely replaces fα(t, x, v) by gα(t, x− vt, v) within these quantities,
institutes the change of variables y = x− vt in the v integrals, and for the field, further implements a change
of variables in the convolution kernel [23, 31] of the form ξ = z−x

t . Roughly speaking, in [10, 38] the authors
show that for large times, the expressions (4) and (5) allow one to expand

(6) t3ρ(t, x) ≈ ρ0(t, x) + t−1ρ1(t, x) + · · ·+ t−kρk(t, x) + · · ·
and

(7) t2E(t, x) ≈ E0(t, x) + t−1E1(t, x) + · · ·+ t−kEk(t, x) + · · ·
where the functions ρk and Ek are uniformly bounded and possess limits as t → ∞. Here, we will identify
the structure of these limits and determine conditions which ensure that each term within the expansion
vanishes up to a chosen order. In particular, these expressions will result by implementing within (4) and
(5) the following multi-dimensional Taylor expansion of gα of order ` ∈ N:

(8) gα
(
t, y,

x− y
t

)
=
∑̀
m=0

∑
|β|=m

(−y)β

tmβ!
Dβ
v g

α
(
t, y,

x

t

)
+

∑
|β|=`+1

(−y)β

t`+1β!
Dβ
v g

α

(
t, y,

x− θαy
t

)
for some θα ∈ [0, 1].

1.3. Notation. We define N0 = {0, 1, 2, . . . }, whereas N = {1, 2, . . . }. As we have seen in Theorem 1.1, the
quantity Fα,0(t, v) =

∫
fα(t, x, v) dx plays a crucial role, as does its limit as t → ∞, namely Fα,0∞ (v). In

order to perform and rigorously justify an expansion as in (6) and (7), we shall require spatial moments of
velocity derivatives of gα (or, equivalently, derivatives of fα) to be well defined. Let K ∈ N be given and
assume that fα ∈ CK . For any α = 1, . . . , N and ` = 0, . . . ,K we let

(9) Fα,`(t, v) :=
∑
|β|=`

1

β!

∫
(−y)βDβ

v g
α(t, y, v) dy,

where β = (β1, β2, β3) with βi ∈ N0 and |β| = β1 + β2 + β3. These quantities generalize the spatial averages
Fα,0(t, v) via insertion of (8) up to order ` and upon removing powers of t. As usual, we have Dβ

v = ∂β1
v1 ∂

β2
v2 ∂

β3
v3

as well as (−y)β = (−y1)β1(−y2)β2(−y3)β3 , and β! = β1!β2!β3!. With this, we define

(10) ρ`(t, x) :=

N∑
α=1

qαF
α,`
(
t,
x

t

)
.

For each term, ρ`, in the expansion of the particle density, we can define the associated term in the expansion
of the field by

E`(t, x) := ∇x(∆x)−1ρ`(t, x) =
1

4π

N∑
α=1

qα

∫
ξ

|ξ|3
Fα,`

(
t,
x

t
− ξ
)
dξ.

It will be shown that Fα,`(t, v), ρ`(t, x), and E`(t, x) converge, respectively, to

(11) Fα,`∞ (v) :=
∑
|β|=`

1

β!

∫
(−y)βDβ

v f
α
∞(y, v) dy,

(12) ρ`,∞(v) :=

N∑
α=1

qαF
α,`
∞ (v),

and

(13) E`,∞(v) := ∇v (∆v)
−1
ρ`,∞(v),

with the latter two limits occurring along v = x
t and where fα∞ are the limiting functions introduced in

Theorems 1.1 and 1.2. In order to write an expansion of the form (6) precisely, we introduce notation for
the bounds that we will obtain for remainder terms, which involve derivatives of the translated distribution
functions; namely, for every k ∈ N we define

(14) Gkv (t) := 1 + max
α=1,...,N

∑
|β|=k

‖Dβ
v g

α(t)‖∞
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and

(15) Gkx,v(t) := 1 + max
α=1,...,N

∑
|β|+|γ|=k
|γ|>0

‖Dβ
vD

γ
xg
α(t)‖∞,

whenever these derivatives exist. In particular, we note that in (15) the quantity Gkx,v(t) includes kth order

x-derivatives, namely max
α=1,...,N

∑
|γ|=k

‖Dγ
xg
α(t)‖∞.

1.4. Main Results. We are now ready to present our main results, which extend the asymptotic behavior
described by Theorems 1.1 and 1.2 to higher order expansions and close the estimates with bounds on higher
order velocity derivatives of gα.

Theorem 1.3. Let m ∈ N0 be given. There exist nontrivial fα ∈ Cm+1
(
(0,∞)× R6

)
for every α = 1, ..., N

satisfying (VP) such that (A) holds, M = 0, and

‖ρ(t)‖∞ ∼ t−m−3,
‖E(t)‖∞ ∼ t−m−2.

If m = 0, then we have

‖∇xE(t)‖∞ ∼ t−3

and for every α = 1, ..., N there is fα∞ ∈ Cmc (R6) such that

sup
(x,v)∈R6

∣∣∣∣fα(t, x+ vt− qα
mα

ln(t)E0,∞(v), v

)
− fα∞(x, v)

∣∣∣∣ . t−1 ln4(t).

In contrast, for m ≥ 1 we have for every k = 1, ...,m

‖∇kxE(t)‖∞ ∼ t−m−3,

and for every α = 1, ..., N there is fα∞ ∈ Cmc (R6) such that

sup
(x,v)∈R6

|fα(t, x+ vt, v)− fα∞(x, v)| . t−m.

Remark 1.1. To the best of our knowledge, Theorem 1.3 is the first result to demonstrate decay rates of
the charge density and electric field that are nontrivial (i.e., ρ,E 6≡ 0) and faster than the dispersive rates
(of t−3 and t−2, respectively) for (VP) in R3.

Theorem 1.3 will be implied by the following result (taking m = n + 1 and ρn+1,∞ 6≡ 0) when m ≥ 1,
which, in turn, will be established inductively.

Theorem 1.4. Let n ∈ N0 be given. Consider initial data fα0 ∈ Cn+2
c (R6) launching solutions fα ∈

Cn+2((0,∞)× R6) of (VP) for α = 1, ..., N . If

ρ`,∞ ≡ 0 for every ` ∈ {0, ..., n},

then for every α = 1, ..., N there is fα∞ ∈ Cn+1
c (R6) with Fα,n+1

∞ , ρn+1,∞ and En+1,∞ defined by (11), (12),
and (13), respectively, such that

sup
x∈R3

∣∣∣tn+4ρ(t, x)− ρn+1,∞

(x
t

)∣∣∣ . t−1,
sup
x∈R3

∣∣∣tn+3E(t, x)− En+1,∞

(x
t

)∣∣∣ . t−1,
with

sup
x∈R3

∣∣∣tn+3∇kxE(t, x)−∇kvEn+1−k,∞

(x
t

)∣∣∣ . t−1,(16)

Gkx,v(t) + Gkv (t) . 1
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for every k ∈ {1, ..., n+ 1}, and

sup
x∈R3

∣∣∣tn+4∇n+2
x E(t, x)−∇n+2

v E0,∞

(x
t

)∣∣∣ . t−1 ln(t),

Gn+2
x,v (t) + Gn+2

v (t) . 1.

In each of these cases, we further have

sup
(x,v)∈R6

|fα(t, x+ vt, v)− fα∞(x, v)| . t−n−1

and
sup

(x,v)∈R6

∣∣∇ix∇jvfα (t, x+ vt, v)−∇ix∇jvfα∞(x, v)
∣∣ . max

{
t−n−1, tj−n−2

}
for i, j ∈ N0 with 1 ≤ i+ j ≤ n+ 1.

Remark 1.2. As mentioned above, Theorem 1.4 will be proved by induction. We note that we may lose
decay on the spatial derivatives of E(t, x) at every step of the induction argument. For instance, within the
base case (n = 0) and focusing on k = 1, one could attempt to replace (16) with the sharper estimate

sup
x∈R3

∣∣∣t4∇xE(t, x)−∇vE1,∞

(x
t

)∣∣∣ . t−1.
In fact, because E0,∞ ≡ 0 in such a case, one would expect convergence of the field and its derivatives to the
next order limit, namely E1,∞. However, establishing a convergence result like this would require estimates
of higher-order derivatives of gα, e.g., G3v(t) . 1. More generally, at the nth step of the induction argument
we estimate Gn+2

v (t) in order to obtain a sharp rate of decay for ρ(t, x) and E(t, x). However, in order to
achieve the optimal rate of decay for kth-order derivatives of these quantities, one would require estimates
of Gk+n+2

v (t), which would further necessitate an estimate of ‖∇k+n+2
x E(t)‖∞. Thus, sharp estimates of

derivatives require even greater regularity and lead to a loss of closure in the argument.

Remark 1.3. Throughout the proof of Theorem 1.4, we will establish and utilize the functions Fα,`∞ (v), which
will be initially understood only as the large time asymptotic limits of the functions Fα,`(t, v). However,
at the end of the proof we will justify the regularity needed to assert the ultimate relationship between
the limiting distributions f∞(x, v) and the limiting spatial moments Fα,`∞ (v) given by (11). Hence, this
relationship is not needed to establish our results. Only the existence of the limits Fα,`∞ (v) = limt→∞ Fα,`(t, v)
will be necessary, independent of an explicit formula for the limiting functions.

Remark 1.4. It appears that the main physical mechanism that generates further decay of these quantities
is charge cancellation within the density ρ(t, x), rather than dispersion or phase mixing, the latter of which
occurs in the case of Landau damping [4, 24, 27]. If we think of a plasma comprised of two identical,
yet oppositely charged, species, this means that the decay comes from the distribution of the two species
overlapping with one another in physical space asymptotically as t→∞. The precise rate of decay, then, has
to do with how quickly they overlap. To put this into a more concrete context, one may consider a two-species

(N = 2) plasma with q± = ±1, limiting Gaussian distributions f±∞(x, v) = 1
(2πσ3

±)3/2
exp

(
− |x−µ±|2

2σ2
±

)
φ(v) for

some smooth φ 6≡ 0 with
∫
φ(v) dv = 0, µ± ∈ R, and σ± > 0. In this case the following possibilities arise:

• If µ+ 6= µ− and σ+ 6= σ−, then the distributions don’t overlap much at all, though ρ0,∞ ≡ 0 from
(11) and (12) due to the normalization of total positively/negatively charged particles.

• Instead, if µ+ = µ− and σ+ 6= σ−, then these distributions share the same mean position, and hence
their first moments cancel, yielding ρ0,∞ ≡ ρ1,∞ ≡ 0, but ρ2,∞ 6≡ 0.

• Finally, if µ+ = µ− and σ+ = σ−, then these distributions overlap identically, which yields ρk,∞ ≡ 0
for all k ∈ N0 and ρ(t, x) ≡ 0 for all t ≥ 0, x ∈ R3.

Such cancellation can be extended to an arbitrary number of moments, rather than merely the first or second,
and this is implemented within the proof of Theorem 1.3 (Section 3). Moreover, this idea is reminiscent of
the behavior of electric dipoles or multipoles [25], in which charges of opposite sign located an infinitesimal
distance apart lead to an atypical dominant term within the multipole expansion of the electric field, thereby
generating field behavior that possesses faster spatial decay than generic solutions of Poisson’s equation (e.g.,
|E(t, x)| ∼ |x|−3 for |x| sufficiently large). Of course, if particle positions generally disperse at linear rates in
time, this increased spatial decay transforms into time decay (e.g., ‖E(t)‖∞ ∼ t−3 for t sufficiently large).

7



Remark 1.5. The assumption (A) was first used in [31, Lemma 2.2], where it was shown that it implies the
dispersive rates of ‖E(t)‖∞ . t−2 and ‖ρ(t)‖∞ . t−3. This was established via an estimate on the spread
of the spatial characteristics. The exponent p = 5/3 appearing in (A) is the result of a simple algebraic
constraint, and while it is conceivable that it could be relaxed, this is not the focus of the present article.

Remark 1.6. Our methods are not constrained to dimension d = 3 and could be used to arrive at similar
decay results concerning small data solutions of (VP) for d ≥ 4 [32].

Remark 1.7. We believe that by combining the tools of [7] with the methods developed herein and the
scattering map of [9], Theorems 1.3 and 1.4 can be extended to achieve analogous decay rates and self-similar
expansions for small data solutions of the relativistic Vlasov-Maxwell system (see also [8]).

1.5. Strategy of the Proof. To prove the theorems we reformulate the original problem within a dispersive
reference frame that is co-moving with the particles. More specifically, defining gα as in (3) and applying
the aforementioned change of variables (see (4) and (5)) to the field and charge density, (VP) becomes

(VPg)


∂tg

α − qα
mα

tE(t, x+ vt) · ∇xgα +
qα
mα

E(t, x+ vt) · ∇vgα = 0, α = 1, ..., N

E(t, x) =
1

4πt2

N∑
α=1

qα

∫∫
ξ

|ξ|3
gα
(
t, y,

x− y
t
− ξ
)
dydξ

with

ρ(t, x) = t−3
N∑
α=1

qα

∫
R3

gα
(
t, y,

x− y
t

)
dy

and the initial conditions gα(0, x, v) = fα0 (x, v). As shown within [31], the spatial support and velocity
derivatives of gα can grow logarithmically in time or become uniformly bounded, depending upon the rate
of field decay (see Lemmas 2.1, 3.1, and 3.2), while the corresponding spatial support and v-derivatives of
fα grow at least linearly in time. Moreover, the Taylor expansion in (8) and the dependence of the charge
density on spatial integrals of gα within (9) and (10) inherently demonstrate the need to control the growth
of the spatial support and velocity derivatives of these translated distribution functions in order to gain
an extra power of time decay within each term of the expansion. Finally, capturing the exact asymptotic
behavior, rather than mere decay estimates, at each step of the induction argument within the proof of
Theorem 1.4 enables us to establish the next order limiting distribution of Fα,`(t, v) and propagate the
convergence of the charge density and electric field to their precise limits from one step to the next.

2. Preliminary Lemmas

This section is dedicated to a sequence of lemmas concerned with estimates of the field, the charge density,
and their respective derivatives. As these lemmas will be used to prove Theorem 1.4, we will assume that
M = 0 and ρ0,∞ ≡ 0 throughout this section. Hence, the result of Theorem 1.2 applies immediately.

2.1. Further Notation and Preliminary Estimates. Prior to stating the lemmas, we first introduce
some notation related to the translated distribution functions. As mentioned previously, we let

gα(t, x, v) = fα(t, x+ vt, v)

and note that ‖gα(t)‖∞ ≤ ‖fα0 ‖∞ for all t ≥ 0 due to (VPg). As our approach relies heavily upon the growth
of the support of gα, we define the sets

∀t ≥ 0, Sα(t) = {(x, v) ∈ R6 : gα(t, x, v) 6= 0},
and

∀t ≥ 0,∀v ∈ R3, Sαx (t, v) = {x ∈ R3 : gα(t, x, v) 6= 0}
and the quantity

µ(t) = max
α=1,...,N

sup
v∈R3

|Sαx (t, v)| .

We also introduce some notation related to multi-indices, as these can become cumbersome. In the
forthcoming discussion, the Greek letters β and γ shall denote multi-indices of length 3, with a subscript
clarifying whether they belong to derivatives acting on the x variable or the v variable. They are always
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elements of N3
0, i.e. their entries can take the values {0, 1, 2, . . . }. Hence, for βv = (βv,1, βv,2, βv,3) and

βx = (βx,1, βx,2, βx,3) we write derivatives as follows:

Dβv
v = ∂βv,1

v1 ∂βv,2
v2 ∂βv,3

v3 and Dβx
x = ∂βx,1

x1
∂βx,2
x2

∂βx,3
x3

.

These can be concatenated, so that Dβv
v Dβx

x is given by

Dβv
v Dβx

x = ∂βv,1
v1 ∂βv,2

v2 ∂βv,3
v3 ∂βx,1

x1
∂βx,2
x2

∂βx,3
x3

.

In the case of a vector E = (E1, E2, E3), the derivatives are applied to each coordinate separately and the
result remains a vector, i.e.

Dβx
x E =

(
Dβx
x E1, D

βx
x E2, D

βx
x E3

)
.

We can further define a relation � on multi-indices. More specifically, for β, γ ∈ N3
0 we write

γ � β whenever γi ≤ βi for all i = 1, 2, 3,

and, in this case, we define
β − γ := (β1 − γ1, β2 − γ2, β3 − γ3),

which is also an element of N3
0. Lastly, the magnitude of a multi-index is the sum of its elements; namely,

for β = (β1, β2, β3), we define
|β| = β1 + β2 + β3.

Note that for η � γ � β we have

|β − γ|+ |γ − η| =
3∑
i=1

(βi − γi) +

3∑
i=1

(γi − ηi) =

3∑
i=1

(βi − ηi) = |β − η|.

Occasionally, we use an integer superscript, such as Dk
x, where k ∈ N. This symbol means that we are

taking an arbitrary kth order derivative: that is, for j ∈ {1, . . . , k} and some choice ij ∈ {1, 2, 3},

Dk
x = ∂xi1

· · · ∂xik
.

This holds similarly for an arbitrary kth order derivative Dk
v in the v variable.

Prior to diving into our sequence of lemmas, we begin by recalling some important properties of the
translated distribution functions from [31]. First, we note that the measure of the phase space support of
each gα is preserved in time and recall an estimate on the spatial support of each gα that will ultimately
provide a uniform-in-time bound.

Lemma 2.1 ([31]). For every α = 1, ..., N and t ≥ 0, we have

|Sα(t)| = |Sα(0)|.
Additionally, the measure of the maximal spatial support satisfies

µ(t) .

(
1 +

∫ t

1

s‖E(s)‖∞ ds

)3

.

Proof. The proof in [31] follows from an analysis of the evolution of gα in phase space; specifically, the
divergence-free property of the Vlasov flow implies the first statement. The result for µ(t) simply follows
from estimating the rate at which the translated spatial characteristics separate. �

Due to the assumption that ρ0,∞ ≡ 0, we find

‖E(t)‖∞ . t−3

from Theorem 1.2. Because the field is bounded on any bounded time interval, inserting this estimate within
Lemma 2.1 gives

(17) µ(t) . 1.

Hence, both the phase space support and spatial support of gα(t) are uniformly bounded for every α = 1, .., N .
Next, we state an important (and well-known) estimate for the electric field.

Lemma 2.2. For any φ ∈ Cc(R3), there is C > 0 such that

‖∇(∆)−1φ‖∞ ≤ C‖φ‖∞.
9



Proof. First we note that for φ ∈ Cc(R3), we have

‖φ‖1 ≤ |supp(φ)| ‖φ‖∞ ≤ C‖φ‖∞

due to the compact support of φ. Finally, the proof is completed by using this within the classical estimate
(cf. [20], Lemma 4.5.4)

‖∇(∆)−1φ‖∞ ≤ C‖φ‖1/31 ‖φ‖2/3∞
for any φ ∈ Cc(R3) ⊂ L1(R3) ∩ L∞(R3). �

With this, we note that, as the spatial support of gα(t, x, v) is uniformly bounded in time by (17), the
lemma implies

‖E(t)‖∞ = ‖∇x(∆x)−1ρ(t)‖∞ . ‖ρ(t)‖∞,

with analogous results for field derivatives and any function dependent upon the spatial support of a particle
distribution.

2.2. Preliminary Bounds on the Particle Density and the Field. The next lemma provides an initial
estimate of kth order field derivatives in terms of the kth order derivatives of the distribution function. In
order to precisely capture this dependence, we first define the function

ln∗(x) =

{
ln(x), x > 1

0, x ≤ 1.

Lemma 2.3. For any k ∈ N, if Gk−1v (t) . 1, then

‖∇kxE(t)‖∞ . t−2−k
(

1 + ln∗
(

max
α=1,...,N

‖∇kvgα(t)‖∞
))

.

Proof. We begin by taking any kth-order derivative with respect to x of the field representation (5) so that

Dk
xE(t, x) =

1

4πt2+k

∫
ξ

|ξ|3
N∑
α=1

qα

∫
Dk
vg
α

(
t, y,

x− y
t
− ξ
)
dy dξ,

or written another way

t2+kDk
xE(t, x) =

1

4π

∫
ξ

|ξ|3
∂ziA

(
t,
x

t
− ξ
)
dξ

for some i ∈ {1, 2, 3} where

A(t, z) =

N∑
α=1

qα

∫
Dk−1
v gα

(
t, y, z − y

t

)
dy

and the kth order derivative is decomposed into the composition of first and (k−1)st order derivatives via
Dk
v = ∂viD

k−1
v . Because gα(t, x, v) has bounded support in x due to (17) and in the phase space (x, v) due

to Lemma 2.1, we find

(18) ‖A(t)‖1 + ‖A(t)‖∞ . max
α=1,...,N

‖Dk−1
v gα(t)‖∞ . Gk−1v (t) . 1

and

(19) ‖∂ziA(t)‖∞ . max
α=1,...,N

‖∇kvgα(t)‖∞.

Then, using the identity

∂ziA
(
t,
x

t
− ξ
)

= −∂ξi
[
A
(
t,
x

t
− ξ
)]

10



with an integration by parts away from the singularity and taking some 0 < d < R <∞ to be chosen later,
we find

t2+k
∣∣Dk

xE
j(t, x)

∣∣ ≤

∣∣∣∣∣
∫
|ξ|<d

ξj
|ξ|3

∂ziA
(
t,
x

t
− ξ
)
dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
|ξ|=d

ξjξi
|ξ|4
A
(
t,
x

t
− ξ
)
dSξ

∣∣∣∣∣
+

∣∣∣∣∣
∫
d<|ξ|<R

∂ξi

(
ξj
|ξ|3

)
A
(
t,
x

t
− ξ
)
dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
|ξ|>R

∂ξi

(
ξj
|ξ|3

)
A
(
t,
x

t
− ξ
)
dξ

∣∣∣∣∣
=: I + II + III + IV.

The estimate of I merely uses (19) so that

I . d‖∂ziA(t)‖∞ . d max
α=1,...,N

‖∇kvgα(t)‖∞.

We use (18) to estimate II, III, and IV , which yields

II . ‖A(t)‖∞

(∫
|ξ|=d

|ξ|−2dSξ

)
. 1,

III .
∫
d<|ξ|<R

|ξ|−3A
(
t,
x

t
− ξ
)
dξ . ln

(
R

d

)
‖A(t)‖∞ . ln

(
R

d

)
,

and

IV .
∫
|ξ|>R

|ξ|−3A
(
t,
x

t
− ξ
)
dξ . R−3‖A(t)‖1 . R−3,

respectively. Collecting these estimates yields

t2+k‖Dk
xE(t)‖∞ . 1 + d max

α=1,...,N
‖∇kvgα(t)‖∞ + ln

(
R

d

)
+R−3.

We choose R = 2 and

d(t) = min

{
1,

(
max

α=1,...,N
‖∇kvgα(t)‖∞

)−1}
.

Then for all t ≥ 0, we have

d(t) ·
(

max
α=1,...,N

‖∇kvgα(t)‖∞
)
≤ 1

and

ln

(
1

d(t)

)
= ln∗

(
max

α=1,...,N
‖∇kvgα(t)‖∞

)
,

so that the previous estimate yields

t2+k‖Dk
xE(t)‖∞ . 1 + ln∗

(
max

α=1,...,N
‖∇kvgα(t)‖∞

)
.

Finally, we have obtained the same bound for every such derivative of the field, yielding the stated result. �

Next, we control derivatives of the charge density in terms of those of the distribution function.

Lemma 2.4. For every k ∈ N, we have ∥∥∇kxρ(t)
∥∥
∞ . t

−3−kGkv (t).

Proof. Taking any kth order derivative with respect to x of ρ(t, x) via the representation (4) yields

Dk
xρ(t, x+ vt) = t−3−k

N∑
α=1

qα

∫
Dk
vg
α

(
t, y, v +

x− y
t

)
dy,

and, as the spatial support of gα is uniformly bounded for each α = 1, ..., N by (17), we take supremums so
that the gradient satisfies ∥∥∇kxρ(t)

∥∥
∞ . t

−3−kGkv (t).

�
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2.3. Bounds on Derivatives of F . In order to estimate field derivatives later, we will first need to deter-
mine the large time rate of convergence of higher-order derivatives of Fα,0(t, v).

Lemma 2.5. For every α = 1, ..., N and k ∈ N0, we have∥∥∇kvFα,0(t)−∇kvFα,0∞
∥∥
∞ .

∫ ∞
t

k∑
j=0

sk−j
[
s
∥∥∇k−jx ρ(s)

∥∥
∞ G

j
v(s) +

∥∥∇k−jx E(s)
∥∥
∞ G

j+1
v (s)

]
ds.

under the assumption that the integral on the right side is finite.

Proof. We first take the time derivative of Fα,0(t) and write ∂tg
α using (VPg) to find

∂tF
α,0(t, v) =

∫
∂tg

α(t, x, v) dx

=

∫
qα
mα

[
tE(t, x+ vt) · ∇xgα(t, x, v)− E(t, x+ vt) · ∇vgα(t, x, v)

]
dx.

Integrating by parts within the first term, the x-derivative is transferred from gα to E and simplified using

∇x · E(t, x) = ρ(t, x).

The boundary term is zero due to the compact spatial support of gα from (17), and this first term becomes∫
tE(t, x+ vt) · ∇xgα(t, x, v) dx = −

∫
tρ(t, x+ vt)gα(t, x, v) dx.

Next, we take any kth order velocity derivative, denoted by Dβ
v with |β| = k, of the original equality, yielding

∂tD
β
vF

α,0(t, v) = − qα
mα

∫ [
tDβ

v

(
ρ(t, x+ vt)gα(t, x, v)

)
+Dβ

v

(
E(t, x+ vt) · ∇vgα(t, x, v)

)]
dx

= − qα
mα

∫ k∑
j=0

(
k

j

) ∑
|γ|=j
γ�β

[
tDβ−γ

v ρ(t, x+ vt)Dγ
vg
α(t, x, v) +Dβ−γ

v E(t, x+ vt) ·Dγ
v∇vgα(t, x, v)

]
dx

= − qα
mα

∫ k∑
j=0

(
k

j

) ∑
|γ|=j
γ�β

[
t1+|β−γ|Dβ−γ

x ρ(t, x+ vt)Dγ
vg
α(t, x, v)

+ t|β−γ|Dβ−γ
x E(t, x+ vt) ·Dγ

v∇vgα(t, x, v)
]
dx.

Taking the supremum over x, v ∈ R3 and using |β − γ| = k − j, we find∥∥∂tDβ
vF

α,0(t)
∥∥
∞ .

k∑
j=0

[
t1+k−j

∥∥∇k−jx ρ(t)
∥∥
∞ G

j
v(t) + tk−j

∥∥∇k−jx E(t)
∥∥
∞ G

j+1
v (t)

]
.

Hence, for τ ≥ t we can write∥∥Dβ
vF

α,0(t)−Dβ
vF

α,0(τ)
∥∥
∞ =

∥∥∥∥∫ τ

t

∂tD
β
vF

α,0(s) ds

∥∥∥∥
∞
≤
∫ τ

t

∥∥∂tDβ
vF

α,0(s)
∥∥
∞ ds.

Then, as long as the integrand decays sufficiently fast as s→∞, we let τ →∞ and find∥∥Dβ
vF

α,0(t)−Dβ
vF

α,0
∞
∥∥
∞ .

∫ ∞
t

k∑
j=0

sk−j
[
s
∥∥∇k−jx ρ(s)

∥∥
∞ G

j
v(s) +

∥∥∇k−jx E(s)
∥∥
∞ G

j+1
v (s)

]
ds.

Summing over all such derivatives with |β| = k gives the desired result for any α = 1, . . . , N . �

Lemma 2.6. For every α = 1, . . . , N , k ∈ N0, and ` ∈ N, the spatial density ∇kvFα,`(t, v) satisfies∥∥∇kvFα,`(t)−∇kvFα,`∞ ∥∥
∞ .

∫ ∞
t

k+∑̀
j=0

sk+`−j
∥∥∇k+`−jx E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
ds

under the assumption that the integral on the right side is finite.
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Proof. Taking a time derivative of Fα,`(t, v) and using (VPg), we find

∂tF
α,`(t, v) =

∑
|β|=`

∫
(−x)

β
Dβ
v ∂tg

α(t, x, v) dx

=
qα
mα

∑
|β|=`

∫
(−x)

β
Dβ
v

[
E(t, x+ vt) ·

(
t∇xgα(t, x, v)−∇vgα(t, x, v)

)]
dx.

Next, we apply any v-derivative of order k to this equation yielding

∂tD
k
vF

α,`(t, v) =
qα
mα

∑
|β|=`

∫
(−x)

β
Dβ
vD

k
v

[
E(t, x+ vt) ·

(
t∇xgα(t, x, v)−∇vgα(t, x, v)

)]
dx.

Applying these derivatives to the product and using the bounded spatial support of gα from (17), we find

∥∥∂tDk
vF

α,`(t)
∥∥
∞ .

k+∑̀
j=0

tk+`−j
∥∥∇k+`−jx E(t)

∥∥
∞

[
tGj+1
x,v (t) + Gj+1

v (t)
]

where j = 0, ..., k + ` represents the number of derivatives applied to the distribution function within the
product. Taking τ ≥ t, we can write

∥∥Dk
vF

α,`(t)−Dk
vF

α,`(τ)
∥∥
∞ =

∥∥∥∥∫ τ

t

∂tD
k
vF

α,`(s) ds

∥∥∥∥
∞
≤
∫ τ

t

∥∥∂tDk
vF

α,`(s)
∥∥
∞ ds.

Letting τ →∞, we have

∥∥Dk
vF

α,`(t)−Dk
vF

α,`
∞
∥∥
∞ .

∫ ∞
t

k+∑̀
j=0

sk+`−j
∥∥∇k+`−jx E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
ds,

and summing over all such derivatives provides the desired result. �

2.4. Improved Bounds on Gradients of the Particle Density and the Field. The following lemma
allows us to estimate lower-order field derivatives.

Lemma 2.7. For any k ∈ N0 and ` ∈ N, we have

sup
x∈R3

∣∣∣tk+`+2∇kxE(t, x)−∇kvE`,∞
(x
t

)∣∣∣ . `−1∑
m=0

t`−m‖∇kxρm(t)‖∞ + max
α=1,...,N

‖∇kvFα,`(t)−∇kvFα,`∞ ‖∞

+ t−1Gk+`+1
v (t).

In the case ` = 0, this reduces to

sup
x∈R3

∣∣∣tk+2∇kxE(t, x)−∇kvE0,∞

(x
t

)∣∣∣ . max
α=1,...,N

‖∇kvFα,0(t)−∇kvFα,0∞ ‖∞ + t−1Gk+1
v (t)

for any k ∈ N0.

Proof. We begin by taking any kth-order derivative with respect to x, denoted by Dk
x, of the jth component

of (5), subtracting the corresponding kth order v derivative, denoted Dk
v , of the limiting field given by (13),
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and using the Taylor series expansion (8) of gα, we find

tk+`+2Dk
xE

j(t, x)−Dk
vE

j
`,∞

(x
t

)
=

1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

(
t`
∫
Dk
v g

α

(
t, w,

x− w
t
− ξ
)
dw −Dk

vF
α,`
∞

(x
t
− ξ
))

dξ

=
1

4π

(∫
ξj
|ξ|3

N∑
α=1

qα

[ `−1∑
m=0

∑
|β|=m

t`−m
1

β!

∫
(−w)βDk

vD
β
v g

α
(
t, w,

x

t
− ξ
)
dw

+
∑
|β|=`

1

β!

∫
(−w)βDk

vD
β
v g

α
(
t, w,

x

t
− ξ
)
dw −Dk

vF
α,`
∞

(x
t
− ξ
)

+ t−1
∑
|β|=`+1

1

β!

∫
(−w)βDk

vD
β
v g

α

(
t, w,

x− θαw
t

− ξ
)
dw

]
dξ

)
for some θα ∈ [0, 1]. Next we estimate this expression. To estimate the first two terms on the right side,
we use the definitions (9) and (10) of Fα,` and ρ`, respectively. To estimate the integral within the Taylor
remainder term (the last on the right side) we use the uniform-in-time bound on the spatial support of gα

in (17). We thus obtain∣∣∣tk+`+2Dk
xE

j(t, x)−Dk
vE

j
`,∞

(x
t

)∣∣∣ . `−1∑
m=0

t`−m‖∇x (∆x)
−1∇kxρm(t)‖∞

+

∣∣∣∣∣ 1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

(
Dk
vF

α,`
(
t,
x

t
− ξ
)
−Dk

vF
α,`
∞

(x
t
− ξ
))

dξ

∣∣∣∣∣
+ t−1 max

α=1,...,N

∥∥∇k+`+1
v gα(t)

∥∥
∞

=: I + II + III.

To estimate I, we merely use Lemma 2.2 so that

I .
`−1∑
m=0

t`−m
∥∥∇kxρm(t)

∥∥
∞ .

We write the term II as

II =

∣∣∣∣ 1

4π

∫
ξj
|ξ|3
A
(
t,
x

t
− ξ
)
dξ

∣∣∣∣
where A(t, v) is defined by

A(t, v) =

N∑
α=1

qα

(
Dk
vF

α,`(t, v)−Dk
vF

α,`
∞ (v)

)
.

Using Lemma 2.2 again, we find

II .
∥∥∇v(∆v)

−1A(t)
∥∥
∞ . ‖A(t)‖∞ . max

α=1,...,N

∥∥∇kvFα,`(t)−∇kvFα,`∞ ∥∥
∞ .

Lastly, the Taylor remainder term in III satisfies

III . t−1Gk+`+1
v (t).

Finally, collecting these estimates and summing over all kth order derivatives yields the first result. The
proof of the second (` = 0) result is identical with the exception that no Taylor expansion is required, and
hence, the first term in the right side of the estimate does not appear. �

As an intermediate step to estimating field derivatives, we must also control derivatives of the approxi-
mations to the charge density.
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Lemma 2.8. For any k, ` ∈ N0, we have

sup
x∈R3

∣∣∣tk∇kxρ`(t, x)−∇kvρ`,∞
(x
t

)∣∣∣ . max
α=1,...,N

‖∇kvFα,`(t)−∇kvFα,`∞ ‖∞

Proof. Taking any kth-order derivative of the representation for ρ`(t, x) in (10) gives

Dk
xρ`(t, x) = t−k

N∑
α=1

qαD
k
vF

α,`
(
t,
x

t

)
.

Hence, multiplying by tk and subtracting the proposed limit, given by the derivative of (12), yields

∣∣∣tkDk
xρ`(t, x)−Dk

vρ`,∞

(x
t

)∣∣∣ =

∣∣∣∣∣
N∑
α=1

qα

[
Dk
vF

`,α
(
t,
x

t

)
−Dk

vF
`,α
∞

(x
t

)]∣∣∣∣∣
. max

α=1,...,N
‖∇kvFα,`(t)−∇kvFα,`∞ ‖∞,

and upon summing over all such derivatives, this provides the stated result. �

The following lemma allows us to estimate higher-order field derivatives using fewer v-derivatives of Fα,`

than within Lemma 2.7 with the addition of a ln(t) factor.

Lemma 2.9. For any k, ` ∈ N, we have

sup
x∈R3

∣∣∣tk+`+2∇kxE(t, x)−∇kvE`,∞
(x
t

)∣∣∣ . `−1∑
m=0

t`−m‖∇kxρm(t)‖∞ + ln(t) max
α=1,...,N

‖∇k−1v Fα,`(t)−∇k−1v Fα,`∞ ‖∞

+ t−1
(
Gk+`v (t) + Gk+`+1

v (t)
)
.

Furthermore, in the case ` = 0, we have

sup
x∈R3

∣∣∣tk+2∇kxE(t, x)−∇kvE0,∞

(x
t

)∣∣∣ . ln(t)

(
max

α=1,...,N
‖∇k−1v Fα,0(t)−∇k−1v Fα,0∞ (t)‖∞ + t−1Gkv (t)

)
.

for any k ∈ N.

Proof. To prove the first result, we proceed as in the proof of Lemma 2.7. Hence, we begin by taking any
kth order derivative with respect to x of the jth component of (5) and use the same Taylor series expansion
of gα so that

t2+k+`Dk
xE

j(t, x)−Dk
vE

j
`,∞

(x
t

)
=

1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

(
t`
∫
Dk
vg
α

(
t, w,

x− w
t
− ξ
)
dw −Dk

vF
α,`
∞

(x
t
− ξ
))

dξ

=
1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

[ `−1∑
m=0

∑
|β|=m

t`−m
1

β!

∫
(−w)βDk

vD
β
v g

α
(
t, w,

x

t
− ξ
)
dw

+
∑
|β|=`

1

β!

∫
(−w)βDk

vD
β
v g

α
(
t, w,

x

t
− ξ
)
dw −Dk

vF
α,`
∞

(x
t
− ξ
)

+ t−1
∑
|β|=`+1

1

β!

∫
(−w)βDk

vD
β
v g

α

(
t, w,

x− θαw
t

− ξ
)
dw

]
dξ

15



for some θα ∈ [0, 1]. Using the bounded spatial support of gα established in (17) to estimate the integral
within the Taylor remainder term, this becomes∣∣∣t2+k+`Dk

xE
j(t, x)−Dk

vE
j
`,∞

(x
t

)∣∣∣ . `−1∑
m=0

t`−m‖∇x (∆x)
−1∇kxρm(t)‖∞

+

∣∣∣∣∣ 1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

(
Dk
vF

α,`
(
t,
x

t
− ξ
)
−Dk

vF
α,`
∞

(x
t
− ξ
))

dξ

∣∣∣∣∣
+ t−1 max

α=1,...,N
‖∇k+`+1

v gα(t)‖∞

=: I + II + III.

To estimate I, we merely use Lemma 2.2 so that

I .
`−1∑
m=0

t`−m‖∇kxρm(t)‖∞.

The Taylor remainder term in III merely satisfies

III . t−1Gk+`+1
v (t).

Lastly, the limiting term within II is transformed into

II =

∣∣∣∣ 1

4π

∫
ξj
|ξ|3

∂viA
(
t,
x

t
− ξ
)
dξ

∣∣∣∣
for some i = 1, 2, 3, where A(t, v) is defined by

A(t, v) =

N∑
α=1

qα
(
Dk−1
v Fα,`(t, v)−Dk−1

v Fα,`∞ (v)
)

and the kth order derivative is decomposed via Dk
v = ∂viD

k−1
v . From this definition we first note

(20) ‖∂viA(t)‖∞ . Gk+`v (t)

and, because each Fα,`∞ (v) is compactly supported and each gα(t, x, v) has bounded support both in x, due
to (17), and in the phase space (x, v) from Lemma 2.1, we find

‖A(t)‖1 + ‖A(t)‖∞ . max
α=1,...,N

‖∇k−1v Fα,`(t)−∇k−1v Fα,`∞ ‖∞.

Then, decomposing the difference of derivatives and using the identity

∂viA
(
t,
x

t
− ξ
)

= −∂ξi
[
A
(
t,
x

t
− ξ
)]

with an integration by parts away from the singularity, letting 0 < d < R <∞ to be chosen later, we find

II .

∣∣∣∣∣
∫
|ξ|<d

ξj
|ξ|3

∂viA
(
t,
x

t
− ξ
)
dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
|ξ|=d

ξiξj
|ξ|4
A
(
t,
x

t
− ξ
)
dSξ

∣∣∣∣∣
+

∣∣∣∣∣
∫
d<|ξ|<R

∂ξi

(
ξj
|ξ|3

)
A
(
t,
x

t
− ξ
)
dξ

∣∣∣∣∣+

∣∣∣∣∣
∫
|ξ|>R

∂ξi

(
ξj
|ξ|3

)
A
(
t,
x

t
− ξ
)
dξ

∣∣∣∣∣
=: IIA + IIB + IIC + IID.

The estimate of IIA merely uses (20) so that

IIA . dGk+`v (t).

We use the previous L∞ bound to estimate IIB , which yields

IIB . ‖A(t)‖∞

(∫
|ξ|=d

|ξ|−2dSξ

)
. ‖A(t)‖∞ . max

α=1,...,N
‖∇k−1v Fα,`(t)−∇k−1v Fα,`∞ ‖∞.
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Similarly, this provides an estimate of IIC as

IIC .
∫
d<|ξ|<R

|ξ|−3
∣∣∣A(t, x

t
− ξ
)∣∣∣ dξ

. ‖A(t)‖∞ ln

(
R

d

)
. ln

(
R

d

)
max

α=1,...,N
‖∇k−1v Fα,`(t)−∇k−1v Fα,`∞ ‖∞.

Finally, we use the L1 bound to estimate IID so that

IID .
∫
|ξ|>R

|ξ|−3
∣∣∣A(t, x

t
− ξ
)∣∣∣ dξ . R−3‖A(t)‖1 . R−3 max

α=1,...,N
‖∇k−1v Fα,`(t)−∇k−1v Fα,`∞ ‖∞.

Collecting these estimates gives

II . dGk+`v (t) +

(
1 + ln

(
R

d

)
+R−3

)
max

α=1,...,N
‖∇k−1v Fα,`(t)−∇k−1v Fα,`∞ ‖∞.

Choosing d = t−1 with R−3 = ln(t) implies ln
(
R
d

)
. ln(t) and, upon including the estimates for I and III,

yields the first stated result.
The second result is nearly identical with the exception that no Taylor expansion is required. Thus, taking

any kth order derivative with respect to x of the jth component of (5) as above, we find

tk+2Dk
xE

j(t, x)−Dk
vE

j
0,∞

(x
t

)
=

1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

(∫
Dk
vg
α

(
t, w,

x− w
t
− ξ
)
dw −Dk

vF
α,0
∞

(x
t
− ξ
))

dξ

=
1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

∫
Dk
v

[
gα
(
t, w,

x− w
t
− ξ
)
− gα

(
t, w,

x

t
− ξ
)]
dw dξ

+
1

4π

∫
ξj
|ξ|3

N∑
α=1

qα

[
Dk
vF

α,0
(
t,
x

t
− ξ
)
−Dk

vF
α,0
∞

(x
t
− ξ
)]

dξ

=
1

4π

∫
ξj
|ξ|3

[
∂viA1

(
t,
x

t
− ξ
)

+ ∂viA2

(
t,
x

t
− ξ
)]

dξ

for some i = 1, 2, 3 where A1(t, v) and A2(t, v) are defined by

A1(t, v) =

N∑
α=1

qα

∫
Dk−1
v

[
gα
(
t, w, v − w

t

)
− gα(t, w, v)

]
dw,

and

A2(t, v) =

N∑
α=1

qαD
k−1
v

[
Fα,0(t, v)− Fα,0∞ (v)

]
,

respectively. As before, the kth order derivative satisfies Dk
v = ∂viD

k−1
v . From these definitions we note that

‖∂viA1(t)‖∞ + ‖∂viA2(t)‖∞ . Gkv (t).

To control the A1 term, we use the uniform-in-time bound on the spatial support of gα from (17) and velocity
derivative estimates, which yields

‖A1(t)‖∞ = sup
v∈R3

∣∣∣∣∣
N∑
α=1

qα

∫
Dk−1
v

[
gα
(
t, w, v − w

t

)
− gα(t, w, v)

]
dw

∣∣∣∣∣
. sup
v∈R3

N∑
α=1

∫ ∣∣∣∣∫ 1

0

d

dθ

(
Dk−1
v gα

(
t, w, v − θw

t

))
dθ

∣∣∣∣ dw
. t−1 sup

v∈R3

N∑
α=1

∫ 1

0

∫
|w|
∣∣∣∇vDk−1

v gα
(
t, w, v − θw

t

)∣∣∣ dwdθ
. t−1Gkv (t).
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Because of the bounded phase space support of gα(t, x, v) from Lemma 2.1, we further find

‖A1(t)‖1 . t−1Gkv (t).

Additionally, because each gα(t, x, v) has bounded support both in x and in the phase space (x, v) and Fα,0∞
has compact support, we find

‖A2(t)‖1 + ‖A2(t)‖∞ . max
α=1,...,N

‖∇k−1v Fα,0(t)−∇k−1v Fα,0∞ ‖∞.

Replacing A(t, v) with A1(t, v) + A2(t, v) within the decomposition of II above and using these estimates
then gives the stated result. �

2.5. Improved Bounds on the Particle Density. The final lemma provides control of the charge density
in terms of previous approximations and derivatives of gα.

Lemma 2.10. For any ` ∈ N, we have

sup
x∈R3

∣∣∣t`+3ρ(t, x)− ρ`,∞
(x
t

)∣∣∣ . `−1∑
j=0

t`−j ‖ρj(t)‖∞ + max
α=1,...,N

∥∥Fα,`(t)− Fα,`∞ ∥∥
∞ + t−1G`+1

v (t).

Proof. Beginning with (4), which yields

ρ(t, x) =
1

t3

N∑
α=1

qα

∫
gα
(
t, y,

x− y
t

)
dy,

we merely use the Taylor expansion (8) and the definitions (9) and (10) to write

t3ρ(t, x) =

`−1∑
j=0

t−jρj(t, x) + t−`ρ`(t, x) + t−`−1R(t)

where |R(t)| . G`+1
v (t). By the definitions in (10) and (12), the `th order approximation of ρ(t, x) satisfies∣∣∣ρ`(t, x)− ρ`,∞

(x
t

)∣∣∣ . max
α=1,...,N

∣∣∣Fα,` (t, x
t

)
− Fα,`∞

(x
t

)∣∣∣ .
Thus, expanding ρ(t, x) as above, we find

∣∣∣t`+3ρ(t, x)− ρ`,∞
(x
t

)∣∣∣ ≤
∣∣∣∣∣∣
`−1∑
j=0

t`−jρj(t, x) + ρ`(t, x)− ρ`,∞
(x
t

)∣∣∣∣∣∣+ t−1G`+1
v (t)

.
`−1∑
j=0

t`−j ‖ρj(t)‖∞ +
∣∣∣ρ`(t, x)− ρ`,∞

(x
t

)∣∣∣+ t−1G`+1
v (t)

.
`−1∑
j=0

t`−j ‖ρj(t)‖∞ + max
α=1,...,N

∣∣∣Fα,` (t, x
t

)
− Fα,`∞

(x
t

)∣∣∣+ t−1G`+1
v (t),

which completes the proof. �

3. Proofs of Theorems

First, we establish Theorem 1.4, which will be used later to prove Theorem 1.3.

Proof of Theorem 1.4. We will prove the result by induction. In particular, we consider the statement of the
proof to be of the form - for every n ∈ N0, Pn ⇒ Qn where Pn represents the statement

∀` = 0, . . . , n, ρ`,∞ ≡ 0,
18



while Qn represents the collection of statements

sup
x∈R3

∣∣∣tn+4ρ(t)− ρn+1,∞

(x
t

)∣∣∣ . t−1,
sup
x∈R3

∣∣∣tn+3E(t)− En+1,∞

(x
t

)∣∣∣ . t−1,
sup
x∈R3

∣∣∣tn+3∇kxE(t)−∇kvEn+1−k,∞

(x
t

)∣∣∣ . t−1, ∀k = 1, ..., n+ 1

sup
x∈R3

∣∣∣tn+4∇n+2
x E(t)−∇n+2

v E0,∞

(x
t

)∣∣∣ . t−1 ln(t),

Gkx,v(t) + Gkv (t) . 1, ∀k = 1, ..., n+ 2,

where we remind the reader that Gkv and Gkx,v are defined in (14) and (15), respectively. Then, the proof
requires that we show

(1) Base case: P0 ⇒ Q0,
(2) Inductive step: assume Pn−1 ⇒ Qn−1 and show Pn ⇒ Qn.

3.1. Base case. To prove the base case, we assume ρ0,∞ ≡ 0, which further implies E0,∞ ≡ 0. Due to
Theorem 1.2 this assumption provides the estimates

(21)



‖Fα,0(t)− Fα,0∞ ‖∞ . t−2, α = 1, ..., N

‖ρ(t)‖∞ . t−4,
‖E(t)‖∞ . t−3,

‖∇xE(t)‖∞ . t−4 ln(t),

G1v(t) + G1x,v(t) . 1.

With this improved decay (and applying Lemma 2.3 with k = 2), we construct initial estimates on
2nd-order derivative terms with a lemma whose proof is postposed until the following section.

Lemma 3.1. Assume that ρ0,∞ ≡ 0, which implies (21). Then, we have

(22) G2v(t) . 1 +

∫ t

1

s3‖∇2
xE(s)‖∞ ds,

and, as a preliminary estimate,

‖∇2
xE(t)‖∞ . t−4 ln(t), G2x,v(t) . 1, and G2v(t) . ln2(t).

Proof. The proof is contained in Section 4 below. �

With these preliminary estimates in hand, we now establish the convergence of ∇vFα,0(t, v). First, using
Lemma 2.4 with k = 1 and (21) we find

‖∇xρ(s)‖∞ . t−4G1v(t) . t−4.

Then, invoking Lemma 2.5 with k = 1 and using this together with (21) and the preliminary estimate of
G2v(t) in Lemma 3.1 we have∥∥∇vFα,0(t)−∇vFα,0∞

∥∥
∞ .

∫ ∞
t

[
s2‖∇xρ(s)‖∞ + sG1v(s)

(
‖ρ(s)‖∞ + ‖∇xE(s)‖∞

)
+ ‖E(s)‖∞ G

2
v(s)

]
ds

.
∫ ∞
t

s−2 ds . t−1.

Hence, the function Fα,0(t, v) satisfies

(23) ‖∇vFα,0(t)−∇vFα,0∞ ‖∞ . t−1

for any α = 1, ..., N , which provides the existence and regularity of the limiting function ∇vFα,0∞ (v), as
mentioned within Remark 1.3.

Next, we use this to improve the preliminary estimate of second-order field derivatives with Lemma 2.9.
In particular, we note that this result provides an estimate in terms of ∇vF , while use of Lemma 2.7 would
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require us to first estimate ∇2
vF . With the convergence result for ∇vFα,0(t, v) in place, we use Lemma 2.9

with k = 2 and ` = 0, the preliminary estimate of G2v(t) in Lemma 3.1, and (23) to conclude

sup
x∈R3

∣∣∣t4∇2
xE(t, x)−∇2

vE0,∞

(x
t

)∣∣∣ . ln(t)

(
‖∇vFα,0(t)−∇vFα,0∞ (t)‖∞ + t−1G2v(t)

)
. t−1 ln3(t).

Because the limiting function vanishes, i.e. E0,∞ ≡ 0, this implies a refined decay rate of second-order field
derivatives, namely

‖∇2
xE(t)‖∞ . t−5 ln3(t).

This faster decay then implies the uniform bound G2v(t) . 1 by revisiting (22), so that

(24) G2x,v(t) + G2v(t) . 1.

This further yields

(25) sup
x∈R3

∣∣∣t4∇2
xE(t, x)−∇2

vE0,∞

(x
t

)∣∣∣ . t−1 ln(t)

by using (24) within the above estimate. As before, because the limiting function E0,∞ vanishes, the second-
order derivatives of the electric field then satisfy

‖∇2
xE(t)‖∞ . t−5 ln(t).

Next, we improve the decay estimate on first-order field derivatives. In this direction, invoking Lemma
2.7 with k = 1 and ` = 0 and using (23) and (24) implies

(26) sup
x∈R3

∣∣∣t3∇xE(t, x)−∇vE0,∞

(x
t

)∣∣∣ . ‖∇vFα,0(t)−∇vFα,0∞ (t)‖∞ + t−1G2v(t) . t−1,

which, due to E0,∞ ≡ 0, gives

‖∇xE(t)‖∞ . t−4.
This improved decay now allows us to sharply estimate the convergence rate of Fα,1(t, v). Hence, we

invoke Lemma 2.6 with k = 0 and ` = 1, the established decay rates of the field and field derivatives, and
(24) so that the function

Fα,1(t, v) =

∫
(−x) · ∇vgα(t, x, v) dx

satisfies

‖Fα,1(t)− Fα,1∞ ‖∞ .
∫ ∞
t

[
s‖∇xE(s)‖∞

(
sG1x,v(s) + G1v(s)

)
+ ‖E(s)‖∞

(
sG2x,v(s) + G2v(s)

)]
ds

.
∫ ∞
t

s−2 ds . t−1

for any α = 1, ..., N , which establishes the existence of the limiting function Fα,1∞ (v), as mentioned within
Remark 1.3. Using this quantity, we define the next order limiting charge density and field via

ρ1,∞(v) =

N∑
α=1

qαF
1,α
∞ (v) and E1,∞(v) = ∇v(∆v)

−1ρ1,∞(v).

Prior to using these limits to obtain the next order of convergence in the charge density and electric field,
we invoke Lemma 2.8 with k = 0 and ` = 0 and (21) to find∣∣∣ρ0(t, x)− ρ0,∞

(x
t

)∣∣∣ . max
α=1,...,N

∥∥Fα,0(t)− Fα,0∞
∥∥
∞ . t

−2

so that, due to the vanishing of the limit ρ0,∞, we have

‖ρ0(t)‖∞ . t−2.
Finally, using the proposed limits for ρ1(t, x) and E1(t, x), the estimates on ‖ρ0(t)‖∞ and ‖Fα,1(t)−Fα,1∞ ‖∞,
and (24) within Lemma 2.7 with k = 0 and ` = 1 and Lemma 2.10 with ` = 1 gives

(27) sup
x∈R3

∣∣∣t4ρ(t, x)− ρ1,∞
(x
t

)∣∣∣ . t‖ρ0(t)‖∞ + max
α=1,...,N

∥∥Fα,1(t)− Fα,1∞
∥∥
∞ + t−1G2v(t) . t−1
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and

(28) sup
x∈R3

∣∣∣t3E(t, x)− E1,∞

(x
t

)∣∣∣ . t‖ρ0(t)‖∞ + max
α=1,...,N

∥∥Fα,1(t)− Fα,1∞
∥∥
∞ + t−1G2v(t) . t−1.

Assembling the estimates (24)–(28) then implies Q0 and completes the base case.

3.2. Inductive step. To address the inductive step we fix n ≥ 1 and assume Pn−1 ⇒ Qn−1 and Pn, so
that we must then establish Qn. Note that, as Pn implies Pn−1, we can immediately deduce Qn−1, as well.
Thus, by the induction hypothesis

sup
x∈R3

∣∣∣tn+3ρ(t)− ρn,∞
(x
t

)∣∣∣ . t−1,
sup
x∈R3

∣∣∣tn+2E(t)− En,∞
(x
t

)∣∣∣ . t−1,
the lower order field estimates

sup
x∈R3

∣∣∣tn+2∇kxE(t)−∇kvEn−k,∞
(x
t

)∣∣∣ . t−1, ∀k ∈ {1, ..., n},

and the higher order field estimate

sup
x∈R3

∣∣∣tn+3∇n+1
x E(t)−∇n+1

v E0,∞

(x
t

)∣∣∣ . t−1 ln(t)

all hold. Because ρn,∞ ≡ 0 and Ek,∞ ≡ 0 for all k = 0, ..., n, the above quantities enjoy faster rates of decay,
and thus we have the following set of estimates stemming directly from the induction hypothesis

(29)



‖ρ(t)‖∞ . t−n−4,
‖E(t)‖∞ . t−n−3,

‖∇kxE(t)‖∞ . t−n−3 ∀k ∈ {1, ..., n},
‖∇n+1

x E(t)‖∞ . t−n−4 ln(t),

Gkx,v(t) + Gkv (t) . 1 ∀k ∈ {1, ..., n},
Gn+1
x,v (t) + Gn+1

v (t) . 1.

This represents the starting point for the next iteration and is analogous to the decay rates (21) inherited
in the base case. For clarity, we separate the inductive step into several smaller steps.

Step 1: Preliminary estimates of highest order derivatives
We begin by stating the following lemma, which generalizes Lemma 3.1 for the induction step.

Lemma 3.2. Let n ∈ N be given and assume that ρk,∞ ≡ 0 for all k = 0, ..., n, which implies (29). Then,
we have

(30) Gn+2
v (t) . 1 +

∫ t

1

sn+3
∥∥∇n+2

x E(s)
∥∥
∞ ds,

and, as a preliminary estimate,∥∥∇n+2
x E(t)

∥∥
∞ . t

−4−n ln(t), Gn+2
x,v (t) . 1, and Gn+2

v (t) . ln2(t).

Proof. The proof is contained in Section 4 below. �

Though the proof of this lemma is postponed until the final section, we must note that Lemma 3.2 relies
upon Lemma 2.3 in the same way that Lemma 3.1 invoked this result, namely to obtain an estimate of the
highest order field derivatives in terms of the highest order derivatives of the translated particle distribution.

Step 2: Derivative estimates of Fα,0(t, v)
Next, we use Lemma 2.4 for all k = 1, ..., n+ 1 to find

(31)
∥∥∇kxρ(t)

∥∥
∞ . t

−3−kGkv (t) . t−3−k.
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We estimate the highest-order derivatives of Fα,0 by invoking Lemma 2.5 with k = n + 1 and using the
preliminary rates from Step 1. In particular, separating the sum involving field derivatives into three terms,
corresponding to j = 0, the j = 1, .., n terms, and j = n+ 1, and using (29), (31), and Lemma 3.2, we find∥∥∇n+1

v Fα,0(t)−∇n+1
v Fα,0∞

∥∥
∞ .

∫ ∞
t

n+1∑
j=0

sn+1−j
[
s
∥∥∇n+1−j

x ρ(s)
∥∥
∞ G

j
v(s) +

∥∥∇n+1−j
x E(s)

∥∥
∞ G

j+1
v (s)

]
ds

.
∫ ∞
t

(n+1∑
j=0

sn+2−j ∥∥∇n+1−j
x ρ(s)

∥∥
∞ G

j
v(s) + sn+1

∥∥∇n+1
x E(s)

∥∥
∞

+

n∑
j=1

sn+1−j ∥∥∇n+1−j
x E(s)

∥∥
∞ G

j+1
v (s) + ‖E(s)‖∞ G

n+2
v (s)

)
ds

.
∫ ∞
t

(n+1∑
j=0

sn+2−js−4−n+j + sn+1s−n−4 ln(s)

+

n∑
j=1

sn+1−js−n−3 + s−n−3 ln2(s)

)
ds

.
∫ ∞
t

s−2 ds . t−1.

Hence, the function

Fα,0(t, v) =

∫
gα(t, y, v) dy

satisfies

(32)
∥∥∇n+1

v Fα,0(t)−∇n+1
v Fα,0∞

∥∥
∞ . t

−1.

for any α = 1, ..., N , which establishes the existence and regularity of the limiting function ∇n+1
v Fα,0∞ (v), as

mentioned within Remark 1.3.

Step 3: Refined estimates of highest order derivatives

With the convergence result for ∇n+1
v Fα,0(t, v) in place, we use Lemma 2.9 with k = n + 2 and ` = 0

along with the preliminary estimate of Gn+2
v (t) in Lemma 3.2 to conclude

sup
x∈R3

∣∣∣tn+4∇n+2
x E(t,x)−∇n+2

v E0,∞

(x
t

)∣∣∣. ln(t)

(∥∥∇n+1
v Fα,0(t)−∇n+1

v Fα,0∞ (t)
∥∥
∞+ t−1Gn+2

v (t)

)
. t−1 ln3(t),

which, because the limiting function satisfies E0,∞ ≡ 0, further implies a refined estimate of field derivatives
of order n+ 2, namely

‖∇n+2
x E(t)‖∞ . t−n−5 ln3(t).

By revisiting (30), this faster decay then implies the uniform bound Gn+2
v (t) . 1, and thus

(33) Gn+2
x,v (t) + Gn+2

v (t) . 1

from Lemma 3.2. The bound on highest-order field derivatives is then immediately refined by (33) to give

(34) sup
x∈R3

∣∣∣tn+4∇n+2
x E(t, x)−∇n+2

v E0,∞

(x
t

)∣∣∣ . t−1 ln(t).

Step 4: Improved estimates of lower order field derivatives
The goal of this step is to improve the decay rates for lower order field derivatives and prove that for

any k ∈ {1, . . . , n+ 1}, we have
∥∥∇kxE(t)

∥∥
∞ . t

−n−4. We first estimate field derivatives of order n+ 1 and

remove the logarithm in the estimate appearing within the induction hypothesis (29). In particular, we use
Lemma 2.7 with k = n+ 1 and ` = 0, which implies

sup
x∈R3

∣∣∣tn+3∇n+1
x E(t, x)−∇n+1

v E0,∞

(x
t

)∣∣∣ . max
α=1,...,N

‖∇n+1
v Fα,0(t)−∇n+1

v Fα,0∞ ‖∞ + t−1Gn+2
v (t)
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so that with (32) and (33), we arrive at

(35) sup
x∈R3

∣∣∣tn+3∇n+1
x E(t, x)−∇n+1

v E0,∞

(x
t

)∣∣∣ . t−1.
and thus

(36) ‖∇n+1
x E(t)‖∞ . t−n−4.

Next, we will improve the estimate of kth order field derivatives for k = 1, ..., n. To do so, we will utilize
Lemma 2.7, but we must first bound the terms appearing on the right side of the associated inequality. To
begin, we invoke Lemma 2.6 for any k = 1, . . . , n and ` = 0, . . . , n− k and use (29) to find

∥∥∇kvFα,`(t)−∇kvFα,`∞ ∥∥
∞ .

∫ ∞
t

k+∑̀
j=0

sk+`−j
∥∥Dk+`−j

x E(s)
∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
ds

.
∫ ∞
t

k+∑̀
j=0

sk+`−j · s−n−3 · s ds

.
∫ ∞
t

k+∑̀
j=0

sk+`−n−j−2ds . tk+`−n−1

as k + ` ≤ n. As before, this provides the existence and regularity of the limiting functions ∇kvFα,`∞ (v) for
any α = 1, ..., N , k = 1, . . . , n, and ` = 0, . . . , n− k, as mentioned within Remark 1.3. With this, we invoke
Lemma 2.8 for any k = 1, . . . , n and ` = 0, . . . , n− k to find

sup
x∈R3

∣∣∣tk∇kxρ`(t, x)−∇kvρ`,∞
(x
t

)∣∣∣ . max
α=1,...,N

‖∇kvFα,`(t)−∇kvFα,`∞ ‖∞ . tk+`−n−1.

For any ` ∈ {0, . . . , n− 1}, we have ρ`,∞ ≡ 0, and hence this estimate gives∥∥∇kxρ`(t)∥∥∞ . t`−n−1
for any k = 1, . . . , n and ` = 0, . . . , n− k.

Similarly, using Lemma 2.6 for any k = 1, . . . , n and ` = n+ 1− k with (29), (33), and (36) gives

∥∥∇kvFα,n+1−k(t)−∇kvFα,n+1−k
∞

∥∥
∞ .

∫ ∞
t

n+1∑
j=0

sn+1−j ∥∥∇n+1−j
x E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
ds

.
∫ ∞
t

[
sn+1

∥∥∇n+1
x E(s)

∥∥
∞ (s+ 1) + ‖E(s)‖∞

(
sGn+2

x,v (s) + Gn+2
v (s)

)
+

n∑
j=1

sn+1−j ∥∥∇n+1−j
x E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)]
ds

.
∫ ∞
t

sn+2s−n−4 + s−n−2 +

n∑
j=1

sn+2−js−n−3

 ds . t−1.
Combining these estimates and invoking Lemma 2.7 for k = 1, ..., n, and ` = n+ 1− k with (33), we have

sup
x∈R3

∣∣∣tn+3∇kxE(t, x)−∇kvEn+1−k,∞

(x
t

)∣∣∣ . n−k∑
m=0

tn+1−k−m‖∇kxρm(t)‖∞

+ max
α=1,...,N

∥∥∇kvFα,n+1−k(t)−∇kvFα,n+1−k
∞

∥∥
∞ + t−1Gn+2

v (t)

.
n−k∑
m=0

tn+1−k−m · tm−n−1 + t−1 . t−k + t−1 . t−1
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as k ≥ 1. Assembling this with (35) results in

(37) sup
x∈R3

∣∣∣tn+3∇kxE(t, x)−∇kvEn+1−k,∞

(x
t

)∣∣∣ . t−1
for all k = 1, ..., n+ 1. Therefore, as n+ 1− k ≤ n for k ≥ 1, we deduce that En+1−k,∞ ≡ 0 for all k =
1, . . . , n+ 1, which further implies for all k = 1, . . . , n+ 1

(38)
∥∥∇kxE(t)

∥∥
∞ . t

−n−4.

Step 5: Establish next order limiting distribution
With the improved field derivative rates, we now establish the convergence of the next order distribution

to its limit. Invoking Lemma 2.6 with k = 0 and ` = n+ 1 and using (29), (33), and (38), we find∥∥Fα,n+1(t)− Fα,n+1
∞

∥∥
∞ .

∫ ∞
t

n+1∑
j=0

sn+1−j ∥∥∇n+1−j
x E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
ds

=

∫ ∞
t

[ n∑
j=0

sn+1−j ∥∥∇n+1−j
x E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
+ ‖E(s)‖∞

(
sGn+2

x,v (s) + Gn+2
v (s)

)]
ds

.
∫ ∞
t

 n∑
j=0

sn+2−j · s−n−4 + s−n−2

 ds

.
∫ ∞
t

n∑
j=0

s−2−j ds .
∫ ∞
t

s−2 ds . t−1.

Hence, the function Fα,n+1(t, v) satisfies

(39) ‖Fα,n+1(t)− Fα,n+1
∞ ‖∞ . t−1

for any α = 1, ..., N , which establishes the existence of the limiting function Fα,n+1
∞ (v), as mentioned within

Remark 1.3. Using this, we define the next order limiting charge density and electric field via

ρn+1,∞(v) =

N∑
α=1

qαF
α,n+1
∞ (v) and En+1,∞(v) = ∇v(∆v)

−1ρn+1,∞(v).

Step 6: Convergence of density and field to next order distribution
To establish the convergence of the next order density, we first use Lemma 2.10 with ` = n+ 1 to find

sup
x∈R3

∣∣∣tn+4ρ(t, x)− ρn+1,∞

(x
t

)∣∣∣ . n∑
j=0

tn+1−j ‖ρj(t)‖∞ + max
α=1,...,N

∥∥Fα,n+1(t)− Fα,n+1
∞

∥∥
∞ + t−1Gn+2

v (t).

The second term is easily estimated via (39) and the third term via (33) so that each is O
(
t−1
)
. Hence, we

focus on estimating the first term on the right side of the inequality.
First, using Lemma 2.6 with k = 0 and ` = 1, . . . , n, as well as (29) and (38), we find∥∥Fα,`(t)− Fα,`∞ ∥∥

∞ .
∫ ∞
t

∑̀
j=0

s`−j
∥∥∇`−jx E(s)

∥∥
∞

(
sGj+1

x,v (s) + Gj+1
v (s)

)
ds

.
∫ ∞
t

`−1∑
j=0

s`−j+1
∥∥∇`−jx E(s)

∥∥
∞ + s‖E(s)‖∞

 ds

.
∫ ∞
t

`−1∑
j=0

s`−j−n−3 + s−n−2

 ds . t`−n−2 + t−n−1 . t`−n−2
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for ` = 1, . . . , n. For ` = 0, we use Lemma 2.5 with k = 0 and (29) to arrive at∥∥Fα,0(t)− Fα,0∞
∥∥
∞ .

∫ ∞
t

(
s ‖ρ(s)‖∞ + ‖E(s)‖∞

)
ds .

∫ ∞
t

s−n−3ds . t−n−2,

which provides the same rate as above when ` = 0. Putting these together and using Lemma 2.8 with k = 0
and ` = 0, . . . , n yields

sup
x∈R3

∣∣∣ρ`(t, x)− ρ`,∞
(x
t

)∣∣∣ . max
α=1,...,N

∥∥Fα,`(t)− Fα,`∞ ∥∥
∞ . t

`−n−2

for any ` = 0, . . . , n. As ρ`,∞ ≡ 0 for ` = 0, . . . , n, we find

‖ρ`(t)‖∞ . t
`−n−2.

Inserting this within the sum then gives

(40)

n∑
j=0

tn+1−j ‖ρj(t)‖∞ .
n∑
j=1

tn+1−jtj−n−2 . t−1,

and adding this to the previously established estimates for the other terms, we find

(41) sup
x∈R3

∣∣∣tn+4ρ(t, x)− ρn+1,∞

(x
t

)∣∣∣ . t−1.
Turning to the next order field approximation, we first apply Lemma 2.7 with k = 0 and ` = n+ 1 to find

sup
x∈R3

∣∣∣tn+3E(t, x)− En+1,∞

(x
t

)∣∣∣ . n∑
j=0

tn+1−j ‖ρj(t)‖∞ + max
α=1,...,N

‖Fα,n+1(t)− Fα,n+1
∞ ‖∞ + t−1Gn+2

v (t).

As before, the third term is O
(
t−1
)

due to (33), while the second term is O
(
t−1
)

due to (39). To estimate
the first term, we again use (40) so that putting these estimates together yields

(42) sup
x∈R3

∣∣∣tn+3E(t, x)− En+1,∞

(x
t

)∣∣∣ . t−1.
Finally, assembling the estimates (33), (34), (37), (41), and (42), as well as the previous bounds on Gkx,v(t)

and Gkv (t) for k = 0, ..., n+ 1 implied by the induction hypothesis (29), then completes the inductive step as
Qn has been established. Hence, the stated decay rates of the charge density, electric field, field derivatives,
and derivatives of gα hold for any n ∈ N.

Lastly, to justify the rate of convergence of gα(t, x, v) and its derivatives, we note that using the stated
decay rate of the field and the uniform boundedness of derivatives of gα, the Vlasov equation (VPg) yields

‖∂tgα(t)‖∞ . t‖E(t)‖∞G1x,v(t) + ‖E(t)‖∞G1v(t) . t−n−2.

Upon integrating in t, we find for any α = 1, ..., N

sup
(x,v)∈R6

|gα (t, x, v)− fα∞(x, v)| .
∫ ∞
t

‖∂tgα(s)‖∞ ds . t−n−1.

Similarly, taking any kth-order x-derivative and `th-order v-derivative in the Vlasov equation with k, ` ∈ N
and k + ` ≤ n+ 1 and taking the supremum over (x, v) ∈ R6, we find

‖∂tDk
xD

`
vg
α(t)‖∞ .

k−1∑
i=0

∑̀
j=0

tj‖∇i+jx E(t)‖∞
(
tGk+`−i−j+1
x,v (t) + Gk+`−i−j+1

x,v (t)

)

+
∑̀
j=0

tj‖∇j+kx E(t)‖∞
(
tG`−j+1
x,v (t) + G`−j+1

v (t)

)
where the indices i and j represent the number of x and v derivatives that are applied to the field, respectively.
As this holds for arbitrary derivatives, we decompose the double sum and use the previous estimates on the
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field (42), field derivatives (38), and derivatives of the distribution function via (29) and (33) to find

‖∂t∇kx∇`vgα(t)‖∞ .(t+ 1)‖E(t)‖∞Gk+`+1
v (t) +

∑̀
j=1

tj(t+ 1)‖∇jxE(t)‖∞Gk+`−j+1
x,v (t)

+

k−1∑
i=1

∑̀
j=0

tj(t+ 1)‖∇i+jx E(t)‖∞Gk+`−i−j+1
x,v (t) +

∑̀
j=0

tj(t+ 1)‖∇j+kx E(t)‖∞

.t−n−2 +
∑̀
j=1

tj−n−3 +

k−1∑
i=1

∑̀
j=0

tj−n−3 +
∑̀
j=0

tj−n−3

.max{t−n−2, t`−n−3}.
Upon integrating in t, we find for any α = 1, ..., N

sup
(x,v)∈R6

∣∣∇kx∇`vgα (t, x, v)−∇kx∇`vfα∞(x, v)
∣∣ . ∫ ∞

t

‖∂t∇kx∇`vgα(s)‖∞ ds . max{t−n−1, t`−n−2}.

for k + ` ≤ n+ 1. The estimates are analogous for the boundary cases k = 0, 1 ≤ ` ≤ n+ 1 and ` = 0,
1 ≤ k ≤ n+ 1. In particular, the uniform convergence for all derivatives of order n+ 1 and the previously
known compact support of the limiting function then implies fα∞ ∈ Cn+1

c (R6), which provides the regularity
needed to justify (11), as stated in Remark 1.3. This completes the proof of Theorem 1.4. �

Next, we use the results of Theorems 1.1 and 1.2 and invoke Theorem 1.4 to prove Theorem 1.3.

Proof of Theorem 1.3. Assume (A) holds andM = 0. Then, for m = 0, we merely take ρ0,∞ 6≡ 0 and apply
Theorem 1.1, which yields the sharp bounds

‖ρ(t)‖∞ ∼ t−3,
‖E(t)‖∞ ∼ t−2,
‖∇xE(t)‖∞ ∼ t−3

and the modified scattering result

(43) sup
(x,v)∈R6

∣∣∣∣fα(t, x+ vt− qα
mα

ln(t)E0,∞(v), v

)
− fα∞(x, v)

∣∣∣∣ . t−1 ln4(t)

for every α = 1, ..., N and any associated solution of (VP).
Otherwise, we let m ≥ 1 be given, define n = m−1, and take ρ`,∞ ≡ 0 for all ` = 0, ..., n with ρn+1,∞ 6≡ 0

Then, applying Theorem 1.4 with n = m− 1 gives

‖ρ(t)‖∞ ∼ t−m−3,
‖E(t)‖∞ ∼ t−m−2,

‖∇kxE(t)‖∞ ∼ t−m−3

for every k = 1, ...,m. Additionally, the distribution function scatters linearly so that

(44) sup
(x,v)∈R6

|fα(t, x+ vt, v)− fα∞(x, v)| . t−m

for every α = 1, ..., N and any associated solution of (VP).
It remains to justify the existence of solutions fα ∈ Cm+1

(
(0,∞)× R6

)
for α = 1, ..., N that satisfy

ρ0,∞ 6≡ 0 or, alternatively, the conditions ρ`,∞ ≡ 0 for all ` = 0, ...,m − 1 and ρm,∞ 6≡ 0. To do this,
we merely construct smooth functions with compact support whose moments, up to a desired order, must
vanish. Thus, we build well-behaved limits and utilize the scattering map constructed within [14] (see also
[38]) to guarantee the existence of solutions that tend to these limits as t→∞. We perform this separately
for m = 0 and m ∈ N.

First, for m = 0, we let a nonzero function η ∈ C1
c (R3) be given with∫

η(v) dv = 0.

26



Then, we choose

fα0,∞(x, v) = φ0(x)ψα0 (v)

where φ0 ∈ C1
c (R3) is nonnegative (but nontrivial), and for every α = 1, ..., N the functions ψα0 ∈ C1

c (R3)
are nonnegative and satisfy the constraint

N∑
α=1

qαψ
α
0 (v) = η(v).

With this, we have

ρ0,∞(v) =

∫ N∑
α=1

qαf
α
0,∞(x, v) dx =

(∫
φ0(x) dx

) N∑
α=1

qαψ
α
0 (v) =

(∫
φ0(x) dx

)
η(v) 6≡ 0

and ∫
ρ0,∞(v) dv =

(∫
φ0(x) dx

)(∫
η(v) dv

)
= 0,

thereby satisfying the neutrality condition M = 0 imposed by (2).
Next, for a given m ∈ N, we take p > m + 2 and define Φ ∈ Cm+1

c (R) to be the corresponding weighted
Gegenbauer polynomial of degree m (see [1]), namely

Φm(x) =
(
1− x2

)p− 1
2 Cpm(x)1[−1,1]

where Cpk(x) is a kth order Gegenbauer polynomial satisfying the orthogonality relationship∫ 1

−1

(
1− x2

)p− 1
2 Cpk(x)Cp` (x) dx = 0

for all k, ` ∈ N0 with k 6= ` and ∫ 1

−1

(
1− x2

)p− 1
2 [Cpk(x)]

2
dx > 0

for any k ∈ N0. Because each Cpk(x) is a polynomial of degree k, we may normalize Φm(x) so that∫
xmΦm(x) dx = 1,

and orthogonality implies ∫
xkΦm(x) dx = 0, for all k = 0, ...,m− 1.

We note that the support of Φm can be rescaled to be a compact set of arbitrary size, if necessary, while
maintaining the moment and regularity properties. Then, letting Ψ ∈ Cm+1

c (R) be any function satisfying∫
Ψ(x) dx = 1,

we define µm ∈ Cm+1
c (R3) by

µm(x) = Φm(x1)Ψ(x2)Ψ(x3).

Then, for all β ∈ N3
0 with |β| ≤ m, this yields∫

xβµm(x) dx =

(∫
xβ1

1 Φm(x1) dx1

)(∫
xβ2

2 Ψ(x2) dx2

)(∫
xβ3

3 Ψ(x3) dx3

)
=

{
1 if β = (m, 0, 0)

0 else,

as β1 ∈ {0, ...,m−1} implies that the first integral vanishes due to the orthogonality condition stated above.
With the µm(x) functions in place for every m ∈ N, we can now define the remaining scattering limits.

For a given m ∈ N we choose

fαm,∞(x, v) = φαm(x)ψm(v)
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for every α = 1, ..., N where ψm ∈ Cm+1
c (R3) is nonnegative and satisfies

∂mψm
∂vm1

(v) 6≡ 0,

and the collection of nonnegative spatial distributions φαm ∈ Cm+1
c (R3) satisfies the constraint

N∑
α=1

qαφ
α
m(x) = µm(x).

This implies that for all ` = 0, ...,m− 1,

ρ`,∞(v) =

N∑
α=1

qαF
α,`
∞ (v) =

N∑
α=1

∑
|β|=`

(−1)β

β!

∫
Dβ
vx

βqαf
α
m,∞(x, v) dx

=
∑
|β|=`

(−1)β

β!
Dβ
vψm(v)

(∫
xβ

N∑
α=1

qαφ
α
m(x) dx

)

=
∑
|β|=`

(−1)β

β!
Dβ
vψm(v)

(∫
xβµm(x)dx

)
≡ 0

as the lower-order moments of µm(x) must vanish. Additionally, for the final limiting density we find

ρm,∞(v) =
∑
|β|=m

(−1)β

β!
Dβ
vψm(v)

(∫
xβµm(x)dx

)

=
(−1)m

m!

∂mψm
∂vm1

(v)

(∫
xm1 µm(x)dx

)
=

(−1)m

m!

∂mψm
∂vm1

(v) 6≡ 0.

Finally, as we have constructed a family of limits fαm,∞ ∈ Cm+1
c (R6) ⊂ W 2,∞(R6) for every α = 1, ..., N

and m ∈ N0, an application of [14, Theorem 1.1(ii) and Remark 1.2(5)] (see also [38, Theorem 1.1]) implies
that for each m ∈ N0 there exists a unique smooth solution of (VP), in this case fαm ∈ Cm+1

(
(0,∞)× R6

)
for every α = 1, ..., N that is associated to this limit fαm,∞(x, v) via (43) for m = 0 and (44) for m ≥ 1,
respectively, and the proof is complete. �

4. Derivatives of Translated Distributions

This section is dedicated to the proofs of Lemmas 3.1 and 3.2. Before proving these lemmas, we must
define the quantity Dk(t) which includes a total of k derivatives (both in x and in v) of g with a weight t−j

depending on how many v derivatives appear, namely

Dk(t) := 1 +

k∑
j=0

t−j max
α=1,...,N

sup
|βx|+|βv|=k
|βv|=j

‖Dβv
v Dβx

x gα(t)‖∞.

For brevity, we denote

Djk(t) := max
α=1,...,N

sup
|βx|+|βv|=k
|βv|=j

‖Dβv
v Dβx

x gα(t)‖∞

for j = 0, ..., k so that

Dk(t) = 1 +

k∑
j=0

t−jDjk(t).

Proof of Lemmas 3.1 and 3.2. As the proof of Lemma 3.1 follows similarly to that of Lemma 3.2, but in
the case n = 0, we combine their respective proofs here. The strategy of the proof proceeds as follows. To
understand the asymptotic properties of Dβv

v Dβx
x gα with |βx+βv| = n+ 2, we apply these derivatives to the

Vlasov equation Vαg gα = 0. The idea is to get an expression that one can bound, and then integrate along
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characteristics in order to eliminate Vαg . This will allow us to construct a bound on the sum of all n + 2
order derivatives in x and v of gα to show Dn+2(t) . 1 following an application of Gronwall’s inequality.
The uniform bound on Dn+2(t) will then imply D`n+2(t) . t` for every ` = 0, . . . , n + 2, which then refines

the bound on
∥∥∇n+2

x E(t)
∥∥
∞ stated in Lemma 2.3. The polynomial growth of each D`n+2(t) will then be

iteratively improved by applying a Gronwall argument until each of these quantities is uniformly bounded
for all ` ∈ {1, . . . , n} and by ln(t) when ` = n + 1. In the final part of the proof, a logarithmic bound on
Dn+2
n+2(t) will be established and the upper bound on Dn+1

n+2(t) will be improved to a constant, enabling us to

conclude Gn+2
x,v (t) . 1 and Gn+2

v (t) . ln2(t) for all n ≥ 0 from (14) and (15). Throughout, we take t ≥ 1 for
simplicity, and it will always be specified whether n = 0 or n ≥ 1, as the base case (Lemma 3.1) requires
slightly different assumptions.

Step 1: Uniform bound on Dn+2(t)
Taking derivatives in (VPg), a simple computation leads us to a formula for the commutator, namely

(45) Vαg
(
Dβv
v Dβx

x gα
)

=

n+1∑
j=0

(
n+ 2
j

) ∑
|γx+γv|=j

γx�βx,γv�βv

(Dβv−γv
v Dβx−γx

x Vαg ) (Dγv
v D

γx
x g

α) .

Here, the γx and γv derivatives represent those from the βx and βv derivative products which are not applied
to the Vlasov operator, but instead act on gα. Note that the term with all n + 2 derivatives applied to gα

vanishes, as Dγv
v D

γx
x

(
Vαg gα

)
= 0 by the Vlasov equation.

We focus on the individual terms on the right hand side of (45). Recalling that the operator Vαg is given
by the expression

Vαg = ∂t +
qα
mα

E(t, x+ vt) · (−t∇x +∇v)

we find

Dβv−γv
v Dβx−γx

x Vαg =
qα
mα

t|βv−γv|
(
Dβv+βx−γv−γx
x E

)
(t, x+ vt) · (−t∇x +∇v)

so that

(Dβv−γv
v Dβx−γx

x Vαg ) (Dγv
v D

γx
x g

α) =
qα
mα

t|βv−γv|
(
Dβv+βx−γv−γx
x E

)
(t, x+ vt) · (−t∇x +∇v) (Dγv

v D
γx
x g

α) .

Inserting this expression into (45) we finally arrive at

Vαg (Dβv
v Dβx

x gα) =
qα
mα

n+1∑
j=0

(
n+ 2
j

) ∑
|γx+γv|=j

γx�βx,γv�βv

t|βv−γv|
(
Dβv+βx−γv−γx
x E

)
(t, x+vt)·(−t∇x +∇v) (Dγv

v D
γx
x g

α) .

We then integrate this equation along characteristics, thus eliminating Vαg from the left side, and take the

supremum over (x, v) ∈ R6 to find

‖Dβv
v Dβx

x gα(t)‖∞ . 1 +

∫ t

1

n+1∑
j=0

∑
|γx+γv|=j

γx�βx,γv�βv

(
s1+|βv−γv|‖Dβv+βx−γv−γx

x E(s)‖∞‖∇xDγv
v D

γx
x g

α(s)‖∞

+ s|βv−γv|‖Dβv+βx−γv−γx
x E(s)‖∞‖∇vDγv

v D
γx
x g

α(s)‖∞
)
ds,

which, as |βx + βv| = n+ 2, implies

(46) ‖Dβv
v Dβx

x gα(t)‖∞ . 1 +

∫ t

1

n+1∑
j=0

∑
|γx+γv|=j

γx�βx,γv�βv

s|βv−γv|‖∇n+2−j
x E(s)‖∞

(
sD|γv|j+1(s) +D|γv|+1

j+1 (s)
)
ds.

Next, we separate the terms within the sum over j on the right side of this inequality into I+II+III+IV ,
as follows. The j = 0 term satisfies

I . s|βv|‖∇n+2
x E(s)‖∞

(
sG1x,v(s) + G1v(s)

)
,
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the j = 1 term is

II =
∑

|γx+γv|=1
γx�βx,γv�βv

s|βv−γv|‖∇n+1
x E(s)‖∞

(
sD|γv|2 (s) +D|γv|+1

2 (s)
)
,

the remaining middle terms, for n ≥ 2, are grouped together into

III =

n∑
j=2

∑
|γx+γv|=j

γx�βx,γv�βv

s|βv−γv|‖∇n+2−j
x E(s)‖∞

(
sD|γv|j+1(s) +D|γv|+1

j+1 (s)
)
,

and finally the j = n+ 1 term is

IV =
∑

|γx+γv|=n+1
γx�βx,γv�βv

s|βv−γv|‖∇xE(s)‖∞
(
sD|γv|n+2(s) +D|γv|+1

n+2 (s)
)
.

For n = 0, we note that only the terms I and IV (which is equivalent to II in this case) appear, while for
n = 1 only the terms I, II, and IV appear.

Now, applying the previously established decay estimates stemming from the vanishing limit(s) of the
charge density in each lemma, we bound the terms in this sum. Using (21) for n = 0 and (29) with k = 1
for n ≥ 1 to bound the G1x,v(s) and G1v(s) terms, we find

(47) I . s1+|βv|‖∇n+2
x E(s)‖∞.

For n ≥ 1 we estimate II and III using (29) to bound derivatives of the field and distribution function.

In particular, for k ≤ n + 1 we use (29) to find Djk(t) . Gkx,v(t) . 1 for j < k and Djk(t) . Gkv (t) . 1 for
j = k. This provides a uniform bound on every derivative of gα appearing within these terms. The field
derivative terms are then estimated using (29) in II and III, with k = n + 2 − j in the latter. Hence, we
find for s ≥ 1

II .
∑

|γx+γv|=1
γx�βx,γv�βv

s|βv−γv|s−n−4 ln(s)s

and

III .
n∑
j=2

∑
|γx+γv|=j

γx�βx,γv�βv

s|βv−γv|s−3−n
(
sGj+1

x,v (s) + Gj+1
v (s)

)
.

n∑
j=2

∑
|γx+γv|=j

γx�βx,γv�βv

s−2+|βv−γv|−n.

Then, as |βx + βv| = n+ 2 and γx � βx, we find

|βv − γv| = n+ 2− |γv + γx| − |βx − γx| ≤ n+ 2− |γv + γx|.

Therefore, we find |βv − γv| ≤ n+ 1 within the estimate of II and |βv − γv| ≤ n+ 2− j within the estimate
of III, which yields

(48) II . s−2 ln(s)

and

(49) III .
n∑
j=2

s−j . s−2,

respectively. Finally, turning to IV , we have

IV .



∑
|γx+γv|=n+1
γx�βx,γv�βv

s−3+|βv−γv|−n
(
sD|γv|n+2(s) +D|γv|+1

n+2 (s)
)
, n ≥ 1

∑
|γx+γv|=1

γx�βx,γv�βv

s−4+|βv−γv| ln(s)
(
sD|γv|2 (s) +D|γv|+1

2 (s)
)
, n = 0

(50)
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where for n ≥ 1 we use (29) with k = 1, and for n = 0 we have an improved decay rate due to (21).
Combining the estimates (47)–(50) and inserting them into the integral within (46), we merely integrate II
and III, as both are integrable on (1,∞), to find
(51)

‖Dβv
v Dβx

x gα(t)‖∞.1+

∫ t

1

(
s1+|βv|‖∇n+2

x E(s)‖∞+
∑

|γx+γv|=n+1
γx�βx,γv�βv

s−3+|βv−γv|−n
(
sD|γv|n+2(s)+D|γv|+1

n+2 (s)
))

ds

for n≥1, while for n= 0 we have
(52)

‖Dβv
v Dβx

x gα(t)‖∞.1+

∫ t

1

(
s1+|βv|‖∇2

xE(s)‖∞+
∑

|γx+γv|=1
γx�βx,γv�βv

s−4+|βv−γv| ln(s)
(
sD|γv|2 (s)+D|γv|+1

2 (s)
))

ds.

Next, we will collect all order n+ 2 derivatives and assemble them with decaying powers of t to construct
a Gronwall argument for Dn+2(t). With (51) established, we take the supremum over α = 1, ..., N and
|βx + βv| = n+ 2 with |βv| = j, multiply by t−j , and use s ≤ t to find

t−jDjn+2(t) . 1 +

∫ t

1

(
s‖∇n+2

x E(s)‖∞ +

min{j,n+1}∑
`=0

s−3−`−n
(
sD`n+2(s) +D`+1

n+2(s)
))

ds

for all j = 0, ..., n+ 2. Here, we have denoted ` = |γv| and further used |γv| ≤ |βv| = j and |γv| ≤ |γx + γv| =
n+ 1 to rewrite the sum above. As the terms inside the sum are nonnegative, we further deduce

(53) t−jDjn+2(t) . 1 +

∫ t

1

(
s‖∇n+2

x E(s)‖∞ +

n+1∑
`=0

s−3−`−n
(
sD`n+2(s) +D`+1

n+2(s)
))

ds

for all j = 0, ..., n+ 2. Focusing on the first term within the integrand, we note that Gn+1
v (t) . 1 for n = 0

due to (21) and for n ≥ 1 due to (29). Hence, we use Lemma 2.3 with k = n+ 2, separate the logarithmic
product, and use the definition of Dn+2

n+2(t) so that∫ t

1

s‖∇n+2
x E(s)‖∞ds . 1 +

∫ t

1

s−3−n ln∗
(

max
α=1,...,N

‖∇n+2
v gα(s)‖∞

)
ds

. 1 +

∫ t

1

(
s−3−n ln∗

(
s2+n

)
+ s−3−n ln∗

(
s−2−n max

α=1,...,N
‖∇n+2

v gα(s)‖∞
))

ds

. 1 +

∫ t

1

s−3−n ln∗
(
s−(n+2) max

α=1,...,N
‖∇n+2

v gα(s)‖∞
)
ds

. 1 +

∫ t

1

s−3−n ln∗
(
s−(n+2)Dn+2

n+2(s)

)
ds

. 1 +

∫ t

1

s−3−n ln∗
(
Dn+2(s)

)
ds,

as ln∗(x) is an increasing function. Thus, beginning with (53), summing over j = 0, ..., n+ 2, noting that
the right side is independent of j, and recalling the definition of Dn+2(t), we find

Dn+2(t) . 1 +

∫ t

1

(
s−3−n ln∗

(
Dn+2(s)

)
+ s−2−n

n+1∑
`=0

(
s−`D`n+2(s) + s−(`+1)D`+1

n+2(s)
))

ds

. 1 +

∫ t

1

(
s−3−n ln∗

(
Dn+2(s)

)
+ s−2−nDn+2(s)

)
ds

. 1 +

∫ t

1

s−2−n Dn+2(s) ds.
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We note that this same estimate holds for n = 0 as s−4 ln(s) . s−3 within equation (52) compared to the
estimate of (51). Finally, Gronwall’s inequality allows us to conclude

Dn+2(t) . exp

(∫ t

1

s−2−nds

)
. 1

as n ≥ 0.

Step 2: Refined estimate of
∥∥∇n+2

x E(t)
∥∥
∞

From the definition of Dn+2(t), the above estimate implies

(54) D`n+2(t) . t`

for every ` = 0, ..., n+ 2. In particular, we find

‖∇n+2
x gα(t)‖∞ . D0

n+2(t) . 1

and

‖∇n+2
v gα(t)‖∞ . Dn+2

n+2(t) . tn+2,

for all α = 1, ..., N which, due to Lemma 2.3 with k = n+ 2, further yields

(55) ‖∇n+2
x E(s)‖∞ . t−4−n ln(t)

for n ≥ 0.

Step 3: Refined estimates of D`n+2(t) for ` = 1, ..., n+ 2
This field derivative estimate improves the general estimates (51) and (52), yielding

(56)
‖Dβv

v Dβx
x gα(t)‖∞. 1 +

∫ t

1

(
s−3+|βv|−n ln(s) +

∑
|γx+γv|=n+1
γx�βx,γv�βv

s−3+|βv−γv|−n
(
sD|γv|n+2(s) +D|γv|+1

n+2 (s)
))

ds

for n≥ 1, and for n= 0

(57)
‖Dβv

v Dβx
x gα(t)‖∞. 1 +

∫ t

1

(
s−3+|βv| ln(s) +

∑
|γx+γv|=1

γx�βx,γv�βv

s−4+|βv−γv| ln(s)
(
sD|γv|2 (s) +D|γv|+1

2 (s)
))

ds.

We now set out to improve (54), the polynomial growth estimates of D`n+2(t) for `= 1, ...,n+ 2. Note that
the bound on D0

n+2(t) is already uniform in t. We start with the case n≥ 1. First take `= |βv|= 1, which
implies |βx|=n+ 1 and |γv| ≤ 1, and use (54) so that taking the supremeum over all such derivatives in (56)
yields

D1
n+2(t). 1 +

∫ t

1

(
s−2−n ln(s) + s−1−nD0

n+2(s) + s−2−nD1
n+2(s) + s−3−nD2

n+2(s)

)
ds

. 1 +

∫ t

1

(
s−1−n + s−2−nD1

n+2(s)

)
ds.

Upon applying Gronwall and using n≥ 1, this gives

D1
n+2(t).

(
1 +

∫ t

1

s−1−n ds

)
exp

(∫ t

1

s−2−n ds

)
. 1.

Next, with D`n+2(t). 1 established for `= 1, we iterate this process over |βv|= ` with `= 2, ...,n+ 1 while

assuming that Djn+2(t). 1 for all j= 1, ..., `− 1 and again taking the supremum over derivatives within (56).
Because |βv|= `, we find |βx|=n+ 2− ` and |γv| ≤ `, which then implies

n+ 1−|γv|= |γx| ≤ |βx|=n+ 2− `

within the sum in (56). Rearranging this inequality yields a lower bound on |γv|, namely |γv| ≥ `− 1.
Combining with the previous upper bound on |γv|, it follows that `− 1≤ |γv| ≤ ` and only two terms appear
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within the sum on the right side of (56). Thus, taking the supremum over all derivatives satisfying |βv|= `

within (56) and using D`−1n+2(t). 1, we find

D`n+2(t). 1 +

∫ t

1

[
s−3+`−n ln(s) +

∑̀
j=`−1

s−3+`−j−n
(
sDjn+2(s) +Dj+1

n+2(s)
)]

ds

. 1 +

∫ t

1

[
s−2 ln(s) + s−1−nD`−1n+2(s) + s−2−nD`n+2(s) + s−3−nD`+1

n+2(s)

]
ds

. 1 +

∫ t

1

[
s−1−n + s−2−nD`n+2(s) + s−3−nD`+1

n+2(s)

]
ds

Because n≥ 1, the first term is integrable, and applying Gronwall yields

(58) D`n+2(t).

(
1 +

∫ t

1

s−3−nD`+1
n+2(s) ds

)
exp

(∫ t

1

s−2−n ds

)
. 1 +

∫ t

1

s−3−nD`+1
n+2(s) ds.

Using (54) with k= `+ 1, we find

D`n+2(t). 1 +

∫ t

1

s−2−n+` ds

and conclude both D`n+2(t). 1 for `= 2, ...,n and Dn+1
n+2(t). ln(t). The latter estimate will be improved to a

constant bound at the conclusion of the proof.
To improve the growth estimates for the case n= 0, we first note that (54) with k= 0 yields D0

2(t). 1 and
with k= 2 gives D2

2(t). t2. Hence, repeating the above steps using (57) instead of (56), we arrive at

D1
2(t). 1 +

∫ t

1

(
s−2 ln(s) + s−2 ln(s)D0

2(s) + s−3 ln(s)D1
2(s) + s−4 ln(s)D2

2(s)

)
ds

. 1 +

∫ t

1

(
s−2 ln(s) + s−3 ln(s)D1

2(s)

)
ds.

Upon applying Gronwall, this gives

D1
2(t).

(
1 +

∫ t

1

s−2 ln(s) ds

)
exp

(∫ t

1

s−3 ln(s) ds

)
. 1.

Hence, combining this bound for D0
2(t) and D1

2(t) results in G2x,v(t). 1.

It remains to improve the estimate of Dn+2
n+2(t) and D2

2(t) using another Gronwall argument, as follows.
We start with n≥ 1. We repeat the steps that led to (51), but without upper bounding the derivatives of

gα by the Djn+2(t) terms in IV , and consider the case of |βx|= 0, so that |βv|=n+ 2. Then, |γx|= 0 and
|γv|=n+ 1 necessarily, which gives

(59)

‖∇n+2
v gα(t)‖∞. 1 +

∫ t

1

[
sn+3‖∇n+2

x E(s)‖∞

+ s‖∇xE(s)‖∞
(
s‖∇x∇n+1

v gα(s)‖∞+ ‖∇n+2
v gα(s)‖∞

)]
ds.

Using (29) with k= 1 and Dn+1
n+2(t). ln(t) within this estimate gives

Gn+2
v (t). 1 +

∫ t

1

[
sn+3‖∇n+2

x E(s)‖∞+ s−1−n ln(s) + s−2−nGn+2
v (s)

]
ds.

As the middle term is integrable for n≥ 1, we apply Gronwall’s inequality to find

Gn+2
v (t).

(
1 +

∫ t

1

sn+3‖∇n+2
x E(s)‖∞ ds

)
exp

(∫ t

1

s−2−n ds

)
. 1 +

∫ t

1

sn+3‖∇n+2
x E(s)‖∞ ds.

For n= 0 we use (21) instead of (29) within (59), as well as G2x,v(t). 1, which yields

G2v(t). 1 +

∫ t

1

[
s3‖∇2

xE(s)‖∞+ s−2 ln(s) + s−3 ln(s)G2v(s)

]
ds.
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Again, the middle term is integrable, and an application of Gronwall gives

G2v(t). 1 +

∫ t

1

s3‖∇2
xE(s)‖∞ ds.

Thus, we have obtained (22) in the n= 0 case and (30) for n≥ 1. Using (55) in (22) and (30) results in

Gn+2
v (t). 1 +

∫ t

1

s−1 ln(s) ds. ln2(t)

for all n≥ 0. Finally, using this improved bound on Gn+2
v (t), we have Dn+2

n+2(t).Gn+2
v (t). ln2(t). Insert-

ing this bound within (58) with `=n+ 1, we find Dn+1
n+2(t). 1, and hence D`n+2(t). 1 for `= 1, ...,n+ 1.

Therefore, Gn+2
x,v (t). 1 for n≥ 1, and the proof is complete. �
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