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1. INTRODUCTION

This paper resolves the long-standing computational spectral problem. That is to determine the existence
of algorithms that can compute spectra sp(A) of classes of bounded operators A = {aij}i,j∈N ∈ B(l2(N)),
given the matrix elements {aij}i,j∈N, that are sharp in the sense that they realise the boundaries of what a
digital computer can achieve. Similarly, for a Schrödinger operator H = −∆ + V , determine the existence
of algorithms that can compute the spectrum sp(H) given point samples of the potential function V . In order
to solve the problems, we establish the Solvability Complexity Index (SCI) hierarchy, based on the SCI intro-
duced in [71]. This is a classification hierarchy for all types of problems in computational mathematics that
allows for classifications determining the boundaries of what computers can achieve in scientific computing.
As a consequence, the SCI hierarchy provides classifications of computational problems that can be used in
computer-assisted proofs, see §1.3 and §3.

The SCI hierarchy captures many key computational issues in the history of mathematics including the
insolvability of the quintic, Smale’s problem on the existence of iterative generally convergent algorithm for
polynomial root finding, the computational spectral problem, inverse problems, optimisation etc.

Given the many applications in mathematical physics, analysis, quantum chemistry, statistical mechanics,
quantum mechanics, quasicrystals, optics etc., the problem of computing spectra of operators has fascinated
and frustrated mathematicians since the early work by H. Goldstine, F. Murray and J. von Neumann [63] in
the 1950s, yielding a vast literature (see §5). W. Arveson [11] pointed out in the early 1990s that: ”Unfor-
tunately, there is a dearth of literature on this basic problem, and so far as we have been able to tell, there
are no proven techniques” (see also A. Böttcher’s Problem I in [23]). Arveson considered computing spectra
from matrix elements {aij}i,j∈N ∈ B(l2(N)), however, the situation is not better for the Schrödinger case.
In particular, despite more than 90 years of quantum mechanics, it is still unknown how to compute spectra
of −∆discrete + V on lattices and −∆ + V on L2(Rd) given point samples from the potential function V .

We solve these problems by providing algorithms that compute spectra and approximate eigenvectors,
allowing for problems that were previously out of reach. We prove lower bounds yielding sharp classification
results and optimality of the algorithms. The results may be surprising and link to many areas of mathematics.

Classifications and new algorithms: The SCI hierarchy induces a total ordering ≤SCI (see Remark 1.4)
on the family of computational spectral problems describing their difficulty. For example, given infinite
matrices of the form A = {aij}i,j∈N ∈ B(l2(N)), we prove the following:

Computing sp(A), A is diagonal =SCI computing sp(−∆ + V ) with bounded V

=SCI computing sp(−∆discrete + V ) on any lattice

<SCI computing sp(A), A is compact

=SCI computing sp(−∆ + V ) with V blowing up at∞

<SCI computing sp(A), A is self-adjoint.

(1.1)
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Indeed, (1.1) shows that computing spectra of Schrödinger operators (the first equalities hold also in many
non-Hermitian cases) from point samples of a bounded potential function V is not harder than computing
the spectrum of a diagonal infinite matrix, the simplest of the non-trivial infinite-dimensional spectral
problems. Paradoxically, the problem of computing spectra of compact operators, for which the method
has been known for decades, is strictly harder than the problem of computing spectra of such Schrödinger
operators, which has been open for more than half a century. The new algorithms and classification results
finally solve this problem allowing computations that before were unachievable, see §14.

Higher part of the SCI hierarchy - why algorithms were not found: We prove that in order to compute spec-
tra or essential spectra of arbitrary infinite matrices one needs three limits in the computation, and it is
impossible with two limits - these problems are very high up in the SCI hierarchy. In particular, there does
exist a family of algorithms {Γn3,n2,n1} such that for all A = {aij}i,j∈N ∈ B(l2(N),

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1
(A) = sp(A).

Yet, for any family of algorithms {Γn2,n1} based on two limits there is an A such that

lim
n2→∞

lim
n1→∞

Γn2,n1
(A) 6= sp(A).

In the self-adjoint case, however, one needs two limits. These phenomena, that are similar to the solution
to Smale’s problem (see below), explain Arveson’s comment, why there have been no known techniques
for the general cases, and why it has taken substantial time to resolve the computational spectral problem.
Indeed, classical approaches (see §5), including the C∗-algebra techniques (see W. Arveson [7–11] and N.
Brown [30–33]) also used for the Schrödinger case, yield algorithms based on one limit. By the results
above, algorithms based on one limit can never capture the general problem even in the self-adjoint case.
However, classical approaches yield invaluable classification results in the lower part of the SCI hierarchy.

Computer-assisted proofs: As we point out in §3, the recent proof of Kepler’s conjecture (Hilbert’s 18th
problem) [67,68], led by T. Hales, is a striking example of a computer-assisted proof relying on computing
non-computable problems (in the Turing sense). This may seem paradoxical, however, as the SCI hierarchy
reveals and explains, there are many computational problems that are non-computable, that still can be used
in computer-assisted proofs. Another example of non-computable problems used in computer-assisted
proofs is the Dirac–Schwinger conjecture in spectral theory proved by C. Fefferman and L. Seco [50–
58]. The SCI hierarchy provides a natural framework for determining which computational problems are
suitable for computer-assisted proofs and explains why, for example, Kepler’s conjecture and the Dirac–
Schwinger conjecture can be resolved despite the above mentioned paradox. In fact, in both of the proofs
of these conjectures one implicitly proves Σ1 classifications (see §1.1) in the SCI hierarchy. Moreover,
our classification results and algorithms for the computational spectral problem open up for new use of
computer-assisted proofs in mathematical physics since the Σ1 classifications yield algorithms that will
never make mistakes.

Smale’s problem on the existence of iterative generally convergent algorithm: An example of how the SCI
hierarchy encompasses important foundational results is the question of computing zeros of polynomials
with a rational map applied iteratively (such as Newton’s method [112]). The problem with Newton’s
method is that it may not converge. This problem prompted S. Smale to ask whether there exists an al-
ternative to Newton’s method, namely, a purely iterative generally convergent algorithm (see §13). Smale
asked [113]: “Is there any purely iterative generally convergent algorithm for polynomial zero finding?”
His conjecture was that the answer is ‘no’. This problem was settled by C. McMullen in [95] as follows:
yes, if the degree is three; no, if the degree is higher (see also [96, 115]). However, in [45] P. Doyle and
C. McMullen demonstrated a striking phenomenon: this problem can be solved in the case of the quar-
tic and the quintic using several limits. Indeed, Smale’s question and Doyle and McMullen’s results are
classification problems in the SCI hierarchy.
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1.1. The SCI hierarchy - an informal introduction. We give an informal description of the SCI hierarchy
in order to present the main results. The detailed definitions can be found in §6. The SCI hierarchy is based
on the concept of a computational problem. This is described by a function

Ξ : Ω→M

that we want to compute, where Ω is some domain, and (M, d) is a metric space. For example, Ξ(T ) =

sp(T ) (the spectrum) for some bounded operator T ∈ Ω and M is the collection of non-empty compact
subsets of C equipped with the Hausdorff metric. The SCI was first introduced in the paper “On the Solvabil-
ity Complexity Index, the n-pseudospectrum and approximations of spectra of operators” [71] for spectral
problems in order to introduce the concept of several limits for spectral computation. The SCI of a spectral
problem is the smallest number of limits needed in order to compute the solution. However, in the paper
above, the main issue was left open: is it necessary to use several limits? In other words, could the SCI
collapse to one for all spectral problems, or in fact for all problems in scientific computing? Moreover, as is
easily seen, a hierarchy based on only the number of limits needed would not be refined enough to capture
the boundaries of what is possible in spectral computation.

In this paper we introduce the general SCI hierarchy (see §6 for the formal definition) for all types of
computational problems, and the mainstay of the hierarchy are the ∆α

k classes. The α is related to the model
of computation as explained below. Informally, we have the following description. Given a collection C of
computational problems, then

(i) ∆α
0 is the set of problems that can be computed in finite time, the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one limit (the SCI = 1) with control of the

error, i.e. ∃ a sequence of algorithms {Γn} such that d(Γn(A),Ξ(A)) ≤ 2−n, ∀A ∈ Ω.
(iii) ∆α

2 is the set of problems that can be computed using one limit (the SCI = 1) without error control,
i.e. ∃ a sequence of algorithms {Γn} such that limn→∞ Γn(A) = Ξ(A), ∀A ∈ Ω.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits, (the SCI ≤ m),

i.e. ∃ a family of algorithms {Γnm,...,n1} such that

lim
nm→∞

. . . lim
n1→∞

Γnm,...,n1
(A) = Ξ(A), ∀A ∈ Ω.
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In general, this hierarchy cannot be refined unless there is some extra structure on the metric spaceM. The
hierarchy typically does not collapse, and we have:

(1.2) ∆α
0 ( ∆α

1 ( ∆α
2 ( . . . ( ∆α

m ( . . . .

However, depending on the collection C of computational problems, the hierarchy (1.2) may terminate for
a finite m, or it may continue for arbitrary large m. For computational spectral problems the hierarchy
terminates, see Figure 1 and Figure 2.

Remark 1.1 (Clash of notation). The ∆ notation for the Laplacian and the ∆α
m notation for the classes in

the SCI hierarchy is a slight mismatch, however, the meaning will always be clear from the context.

The SCI hierarchy can be refined if the metric spaceM allows for convergence from “above” and “be-
low”, for example when considering the Hausdorff metric, which is natural for spectral problems. The
motivation behind the refinement is to characterise the intricate classifications of different problems. For
example, consider Ω to be the class of all diagonal operators T ∈ B(l2(N)) of the form

(1.3) T =


a1

a2

a3

. . .

 , aj ∈ C.

The problem of computing the spectrum sp(T ) of such T s is trivially not in ∆α
1 . However, one can simply

choose an algorithm Γn to collect {aj}nj=1 and then one has that Γn(T ) → sp(T ) as n → ∞. Thus, the
problem of computing spectra of operators in Ω is in ∆α

2 . However, we clearly have an extra feature that is
not captured by the hierarchy (1.2). Indeed, we have that

Γn(T ) ⊂ sp(T ), n ∈ N.

In particular, we have convergence from below, and this is much stronger than just convergence since Γn(T )

always produces a correct output. Such type of convergence becomes incredibly important as it provides an
error control from below. Moreover, clearly, the hierarchy (1.2) does not capture this important feature. This
gives the motivation behind the Σα1 class, which captures the concept of convergence from below. Similarly,
the Πα

1 class captures a convergence from above. Informally, for spectral problems we have the following
additions to (1.2):

(1) ∆α
0 = Πα

0 = Σα0 is the set of problems that can be solved in finite time, the SCI = 0.
(2) Σα1 : We have ∆α

1 ⊂ Σα1 ⊂ ∆α
2 and Σα1 is the set of problems for which there exists a sequence of

algorithms {Γn} such that for every A ∈ Ω we have Γn(A) → Ξ(A) as n → ∞. However, Γn(A)

is always contained in the 2−n neighbourhood of Ξ(A).
(3) Πα

1 : We have ∆α
1 ⊂ Πα

1 ⊂ ∆α
2 and Πα

1 is the set of problems for which there exists a sequence of
algorithms {Γn} such that for every A ∈ Ω we have Γn(A)→ Ξ(A) as n→∞. However, the 2−n

neighbourhood of Γn(A) always contains Ξ(A).
(4) Σαm is the set of problems that can be computed by passing to m limits, and computing the m-th

limit is a Σα1 problem.
(5) Πα

m is the set of problems that can be computed by passing to m limits, and computing the m-th
limit is a Πα

1 problem.

Remark 1.2 (The general SCI hierarchy). The above sketch of the SCI hierarchy with convergence from
below and above is well suited when considering the Hausdorff metric. However, the SCI hierarchy extends
immediately to any metric space where there is a total ordering, for example, forM = R and for decision
problems where M = {0, 1} = {No,Yes}. For example, for decision problems a Σα1 (similarly Πα

1 )
classification of a computational problem with domain Ω means that there is a sequence of algorithms {Γn}
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FIGURE 1. Main results (Theorem 7.5); solution to the computational spectral problem:
The SCI hierarchy for the computational problem of computing spectra of bounded infinite
matrices acting on l2(N). Note that ΣA3 \ ∆A

2 = ∅ and hence ΣA3 is not a part of this
hierarchy. However, the classes enclosed in grey may contain spectral problems. The
figure contains only some of the main classification results in Theorem 7.5.

such that for A ∈ Ω, Γn(A) will provide the correct output for large n (however, we do not know how big n
must be), but if Γn(A) = Yes (Γn(A) = No in the Πα

1 case), then the answer to the decision problem is Yes

(No in the Πα
1 case).

Schematically, the general SCI hierarchy can be viewed in the following way.

(1.4)

Πα
0 Πα

1 Πα
2

∆α
0 ∆α

1 Σα1 ∪Πα
1 ∆α

2 Σα2 ∪Πα
2 ∆α

3 · · ·

Σα0 Σα1 Σα2
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=
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(
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(

(

(

(

(

(

(
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Note that the highlighted Σα1 and Πα
1 classes are crucial as they guarantee existence of algorithms that will

never make mistakes, thus they become crucial in computer-assisted proofs, see §1.3 and §3.

Remark 1.3 (The meaning of the α, the model of computation). The α in the superscript indicates the model
of computation, which is described in §6. For α = G, the underlying algorithm is general and can use any
tools at its disposal. The purpose is to assure that lower bounds become universal regardless of the model of
computation. The reader may think of a Blum–Shub–Smale (BSS) [20] machine or a Turing machine [124]
with access to any oracle, although a general algorithm is even more powerful. However, for α = A this
means that only arithmetic operations and comparisons are allowed. In particular, if rational inputs are
considered, the algorithm is a Turing machine, and in the case of real inputs, a BSS machine. Hence, a result
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FIGURE 2. Main results (Theorem 8.3 and Theorem 8.5): The SCI hierarchy for the prob-
lem of computing spectra of Schrödinger operators. ΣA2 \ ∆A

1 = ∅, however, the classes
enclosed in grey may contain spectral problems. The paradox of the ΣA1 result: Despite
being a long-standing open problem, computing spectra of such Schrödinger operators is
not harder than computing spectra of diagonal infinite-matrices (the simplest problem).

of the form /∈ ∆G
k is stronger than /∈ ∆A

k . Indeed, a /∈ ∆G
k result is universal and holds for any model of

computation. Moreover, ∈ ∆A
k is stronger than ∈ ∆G

k , and similarly for the Πα
k and Σαk classes. Note that

classical hierarchies, such as the arithmetical hierarchy [98], become special cases of the SCI hierarchy (see
Proposition A.5 discussed in the appendix for completeness), and hence we keep the similar notation.

Remark 1.4 (The SCI ordering). Note that the SCI hierarchy immediately implies a total ordering on the
set of problems in the hierarchy. This is obvious when we only consider the ∆α

k classes, but can also be
extended to the general case by considering Σαk ∪ Πα

k as one class in between the ∆α
k s. This is the ordering

≤SCI referred to in §1.

1.2. Smale’s problem on iterative generally convergent algorithms and the SCI. S. Smale initiated a
comprehensive program on the foundations of computational mathematics in the 1980s [20, 112], focusing
on problems in scientific computing rather than classical computer science. One of the key problems and
algorithms Smale considered was polynomial root finding as well as Newton’s method. As Newton’s method
may not converge, even for a cubic polynomial, a natural question would be if there exists an alternative
approach. This question was formulated in terms of the existence of iterative generally convergent algorithms
[112]. C. McMullen [95,96,115] solved the problem in the negative and, together with P. Doyle, realised that
the problem of existence could be resolved by allowing more limits resulting in several iterative convergent
algorithms used consecutively [45]. They introduced a tower of algorithm in order to make the mathematical
statement precise and also realised that for polynomials of degree 6 and higher, one could not handle the
problem regardless of the height of the tower (number of limits used). We have adopted the name towers of
algorithms, however, we have made the concept general. The original towers of algorithms are now referred
to as Doyle–McMullen towers, see §13. In §13 we show how Smale’s problem on the existence of iterative
generally convergent algorithms and the theory of McMullen and Doyle become classification problems in
the SCI hierarchy.

1.3. Computer-assisted proofs in spectral theory and the SCI hierarchy. The SCI hierarchy classifica-
tions determine the boundaries of what computers can achieve in scientific computing. As a consequence,
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the SCI hierarchy provides classifications of computational problems that can be used in computer-assisted
proofs (for a detailed account see §3), and these problems may be non-computable i.e. higher up than ∆A

1 .
Moreover, typically a computer assisted proof based on numerical calculation requires a classification result
in the SCI hierarchy. An example of this in spectral theory is the proof of the Dirac–Schwinger conjecture.

Dirac–Schwinger conjecture - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : The Dirac–Schwinger conjecture was

proven in a series of papers by C. Fefferman and L. Seco [50–58], where one uses numerical computations
to obtain asymptotic results on the ground state of an atom. Consider the following Schrödinger operator

HNZ =

N∑
k=1

(−∆xk − Z|xk|−1) +
∑

1≤j<k≤N

|xj − xk|−1

acting on antisymmetric functions in L2(R3N ). The ground state energy E(N,Z) for N electrons and a
nucleus of charge Z is then defined by E(N,Z) := inf{λ ∈ sp(HNZ)}. The ground state energy of an atom
is then defined as E(Z) := minN≥1E(N,Z). The key result of C. Fefferman and L. Seco was to show
asymptotic behaviour of E(Z) for large Z. In particular,

E(Z) = −c0Z7/3 +
1

8
Z2 − c1Z5/3 +O(Z5/3−1/2835),

for some explicitly defined constants c0 and c1. The highly intricate computer-assisted proof hinges on
several problems that are /∈ ∆G

1 but are in ΣA1 (see for example Algorithm 3.7 and Algorithm 3.8 in [57]),
and a crucial part of the proof implicitly establishes the ΣA1 classification in the SCI hierrchy.

Spectral problems that can be used in computer-assisted proofs: Our main results in Theorem 7.5 and
Theorem 8.3 provide the necessary ΣA1 classifications showing that computational spectral problems with
any Jacobi operators with known growth of the resolvent can be used in computer-assisted proofs. This is
also the case of Schrödinger operators −∆ + V where V is bounded and of bounded variation. However,
by Theorem 8.5, if we only know that V blows up at infinity, the spectral problem /∈ (ΣG1 ∪ ΠG

1 ) so such a
Schrödinger operators cannot be used in a computer-assisted proof unless stronger assumptions are available.

2. THE MAIN RESULTS

The introduction of the SCI hierarchy implies an infinite classification theory even for the computational
spectral problem by considering different classes of operators, and we provide the first foundations here. The
precise formulations can be found in Theorem 7.5, Theorem 8.3, Theorem 8.5, Theorem 9.3 and Theorem
9.4, however, we provide an informal and easy to read summary in this section. The fundamental question is
as follows:

Given a computational problem with a domain Ω and a problem function Ξ : Ω → M,
where in the SCI hierarchy is the problem when Ξ represents the spectrum, essential spec-
trum, pseudospectrum or even a solution to an inverse problem?

Our results describing where a computational problem lies in the SCI hierarchy are mainly of the form:
computational problem ∈ S and computational problem /∈ R, whereR,S are of the form Σαk ,Π

α
k ,∆

α
k . This

is typically written as

R 63 computational problem ∈ S,

where

R = ΣGk ,Π
G
k ,∆

G
k , S = ΣAj ,Π

A
j ,∆

A
j , k ≤ j.

2.1. The main contribution of the paper. The results are summarised as follows:

Theorem 7.5: (Computational spectral problem, bounded operators). An informal summary follows in
§2.2, and the precise formulation is in §7.

Theorem 8.3 & Theorem 8.5: (Computational spectral problem, Schrödinger operators). §2.3 provides an
introductory summary, however, the precise statements are in §8.
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Theorem 9.3 & Theorem 9.4: (Inverse problems in the SCI hierarchy). A synopsis follows in §2.4 whereas
the exact formulations can be found in §9.

New algorithms: (Spectral computations in mathematics and the sciences). The proofs of the upper bounds
in the theorems above yield new algorithms allowing for previously untouched problems
both in the sciences and potentially in computer assisted proofs. Several examples can be
found in §14.

Remark 2.1 (Model of recursiveness). All our upper bounds hold in both the Turing model and the BSS
model, thus we do not make any distinction when stating the main results and the theorems. When consider-
ing the Turing model with inputs with irrational (computable) numbers, the input to the algorithm represent-
ing such a number is an infinite string of numbers approximating the irrational number to any precision, see
§6.3. Lower bounds are universal for any model of computation.

2.2. Computing spectra and approximate eigenvectors of bounded operators. We are given operators
T ∈ B(l2(N)) and the task is to compute spectral properties from the matrix elements of T . We consider the
following six problems.

Problem 1: Compute spectra/essential spectra/pseudospectra of general operators.
Problem 2: Compute spectra/essential spectra/pseudospectra of self-adjoint/normal/known growth of re-

solvent (see Definition 7.2) operators.
Problem 3: Compute spectra/essential spectra/pseudospectra of operators with off-diagonal decay (see

Definition 7.1).
Problem 4: Compute spectra and approximate eigenvectors of normal operators (with off-diagonal decay).
Problem 5: Compute spectra/pseudospectra of compact operators.
Problem 6: Determine if a given point z ∈ C lies in the spectrum.

To avoid trivialities, when considering self-adjoint classes of operators we will restrict to z ∈ R and when
considering compact operators we will restrict to z 6= 0. Moreover, by the essential spectrum we mean the
spectrum that is invariant under compact perturbation, and the pseudospectrum is defined in 7.3. We prove
the following classifications.

∆G
3 63 Prob 1 (sp.) ∈ ΠA

3 ∆G
3 63 Prob 1 (ess-sp.) ∈ ΠA

3 ∆G
2 63 Prob 1 (pseudosp.) ∈ ΣA2 ,(2.1)

∆G
2 63 Prob 2 (sp.) ∈ ΣA2 ∆G

3 63 Prob 2 (ess-sp.) ∈ ΠA
3 ∆G

2 63 Prob 2 (pseudosp.) ∈ ΣA2 .(2.2)

∆G
2 63 Prob 3 (sp.) ∈ ΠA

2 ∆G
2 63 Prob 3 (ess-sp.) ∈ ΠA

2 ∆G
1 63 Prob 3 (pseudosp.) ∈ ΣA1 .(2.3)

Note that (2.2) means that the classification is the same for self-adjoint operators, normal operators and
operators with known growth of the resolvent. These classes of operators are obviously increasingly included
in each other.

Problem 4 will only make sense for normal operators and for problems that are already in Σα1 . Hence, we
define the following set.

Σα,eigv
1 : We have Σα,eigv

1 ⊂ Σα1 and Σα,eigv
1 is the set of problems for which there exists a sequence

of algorithms {Γn} such that for every A ∈ Ω we have Γn(A) = {(λ1,n, ξ1,n), . . . , (λK,n, ξK,n)}
for someK = K(n) ∈ N, where λj,n is contained in the 2−n neighbourhood of sp(A) and ‖Aξj,n−
λj,nξj,n‖ ≤ 2−n with ‖ξj,n‖ = 1 + an, |an| ≤ 2−n for all j ≤ K. Moreover,

⋃K
j=1 λj,n → sp(A)

as n→∞.

In words Σα,eigv
1 can be described as follows.

Σα,eigv
1 is the collection of computational spectral problems concerning normal operators

that are in Σα1 , where there exists an algorithm that can also compute approximate eigen-
vectors.
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We prove for Problem 4 that

Prob 4 ∈ ΣA,eigv
1 .

Note that we define Problem 4 for operators with off-diagonal decay. Indeed, if we do not have this assump-
tion the computational spectral problem is not in ΣG1 by (2.2), and hence the definition of Σα,eigv

1 would not
make any sense.

Continuing, we prove for Problem 5 that

ΣG1 ∪ΠG
1 63 Prob 5 (sp.) ∈ ∆A

2 , ΣG1 ∪ΠG
1 63 Prob 5 (pseudosp.) ∈ ∆A

2 .(2.4)

As for Problem 6 we prove the following:

∆G
2 63 Prob 6 (diagonal/compact/off-diagonal decay) ∈ ΠA

2 ,(2.5)

∆G
3 63 Prob 6 (general/self-adjoint) ∈ ΠA

3 .(2.6)

Finally, combining Problem 2 and Problem 3 we have

(2.7) ∆G
1 63 Prob 2 ∩ Prob 3 (sp.) ∈ ΣA1 .

The detailed statements can be found in Theorem 7.5.

Remark 2.2 (Solutions to the computational spectral problem for bounded operators). Apart from Problem
5, all the problems above have been open since the beginning of spectral computations that dates back
to the work of H. Goldstine, F. Murray and J. von Neumann [63] in the 1950s. Their work implies ∆A

1

classifications on certain self-adjoint finite-dimensional problems. Problem 5 can be handled by finite-section
method techniques (see §5), and has been known for decades, however we have included a short proof for
completeness. The new lower bounds demonstrate that the finite section method for compact operators is
optimal.

Remark 2.3 (New algorithms and computer-assisted proofs). The ΣA1 classifications above means that spec-
tra of, for example, Jacobi operators of the form

(2.8) J :=



b1 c1

a1 b2 c2

a2 b3 c3

a3 b4
. . .

. . . . . .


,

with known growth of the resolvent can be used in potential computer-assisted proofs. However, note the
rather subtle result that

∆G
2 63 Computing essential spectra of diagonal self-adjoint operators ∈ ΠA

2 .

Thus, this suggests that one must have very specific assumptions on the class of operators in order to be able
to use computer-assisted proofs regarding essential spectra. In particular, the essential spectrum is much
harder to compute than the spectrum. Note also that (2.4) reveals that general compact operators are not
suited for computer-assisted proofs in spectral theory. The question is which extra assumptions in addition
to compactness are needed to get lower in the SCI hierarchy.
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2.3. Computing spectra and approximate eigenvectors of Schrödinger operators on L2(Rd). The prob-
lem of computing the spectrum of a Schrödinger operator

(2.9) H = −∆ + V, V : Rd → C,

is a classical problem in computational quantum mechanics. We consider computing spectra/pseudospectra
of closed Schrödinger operators from point samples of the potential V (x), in particular, the following prob-
lems:

Problem I: Compute spectrum/pseudospectrum of H when ‖V ‖∞ ≤ M < ∞ and V ∈ BVloc(Rd)
(locally bounded total variation).

Problem II: Compute spectrum/pseudospectrum of H when ‖V ‖∞ ≤M <∞, V ∈ BVloc(Rd) and there
is known growth of the resolvent.

Problem III: Compute spectrum/pseudospectrum of H when V is continuous, takes values in a sector of
the complex plane (not containing the negative real line) and blows up at infinity.

Problem IV: Compute spectra and approximate eigenvectors of H when H is self-adjoint and ‖V ‖∞ ≤
M <∞, V ∈ BVloc(Rd).

Note that the assumption that V ∈ BVloc(Rd), the set of functions with locally bounded variation, is very
mild as this class includes discontinuous functions and functions with arbitrary wild oscillations at infinity.
Note also that only requiring V ∈ L∞(Rd) and ‖V ‖∞ ≤ M is impossible as the concept of point samples
of V would not be well defined. We prove the following classifications.

∆G
1 63 Problem I (spectrum) ∈ ΠA

2 ∆G
1 63 Problem I (pseudosp.) ∈ ΣA1 ,(2.10)

∆G
1 63 Problem II (spectrum) ∈ ΣA1 ∆G

1 63 Problem II (pseudosp.) ∈ ΣA1 ,(2.11)

ΣG1 ∪ΠG
1 63 Problem III (spectrum) ∈ ∆A

2 ΣG1 ∪ΠG
1 63 Problem III (pseudosp.) ∈ ∆A

2 ,(2.12)

Problem IV ∈ ΣA,eigv
1 .(2.13)

The detailed statements can be found in Theorem 8.3 and Theorem 8.5.

Remark 2.4 (Non-Hermitian Hamiltonians). We emphasise that the results above are valid also for non-
Hermitian quantum systems. This level of generality is important as we want the theory to include non-
Hermitian quantum mechanics [17, 18, 73, 74] and the theory of resonances [111, 128].

Remark 2.5 (The solutions to the computational spectral problem for Schrödinger operators). The results in
(2.10), (2.11) and (2.13) provide solutions to the problem of computing spectra of Schrödinger operators on
L2(Rd) with bounded potential. In view of (2.4) the results in (2.11) and (2.13) may be surprising. Indeed,
despite being open since the 1950s, the sharp ΣA1 classification implies that the problem of computing spec-
tra and pseudospectra of even non-Hermitian Schrödinger operators in (2.11) is not harder than computing
the spectrum of a diagonal infinite matrix, the simplest of the non-trivial infinite-dimensional spectral prob-
lems. Moreover, the problem of computing spectra and pseudospectra of even non-Hermitian Schrödinger
operators in (2.11) is actually strictly easier than computing spectra of compact operators on l2(N), a com-
putational problem for which successful algorithms have been known for decades. Finally, since we achieve
the ΣA1 classification in several cases, computer-assisted proofs may be a possibility.

2.4. Computational inverse problems. Just as finding spectra of operators and roots of polynomials, the
problem of solving linear systems of equations is at the heart of computational mathematics. For the finite-
dimensional case, it is easy to find an algorithm that can perform the task, but what about the infinite-
dimensional case? We consider the inverse problem

Ax = y A ∈ B(l2(N)), x, y ∈ l2(N),

where we want to compute various quantities such as x from the matrix values of A and vector components
of y when A is known to be invertible. In summary, we consider the following problems.
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Problem a: Compute x when A and y are arbitrary.
Problem b: Compute x when A is self-adjoint and y is arbitrary.
Problem c: Compute x when A has known off-diagonal decay and y is arbitrary.
Problem d: Compute x when A has known off-diagonal decay and y has known decay.
Problem e: Compute the norm of the inverse ‖A−1‖−1.
Problem f: Determine if A is invertible.

When computing solutions to general inverse problems, as there is no concept of convergence from above
and below, we only have the initial ∆α

k classes. However, when it comes to computing the norm of the
inverse and the decision problem of determining whether A is invertible or not, we do have the Σαk and Πα

k

classes. In particular, we prove the following classifications.

∆G
2 63 Problem a ∈ ∆A

3 ∆G
2 63 Problem b ∈ ∆A

3 ,(2.14)

∆G
1 63 Problem c ∈ ∆A

2 ∆G
0 63 Problem d ∈ ∆A

1 .(2.15)

Moreover, these are the classifications for Problem e.

∆G
2 63 Problem e (general/self-adjoint) ∈ ΠA

2 ,(2.16)

∆G
1 63 Problem e (off-diagonal decay) ∈ ΠA

1 .(2.17)

Note that Problem f is a special case of Problem 5 in §2.2. Thus, we have that

∆G
2 63 Problem f (diagonal/compact/off-diagonal decay) ∈ ΠA

2 ,

∆G
3 63 Problem f (general/self-adjoint) ∈ ΠA

3 .

The detailed statements can be found in Theorem 9.3 and Theorem 9.4.

Remark 2.6 (Finite section in inverse problems). Note that the results in (2.14) and (2.15) provide a simple
explanation of why the finite section method or any of its variants could never solve the general inverse
problem. Indeed, such methods would imply at least a ∆A

2 results, which are impossible. However, note that
we immediately get that the class of problems for which the finite section method works are in ∆A

2 . This
demonstrates the importance of the vast literature on the finite section method for classifications in the SCI
hierarchy, see §5.

3. COMPUTING THE NON-COMPUTABLE - THE ROLE OF THE SCI HIERARCHY IN

COMPUTER-ASSISTED PROOFS

Computer-assisted proofs using numerical approximations have become essential in mathematics. There
are an increasing number of famous conjectures and theorems that have been proven using computer assisted
proofs. A highly incomplete list in alphabetical order includes the Dirac-Schwinger conjecture [50–58], the
Double-Bubble conjecture [72], Kepler’s conjecture (Hilbert’s 18th problem) [67,68], Smale’s 14th problem
[123], the 290-theorem [19], the weak Goldbach conjecture [76] etc. In all of these cases the proofs are
based on using numerical computations with approximations. Hence, a key question will always be; given
a problem that needs to be computed in order to secure a computer-assisted proof, can the computation be
done with verification that is 100% reliable? Or asked more broadly:

Question I: Which computational problems are suited for use in computer-assisted proofs?

The instinct would normally be that the computational problem must be in ∆A
1 , or computable in the words

of Turing. This is not the case. The computer-assisted proof of Kepler’s conjecture is done by computing
non-computable problems, i.e. /∈ ∆G

1 , as explained below. There are several cases of important conjectures
that have been solved by computer-assisted proof, where the computational problem is higher up in the SCI
hierarchy than ∆G

1 . Hence, the SCI hierarchy is instrumental in answering Question I above as follows.
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(i) Classifications in the SCI hierarchy - Which problems are safe in computer-assisted proof? In ad-
dition to problems in the class ∆A

1 , problems in the classes ΣA1 and ΠA
1 can be used in computer assisted

proofs regardless of the metric spaceM (see Remark 1.2) that induces the different classifications. How-
ever, the use of problems in ΣA1 or ΠA

1 depends on the phrasing of the conjecture. For example, suppose
the conjectured statement is that spectra of operators in a certain class of self-adjoint discrete Schrödinger
operators never intersect a certain open interval I . Such a statement can be falsified given the new ΣA1
classification of the computational spectral problem concerning discrete Schrödinger operators. Indeed,
suppose one has located a candidate Schrödinger operator H for a counterexample, however, one does not
know the spectrum of H . One can use one of the new algorithms realising the ΣA1 classification, and if
sp(H)∩I 6= ∅, the algorithm will eventually demonstrate this intersection with a 100% guarantee, thus fal-
sifying the conjecture. Similarly, decision problems in ΣA1 and ΠA

1 can be used in computer-assisted proof,
however, problems in ∆A

2 \ (ΣA1 ∪ΠA
1 ) and higher up in the SCI hierarchy will in general be unsuitable.

(ii) A computer-assisted proof typically requires an SCI hierarchy classification. A computer-assisted
proof that relies on numerical computations will typically require a proof of a ∆A

1 , ΣA1 or ΠA
1 classifica-

tion in the SCI hierarchy. Indeed, a mathematician facing a computational problem in order to complete a
computer-assisted proof will likely have to ask: where in the SCI hierarchy is the problem? If this is not
already known one must prove it, and, as the examples below suggest, this classification is typically done
implicitly in the proofs. Sometimes this is trivial, however, sometimes this may be very delicate as in the
proof of Kepler’s conjecture and intricate and technical as in the proof of the Dirac–Schwinger conjecture
(see below).
(iii) Understanding the higher end of the SCI hierarchy helps answering Question I. One may ask about
the value of studying the higher end of the SCI hierarchy, in particular the classes ∆A

j ,Σ
A
j ,Π

A
j for j ≥ 2,

as these classes may seem of only theoretical interest. This is not the case. Answering Question I above be-
comes an infinite classification theory. Hence, given a particular computational problems that is desirable
to use in a computer-assisted proof, one may not know the answer to the question whether this problem is
in an appropriate class of the SCI hierarchy. However, one may have knowledge of an upper bound, say
ΠA

3 . The question is whether extra features of the computational problem would allow for a classification
lower in the SCI hierarchy. Existing results on the higher end of the SCI hierarchy may therefore be in-
valuable. In fact, the solution to the problem of computing spectra of Schrödinger operators evolved in this
way, where initially there was a crude classification of ΠA

3 . By gradually learning which extra assumptions
were needed in order to achieve classifications further down in the hierarchy, we were eventually able to
reach the sharp ΣA1 classification, yielding a classification suitable for computer-assisted proofs.

Below follow examples of successful computer-assisted proofs with the corresponding SCI hierarchy
classification of the main computational problem.

Kepler’s Conjecture (Hilbert’s 18th problem) - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : Kepler conjectured that

no packing of congruent balls in Euclidean three space has density greater than that of cubic close packing
and hexagonal close packing arrangements. The Flyspeck program, led by T. Hales [67, 68], provides a
fully computer-assisted verification, where parts of the numerical computations in the computer-assisted
proof are based on deciding about 50000 linear programs with irrational inputs. The computational prob-
lem is to decide whether

(3.1) M ≥ max
x
〈x, c〉 subject to Ax ≤ b,

where M is an irrational number and A ∈ Rm×n, b ∈ Rm can contain irrational numbers. One needs
affirmative answers on all the linear programs in order to verify the conjecture. The irrational input makes
deciding (3.1) quite delicate. One may consider the dual problem and ask whether there exists a y such
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that

(3.2) 〈y, b〉 ≤M subject to A∗y = c, y ≥ 0.

In that case, producing a candidate that satisfies (3.2) would immediately imply a positive answer to (3.1),
and this is the main idea behind the verification of (3.1) in the proof of Kepler’s conjecture. However,
given the irrational input, deciding (3.2) is a bit optimistic, and thus one goes for the approximate version
of deciding whether there is a y ∈ Rm such that

(3.3) 〈y, b〉K ≤M subject to A∗y = c, x ≥ 0,

where 〈y, b〉K = b10K〈y, b〉c10−K and K ∈ N. Informally, we could think of 〈y, b〉K as 〈y, b〉 computed
with K digits accuracy (K = 6 is used in the proof). The fact that there are irrational input numbers
means that A and b are only known approximately, however, to any precision one wants (think of either
a Turing machine or a BSS machine that can access A ∈ Rm×N in form of an oracle OA such that
|OA(i, j, k) − Ai,j | ≤ 2−k). There are several facts about the problem (3.3) and its classification in the
SCI hierarchy that may be surprising given that Kepler’s conjecture is successfully proven. In a companion
paper [15] to our results, as a part of the extended Smale’s 9th problem, the following is proven.

For any integer K̃ > 1 there exists a class of inputs Ω such that the problem (3.3) withK = K̃ is
/∈ ΣG1 . However, with the same input class Ω, we have that the problem (3.3), with K = K̃ − 1,
is in ∆A

1 . Similarly, deciding (3.1) is /∈ ΣG1 .

One may ask how the computer-assisted proof of Kepler’s conjecture was at all possible, given that one
needs to decide (3.3) forK = 6. Indeed, the /∈ ΣG1 fact would suggest that no positive verification could be
possible. However, if the inequality 〈y, b〉K ≤ M in (3.3) is replaced by a strict inequality 〈y, b〉K < M ,
then there are classes of inputs Ω such that deciding (3.3) is in ΣA1 and hence also deciding (3.2) is in ΣA1 .

In the proof of Kepler’s conjecture, the process that chooses the approximations of the irrational num-
bers in the input A, b is fully automated, and so is the process that makes a suggestion for a candidate for
(3.3) and the formal verification. Thus, one may view the fully automated process for deciding (3.1) in
the proof of Kepler’s conjecture as an algorithm, where its domain is the class Ω of inputs for which the
algorithm either halts with output ‘yes’ or runs forever if the answer to the decision problem is ‘no’. This
algorithm thus yields a ΣA1 classification. Note that, due to the fact that the decision problem are /∈ ∆G

1 one
could have had the following outcome. If there had been a case whereM = maxx〈x, c〉 subject to Ax ≤ b
in (3.1) the decision algorithm would have run forever and the Flyspeck program would never have re-
solved Kepler’s conjecture. This could also have been the case if the answer to the decision problem was
‘no’ i.e a case where M < maxx〈x, c〉 subject to Ax ≤ b in (3.1).

Dirac–Schwinger conjecture - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : We discussed the details in §1.3.

Boolean Pythagorean triples problem - SCI classification: ∈ ΠA
1 , 6∈ ∆G

1 : The Boolean Pythagorean triples
problem asks if it is possible to colour each of the positive integers either red or blue, so that no Pythagorean
triple of integers a, b, c, satisfying a2 + b2 = c2 are all the same colour. For example, in the Pythagorean
triple 3, 4 and 5 ( 32 + 42 = 52), if 3 and 4 are coloured red, then 5 must be coloured blue. This is true
for integers up to n = 7824. The computer-assisted proof, performed by M. Heule, O. Kullmann, and V.
Marek (2016) [77], is based on showing that this is not true for n = 7825. While it is a combinatorial task
checking the problem for any finite set of integer (and hence ∈ ∆A

0 ), it is clearly not ∈ ∆G
0 for infinite sets

of integers. Yet, the problem is clearly ∈ ΠA
1 , which is why it was possible to verify the counterexample.

Group theory: Aut(F5) has property (T ) - SCI classification : ∈ ΣA1 , /∈ ∆G
1 : The fact that the automor-

phism group of the free group on five generators has Kazhdan’s property (T ), was shown by M. Kaluba, P.
Nowak and N. Ozawa [81]. The proof relies on a decision problem involving a minimiser of a semi-definite
program (actually a root of a positive definite matrix that is a minimiser). The minimiser is computed using
floating point arithmetic. Hence, it is, at best (if one could do a backward error analysis), equivalent to
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solving the semi-definite program with inexact input. Computing minimisers to semi-definite programs
with inexact, yet arbitrary small precision is /∈ ∆G

1 [15]. Showing that the final decision problem used
on [81] is ∈ ΣA1 requires an argument, which we do not repeat here, however, it is of similar spirit to the
argument above arguing why Kepler’s conjecture could be verified.

4. THE HISTORY OF THE SCI HIERARCHY IN MATHEMATICS

Although we formally establish the SCI hierarchy in this paper, it implicitly shows up throughout the
history of mathematics. Moreover, it encompasses many key computational problems and has applications
in many computational areas of the mathematical sciences. This is summarised as follows.

(i) Computer-assisted proofs: This is discussed in detail in §3.
(ii) Insolvability of the quintic: The insolvability of the quintic becomes a classification problem in

the SCI hierarchy. In particular, showing that the SCI of the problem of computing the zeros of a
polynomial, when one can use arithmetic operations and radicals, is greater than 0 for polynomials
of degree 5 is equivalent to the insolvability of the quintic.

(iii) Smale’s problem on the existence of generally convergent algorithms and McMullen’s solutions:
§1.2 summarises how the results by McMullen and Doyle & McMullen are classification results in
the SCI hierarchy. A more detail account can be found in §13.

(iv) Optimisation (compressed sensing and the extended Smale’s 9th problem, statistical estimation,
machine learning): As discussed in §1.3 and proved in a companion paper [15], deciding feasibility
of linear programs given irrational inputs is not only undecidable (/∈ ∆G

1 ) but /∈ ΣG1 . As shown
in [15], using the framework of the SCI hierarchy, similar phenomena extend to many key problems
in optimisation such as finding minimisers of Basis pursuit and Lasso. These form the basis of
compressed sensing, statistical estimation, areas of machine learning etc. Moreover, there is a link
to the extended Smale’s 9th problem [15].

(v) Computing the exit flag (validating the output of an algorithm): Often computational routines come
with a certification, a so-called exit flag, that determines if the computed solution is trustworthy or
not. An example is MATLABs popular routine linprog for solving linear programs. Paradoxi-
cally, as shown in [15], this exit flag is not trustworthy, and the problem of computing the exit flag is
higher up in the SCI hierarchy than computing the original problem itself. This also occurs for the
spectral computation problem, where the problem of deciding if spectral pollution (for finite section)
occurs on an interval for self-adjoint operators is strictly harder than computing the spectrum [35].

(vi) Spectral problems: Arveson’s comment (recall §1) on the lack of algorithms for general spectral
problems can be explained by the SCI hierarchy. As many computational spectral problems are
high up in the hierarchy, all attempts with standard methods would fail. Moreover, the standard
methods were based on one limit approaches, and would therefore never capture the depth of the
computational spectral problem. Finally, the new ΣA1 classifications provide new algorithms that
will never produce incorrect outputs.

(vii) Inverse problems: As established in §2.4, inverse problems have a rich classification theory in the
SCI hierarchy.

(viii) Foundations of computational mathematics: The SCI hierarchy can be viewed as a direct contin-
uation of Smale’s program on the foundations of scientific computing, however, it allows for any
computational model and any computational problem.

(ix) Hierarchies in logic: Classical hierarchies in logic such as the arithmetical hierarchy become special
cases of the SCI hierarchy (see Proposition A.5). This is not a paper in logic and computer science,
however, a short discussion on connections to logic can be found in the appendix.
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5. CONNECTIONS TO PREVIOUS WORK

We split the comments into four categories: foundations of computational mathematics, spectral compu-
tation, computer-assisted proofs and inverse problems.

Foundations of computational mathematics: S. Smale’s seminal work [112, 114] and his program on the
foundations of computational mathematics and scientific computing initiated the pioneering work by C.
McMullen [95, 96, 115] and P. Doyle & C. McMullen [45] on polynomial root-finding. These are classi-
fication results in the SCI hierarchy, and our contribution is motivated by this program and the pioneering
work by L. Blum, F. Cucker, M. Shub & S. Smale [20]. Other results in this program on hierarchies include
the work of F. Cucker [36] that becomes a part of the SCI hierarchy (see §6.1).
Spectral computations: The literature on computing spectra is enormous, thus, we will only emphasise
the work that has been most influential on this paper. The ideas of using computational and algorithmic
approaches to obtain spectral information date back to leading physicists and mathematicians such as E.
Schrödinger [103], T. Kato [82] and J. Schwinger [104]. Schwinger introduced finite-dimensional approx-
imations to quantum systems in infinite-dimensional spaces that allow for spectral computations. An inter-
esting observation is that Schwinger’s ideas were already present in the work of H. Weyl [127]. The work
by H. Goldstine, F. Murray and J. von Neumann [63] was one of the first to establish rigorous convergence
results, and their work yields ∆A

1 classification for certain self-adjoint finite-dimensional problems. The
work of N. Aronzajn [5, 6] inspired a comprehensive research program continued by H. Weinberger [126].
In [44] T. Digernes, V. S. Varadarajan and S. R. S. Varadhan proved convergence of spectra of Schwinger’s
finite-dimensional discretisation matrices for a specific class of Schrödinger operators with certain types of
potential, which yields ∆A

2 classification in the SCI hierarchy.
The finite-section method, which has been intensely studied for spectral computation, and has often

been viewed in connection with Toeplitz theory, is very similar to Schwinger’s idea of approximating in a
finite-dimensional subspace. The reader may want to consult the pioneering work by A. Böttcher [22, 23]
and A. Böttcher & B. Silberman [26, 27], see also A. Böttcher, H. Brunner, A. Iserles & S. Nørsett [24],
M. Marletta [91] and M. Marletta & R. Scheichl [92]. The latter papers also discuss the failure of the finite
section approach for certain classes of operators, see also [69, 70]. Note that in the cases where the finite
section method works, it will typically yield ∆A

2 classifications in the SCI hierarchy, and occasionally ∆A
1

classifications. E. B. Davies considered second order spectra methods [37, 38], and E. Shargorodsky [107]
demonstrated how second order spectra methods [37] will never recover the whole spectrum.

W. Arveson [7–11] and N. Brown [30–32] pioneered the combination of spectral computation and the
C∗-algebra literature (which dates back to the work by A. Böttcher & B. Silberman [25]), both for the
general spectral computation problem as well as for Schrödinger operators. See also the work by N. Brown,
K. Dykema, and D. Shlyakhtenko [33], where variants of finite section analysis are implicitly used. Arveson
also considered spectral computation in terms of densities, which is related to Szegö’s work [119] on finite
section approximations. Similar results are also obtained by A. Laptev and Y. Safarov [88]. Typically, when
applied to appropriate subclasses of operators, finite section approaches yield ∆A

2 classification results.
There are also other approaches based on the infinite QR algorithm in connection with Toda flows with
infinitely many variables pioneered by P. Deift, L. C. Li, and C. Tomei [41]. See also the work by P. Deift,
J. Demmel, C. Li, and C. Tomei [40].

The seminal work of C. Fefferman and L. Seco [50–58] on proving the Dirac-Schwinger conjecture is
a striking example of computations used in order to obtain complete information about the asymptotical
behaviour of the ground state of a family of Schrödinger operators. The computer-assisted proof implicitly
proves ΣA1 classifications in the SCI hierarchy. Moreover, the paper [48] by C. Fefferman is based on similar
approaches using numerical calculation of eigenvalues. See also the paper [49] by C. Fefferman and D. H.
Phong on numerically computing the lowest eigenvalue of pseudo-differential operators. We also want to
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highlight the recent pioneering work by M. Zworski [128,129] on computing resonances that can be viewed
in terms of the SCI hierarchy. In particular, the computational approach [129] is based on expressing the
resonances as limits of non-self-adjoint spectral problems, and hence the SCI hierarchy is inevitable, see
also [111].

Recent work on computing spectra of Schrödinger operators include the foundational work of D. Arnold,
G. David, M. Filoche, D. Jerison and S. Mayboroda [2–4], and these results can also be viewed in connec-
tion with the SCI hierarchy. Finally, the reader may want to consult the important contributions by C.
Lubich [90] in his monograph of computational quantum mechanics on time dependent Schrödinger prob-
lems.

We remark in passing that our results and theory are very different from the work of J. Richards and
M. Pour–El [99]. Their results rely on strong assumptions that are unrealistic for actual computations and
therefore miss the whole SCI hierarchy. Moreover, such unrealistic assumptions have limited the impact on
computational spectral theory, as suggested by the quote from W. Arveson in §1.
Computer-assisted proofs: Some of the issues have already been discussed in §1.3 and §3. The number
of examples of computer-assisted proofs in the literature using numerical calculations is substantial. What
most of them have in common is that in order to prove that the computational proof is 100% accurate one
implicitly has to prove a classification in the SCI hierarchy. The work by Fefferman and Seco [50–58] can
both be viewed from a computational spectral theory point of view as well as a computer-assisted proofs
angle, and the ΣA1 classification is crucial. Similarly, the computer-assisted proof of Kepler’s conjecture, via
Hales’ Flyspeck program, is also relying on ΣA1 classification. Note that these are examples of computer-
assisted proofs done by non-computable problems, however, there are many examples of computer-assisted
proofs based on ∆A

1 classifications as well. A great example of this is the work of D. Gabai, R. Meyerhoff,
and P. Milley [60] on hyperbolic three-manifolds.
Inverse Problems: There is a vast literature on computing solutions to certain infinite-dimensional inverse
problems in one limit, typically by using the finite section method. The connection to Toeplitz theory is
important and the reader may consult the foundational results in the books by A. Böttcher & B. Silberman
[26,27] as well as the monograph by Lindner [89] and the references therein. Note that two-limit algorithms
have been suggested by K. Gröchenig, Z. Rzeszotnik, and T. Strohmer in [65], see also [64].

Acknowledgements. The authors would like to thank Percy Deift, Charlie Fefferman, Tom Hales, Ari
Laptev, Steve Smale and Maciej Zworski for helpful discussions. ACH would like to thank Caroline Se-
ries for pointing out the connection between the results of Doyle and McMullen in [45] and the work in [71].
It was this connection that initiated the work leading to this paper. The authors are grateful to Roman Bogdan
for producing the data for Figure 8. MJC acknowledges support from the UK Engineering and Physical Sci-
ences Research Council (EPSRC) grant EP/L016516/1. ACH acknowledges support from a Royal Society
University Research Fellowship, the Leverhulme Prize 2017, as well as the UK Engineering and Physical
Sciences Research Council (EPSRC) grant EP/L003457/1.

6. THE SOLVABILITY COMPLEXITY INDEX HIERARCHY AND TOWERS OF ALGORITHMS

Throughout this paper we assume the following:

(6.1a) Ω is some set, called the domain,

(6.1b) Λ is a set of complex valued functions on Ω, called the evaluation set,

(6.1c) M is a metric space,

(6.1d) The mapping Ξ : Ω→M, called the problem function.

The set Ω is the collection of objects that give rise to our computational problems. It can be a family of
matrices (infinite or finite), a collection of polynomials, a family of Schrödinger (or Dirac) operators with a
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certain potential etc. The problem function Ξ : Ω→M is what we are interested in computing. It could be
the set of eigenvalues of an n× n matrix, the spectrum of a Hilbert (or Banach) space operator, root(s) of a
polynomial etc. Finally, the set Λ is the collection of functions that provide us with the information we are
allowed to read, say matrix elements, polynomial coefficients or pointwise values of a potential function of
a Schrödinger operator, for example. In most cases it is convenient to consider a metric spaceM, however,
in the case of polynomials it may be more useful to use a pseudo metric space (see Example 6.1 (III) ). To
explain this rather abstract set-up in (6.1) we commence with the following examples:

Example 6.1.
(I) (Spectral problems) Let Ω = B(H), the set of all bounded linear operators on a separable Hilbert

space H, and the problem function Ξ be the mapping A 7→ sp(A) (the spectrum of A). Here
(M, d) is the set of all non-empty compact subsets of C provided with the Hausdorff metric d = dH

(defined precisely in (6.3)). The evaluation functions in Λ could for example consist of the family of
all functions fi,j : A 7→ 〈Aej , ei〉, i, j ∈ N, which provide the entries of the matrix representation
of A w.r.t. an orthonormal basis {ei}i∈N. Of course, Ω could be a strict subset of B(H), for example
the set of self-adjoint or normal operators, and Ξ could have represented the pseudospectrum, the
essential spectrum or any other interesting information about the operator.

(II) (Inverse problems) Let Ω = Binv(H)×H, where Binv(H) denotes the set of all bounded invertible
operators on H, and let the problem function Ξ be the mapping (A, b) 7→ A−1b, which assigns to a
linear problem Ax = b its solution x. The metric spaceM would simply beH and Λ the collection
of mappings {fi,j}i∈N,j∈Z+

where fi,j : (A, b) 7→ 〈Aej , ei〉 for j ∈ N and fi,0 : (A, b) 7→ 〈b, ei〉.
Also here Ω could consist of operators with specific properties (off diagonal decay, self-adjointness,
isometric properties).

(III) (Polynomial root finding) Let Ω = Ps, the set of polynomials of degree ≤ s over C and let the
problem function Ξ be the mapping p 7→ {α ∈ C | p(α) = 0} (the roots of p). Let (M, d) denote
the collection of finite sets of points in C equipped with the pseudo metric d : M×M → [0,∞],
defined by d(x, y) = min1≤i≤n,1≤j≤m |xj−yi|,where x = {x1, . . . , xn}, y = {y1, . . . , ym} ∈ M.
The reason for the pseudo metric is that the techniques of Doyle and McMullen that we will consider
are based on computing a single root of a polynomial (as for example Newton’s method does). In
this case Λ is the finite set of functions {fj}sj=1 where fj : p 7→ αj for p(t) =

∑s
k=1 αkt

k.
(IV) (Computational quantum mechanics) Let Ω = L∞(Rd) ∩ C(Rd) and let Ξ : V 7→ sp(−∆ + V ),

where the domain D(−∆ +V ) = W2,2(Rd) (the standard Sobolev space) and −∆ +V is the usual
Schrödinger operator. Given that the spectra are unbounded, we cannot use the Hausdorff metric
anymore, but will let (M, dAW) denote the set of non-empty closed subsets of C equipped with the
Attouch–Wets metric (see (6.4)). In this case a natural choice of Λ would be the set of all evaluations
fx : V 7→ V (x), x ∈ Qd.

(V) (Decision making) Let Ω denote the set of infinite matrices with values in {0, 1} and Ξ : Ω →
M = {Yes,No} where M is equipped with the discrete metric ddisc. The evaluation functions
would naturally be fi,j : A 7→ Ai,j , i, j ∈ N, the (i, j)th matrix coordinate of A. A typical example
of Ξ could be: Ξ({Ai,j}): Does {Ai,j} have a column containing infinitely many non-zero entries?
Naturally, Ω can be replaced with the natural numbers including zero Z+, and Ξ could be a question
about membership in a certain set, as in classical recursion theory. In this case the evaluation set
would be Λ = {λ} consisting of the function λ : Z+ → C, x 7→ x.

Given this set-up and motivation, we can now define what we mean by a computational problem.

Definition 6.2 (Computational problem). Given a domain Ω, an evaluation set Λ, a metric spaceM and a
problem function Ξ : Ω→M, we call the collection {Ξ,Ω,M,Λ} a computational problem.
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Our aim is to find and to study families of functions (that we will sometimes refer to as algorithms) which
permit us to approximate the function Ξ. The main pillar of our framework is the concept of a tower of
algorithms. However, before that we will define a general algorithm.

Definition 6.3 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is
a mapping Γ : Ω→M such that for each A ∈ Ω:

(i) there exists a finite subset of evaluations ΛΓ(A) ⊂ Λ,
(ii) the action of Γ on A only depends on {Af}f∈ΛΓ(A) where Af := f(A),

(iii) for every B ∈ Ω such that Bf = Af for every f ∈ ΛΓ(A), it holds that ΛΓ(B) = ΛΓ(A).

We will sometimes write Γ({Af}f∈ΛΓ(A)), in order to emphasise that Γ(A) only depends on the results
{Af}f∈ΛΓ(A) of finitely many evaluations.

Note that for a general algorithm there are no restrictions on the operations allowed. The only restriction
is that it can only take a finite amount of information, though it is allowed to adaptively choose the finite
amount of information it reads depending on the input (which may very well be infinite, say an infinite
matrix, or a function). The condition (iii) just ensures that the algorithm is well defined and consistent since,
put in simple words, changing the input A shall not affect the algorithm’s action as long as the change does
not affect the output of the relevant evaluations in ΛΓ(A).

Remark 6.4 (The purpose of a general algorithm). The purpose of a general algorithm is to have a definition
that will encompass any model of computation, and that will allow lower bounds and impossibility results to
become universal. Given that there are several non equivalent models of computation, lower bounds will be
shown with a general definition of an algorithm. Upper bounds will always be done with more structure on
the algorithms for example using a Turing machine or a Blum–Shub–Smale (BSS) machine.

The concept of a general algorithm, however, is not enough to describe the world of computational prob-
lems. For that we need the concept of towers of algorithms.

Definition 6.5 (Tower of algorithms). Given a computational problem {Ξ,Ω,M,Λ}, a tower of algorithms
of height k for {Ξ,Ω,M,Λ} is a collection of sequences of functions

Γnk : Ω→M, Γnk,nk−1
: Ω→M, . . . ,Γnk,...,n1 : Ω→M,

where nk, . . . , n1 ∈ N and the functions Γnk,...,n1 at the lowest level in the tower are general algorithms in
the sense of Definition 6.3. Moreover, for every A ∈ Ω,

Ξ(A) = lim
nk→∞

Γnk(A),

Γnk(A) = lim
nk−1→∞

Γnk,nk−1
(A),

...

Γnk,...,n2
(A) = lim

n1→∞
Γnk,...,n1

(A),

(6.2)

where S = limn→∞ Sn means convergence Sn → S in the (pseudo) metric spaceM. For simplicity, and
with a slight abuse of notation, we will often refer to {Γnk,...,n1} as a tower of algorithms, implicitly meaning
the whole collection as described above.

In this paper we will discuss several types of towers: General towers, when there is no extra structure on
the functions at the lowest level in the tower; Doyle–McMullen towers, that are used for Smale’s problem on
polynomial root finding (see §13); Arithmetic towers, that restricts the algorithm to arithmetic operations and
comparisons; Radical towers, that also allows the operation of

√
· of a real number. A General tower will

refer to the very general definition in Definition 6.5 specifying that there are no further restrictions as will be
the case for the other towers. When we specify the type of tower, we specify requirements on the functions
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Γnk,...,n1
, in particular, what kind of operations may be allowed. We can now define an arithmetic tower of

algorithms and a radical tower of algorithms.

Definition 6.6 (Arithmetic towers). Given a computational problem {Ξ,Ω,M,Λ}, where Λ is countable,
we define the following: An Arithmetic tower of algorithms of height k for {Ξ,Ω,M,Λ} is a tower of
algorithms where the lowest functions Γ = Γnk,...,n1

: Ω → M satisfy the following: For each A ∈ Ω

the mapping (nk, . . . , n1) 7→ Γnk,...,n1
(A) = Γnk,...,n1

({Af}f∈Λ) is recursive, and Γnk,...,n1
(A) is a finite

string of complex numbers that can be identified with an element inM. For arithmetic towers we let α = A

Remark 6.7 (Recursiveness). By recursive we mean the following. If f(A) ∈ Q for all f ∈ Λ,A ∈ Ω, and Λ

is countable, then Γnk,...,n1
({Af}f∈Λ) can be executed by a Turing machine [124], that takes (nk, . . . , n1)

as input, and that has an oracle tape consisting of {Af}f∈Λ. If f(A) ∈ R (or C) for all f ∈ Λ, then
Γnk,...,n1

({Af}f∈Λ) can be executed by a Blum-Shub-Smale (BSS) machine [20] that takes (nk, . . . , n1),
as input, and that has an oracle that can access any Af for f ∈ Λ.

Remark 6.8 (Radical towers and beyond - the SCI and the insolvability of the quintic). Similarly to the
definition of an arithmetic tower, one could define a radical tower, where we let α = R, by allowing, in
addition to the arithmetic operations and comparisons, the operation

√
· on real numbers. In that case the

recursiveness requirement above would mean recursive in the sense of a BSS machine with an oracle for the
operation of computing

√
·. Note that in this case the insolvability of the quintic becomes a question of the

SCI with respect to a radical tower of algorithms. Similarly, one could define other towers by allowing other
operations.

Given the definition of a tower of algorithms, we can now define the main concept of this paper: the
Solvability Complexity Index (SCI). The SCI was first discussed in [71] for a specific spectral problem,
however, this definition extends to include general problems in computations.

Definition 6.9 (Solvability Complexity Index). Given a computational problem {Ξ,Ω,M,Λ}, it is said to
have Solvability Complexity Index SCI(Ξ,Ω,M,Λ)α = k with respect to a tower of algorithms of type α if
k is the smallest integer for which there exists a tower of algorithms of type α of height k. If no such tower
exists then SCI(Ξ,Ω,M,Λ)α = ∞. If there exists a tower {Γn}n∈N of type α and height one such that
Ξ = Γn1

for some n1 <∞, then we define SCI(Ξ,Ω,M,Λ)α = 0.

With the definition of the SCI, we can define the SCI hierarchy, for which any computational problem can
be classified. Without any extra structure on the metric spaceM, the ∆α

k classes are the finest refinement we
can obtain in terms of the SCI. However, as described below, when more structure is present, the hierarchy
becomes much richer.

Definition 6.10 (The Solvability Complexity Index hierarchy). Consider a collection C of computational
problems and let T be the collection of all towers of algorithms of type α for the computational problems in
C. Define

∆α
0 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α = 0}

∆α
m+1 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α ≤ m}, m ∈ N,

as well as
∆α

1 := {{Ξ,Ω} ∈ C | ∃ {Γn} ∈ T s.t. ∀A ∈ Ω d(Γn(A),Ξ(A)) ≤ 2−n}.

6.1. Extending the hierarchy for totally ordered M. When there is extra structure on the metric space
M, say M = R or M = {0, 1} with the standard metric, one may be able to define convergence of
functions from above or below. This is an extra form of structure that allows for a type of error control.
As we argue below, this is important, for example, in computer-assisted proofs, and of course, crucial in
scientific computing.
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Definition 6.11 (The SCI Hierarchy (totally ordered set)). Given the set-up in Definition 6.10 and suppose
in addition thatM is a totally ordered set. Define

Σα0 = Πα
0 = ∆α

0 ,

Σα1 = {{Ξ,Ω} ∈ ∆α
2 | ∃ {Γn} ∈ T s.t. Γn(A)↗ Ξ(A) ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆α

2 | ∃ {Γn} ∈ T s.t. Γn(A)↘ Ξ(A) ∀A ∈ Ω},

where↗ and↘ denotes convergence from below and above respectively, as well as, for m ∈ N,

Σαm+1 = {{Ξ,Ω} ∈ ∆α
m+2 | ∃ {Γnm+1,...,n1

} ∈ T s.t. Γnm+1
(A)↗ Ξ(A) ∀A ∈ Ω},

Πα
m+1 = {{Ξ,Ω} ∈ ∆α

m+2 | ∃ {Γnm+1,...,n1
} ∈ T s.t. Γnm+1

(A)↘ Ξ(A) ∀A ∈ Ω}.

If the metric spaceM = {0, 1}, it is clearly a totally ordered set and hence, from Definition 6.11, we get
the SCI hierarchy for arbitrary decision problems.

6.2. Extending the hierarchy for spectral problems. In the case whereM is the collection of non-empty
closed subsets of another metric space (M′, d′) it is custom to equipM with the Hausdorff metric (bounded
case)

(6.3) dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d′(x, y), sup
y∈Y

inf
x∈X

d′(x, y)

}
,

or the Attouch–Wets metric (unbounded case)

(6.4) dAW(A,B) =

∞∑
m=1

2−m min

{
1, sup
d′(x,x0)<m

|dist(x,A)− dist(x,B)|

}
,

where A and B are non-empty closed subsets ofM′, and where dist(x,A) denotes the distance between the
point x ∈M′ and A ⊂M′, and where x0 ∈M′ can be chosen arbitrarily.

Definition 6.12 (The SCI Hierarchy (Attouch–Wets/Hausdorff metric)). Given the set-up in Definition 6.10,
and suppose in addition that (M, d) has the Attouch–Wets or the Hausdorff metric induced by another metric
space (M′, d′), define, for m ∈ N,

Σα0 = Πα
0 = ∆α

0 ,

Σα1 = {{Ξ,Ω} ∈ ∆α
2 | ∃ {Γn} ∈ T , {Xn(A)} ⊂ M s.t. Γn(A) ⊂

M′
Xn(A),

lim
n→∞

Γn(A) = Ξ(A), d(Xn(A),Ξ(A)) ≤ 2−n ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆α

2 | ∃ {Γn} ∈ T , {Xn(A)} ⊂ M s.t. Ξ(A) ⊂
M′

Xn(A),

lim
n→∞

Γn(A) = Ξ(A), d(Xn(A),Γn(A)) ≤ 2−n ∀A ∈ Ω},

where ⊂M′ means inclusion in the metric space M′, and {Xn(A)} is a sequence where Xn(A) ∈ M
depends on A. Moreover,

Σαm+1 = {{Ξ,Ω} ∈ ∆α
m+2 | ∃ {Γnm+1,...,n1

} ∈ T , {Xnm+1
(A)} ⊂ M s.t. Γnm+1

(A) ⊂
M′

Xnm+1
(A),

lim
nm+1→∞

Γnm+1
(A) = Ξ(A), d(Xnm+1

(A),Ξ(A)) ≤ 2−nm+1 ∀A ∈ Ω},

Πα
m+1 = {{Ξ,Ω} ∈ ∆α

m+2 | ∃ {Γnm+1,...,n1
} ∈ T , {Xnm+1

(A)} ⊂ M s.t. Ξ(A) ⊂
M′

Xnm+1
(A),

lim
nm+1→∞

Γnm+1(A) = Ξ(A), d(Xnm+1(A),Γnm+1(A)) ≤ 2−nm+1 ∀A ∈ Ω},

where d can be either dH or dAW.
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Remark 6.13 (Convergence from below and above). Intuitively, Definition 6.12 captures convergence from
below or above respectively, up to a small error parameter 2−n. Indeed, in the case of the Hausdorff metric
case it is easy to see that the above Definition 6.12 yields

Σα1 = {{Ξ,Ω} ∈ ∆α
2 | ∃ {Γn} ∈ T s.t. Γn(A) ⊂ N̄2−n(Ξ(A)) ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆α

2 | ∃ {Γn} ∈ T s.t. N̄2−n(Γn(A)) ⊃ Ξ(A) ∀A ∈ Ω},

where N̄δ(ω) denotes the closed δ-neighbourhood of ω ⊂M′, and similar definitions for Σαm+1 and Πα
m+1.

Note that to build a Σ1 algorithm, it is enough, by taking subsequences, to construct Γn(A) such that
Γn(A) ⊂ N̄En(A)(Ξ(A)) with some computable En(A) that converges to zero.

Definition 6.14. Given a totally ordered metric space (M, d), we say that the metric is order respecting if
for any a, b, c ∈M with a ≤ b ≤ c we have d(a, b) ≤ d(a, c).

Proposition 6.15 (Properties of the SCI hierarchy). Given the set-up, let (M, d) be either the Hausdorff or
Attouch–Wets metric or a totally ordered metric space with order respecting metric. Let k = 1, 2 or 3, then
we have the following.

(i) ∆G
k = ΣGk ∩ ΠG

k . In particular, if for a problem Ξ : Ω →M we have ∆G
k 63 {Ξ,Ω} ∈ Xα

k , where
X = Σ or Π and α denotes any type of tower, then {Ξ,Ω} 6∈ Y αk , where Y = Π or Σ respectively.

(ii) Suppose for a computational problem Ξ : Ω →M we have a corresponding convergent ΣAk tower
Γ1
nk,...,n1

and a corresponding convergent ΠA
k tower Γ2

nk,...,n1
. Suppose also that we can compute

for every A ∈ Ω the distance d(Γ1
nk,...,n1

(A),Γ2
nk,...,n1

(A)) to arbitrary precision using finitely
many arithmetic operations and comparisons. Then {Ξ,Ω} ∈ ∆A

k .

Finally, we also have the following property:

(iii) WhenM = {0, 1}, ∆α
k = Σαk ∩Πα

k for all k ∈ N and α = G,A.

The proof of Proposition 6.15 can be found in §A.

Remark 6.16. Part (i) of Proposition 6.15 shows that the classifications obtained in this paper are sharp in
the SCI hierarchy.

6.2.1. Computing approximate eigenvectors. Let C denote the collection of computation spectral problems
{Ξ,Ω,M,Λ} where Ω is a collection of normal operators on some Hilbert space H and Ξ(A) = sp(A) . If
we consider bounded operators,M is the collection of compact subsets of C equipped with the Hausdorff,
and in the unbounded caseM is the collection of closed subsets of C with the Attouch–Wets metric.

Σα,eigv
1 = {{Ξ,Ω} ∈ Σα1 | ∃ {Γn} ∈ T s.t. Γn(A) = {(λ1,n, ξ1,n), . . . , (λK,n, ξK,n)},

K = K(n) ∈ N, λj,n ∈ N̄2−n(sp(A)), ‖Aξj,n − λj,nξj,n‖ ≤ 2−n,

‖ξj,n‖ = 1 + an, |an| ≤ 2−n ∀j, ∪Kj=1λj,n → sp(A), n→∞, ∀A ∈ Ω}.

In words Σα,eigv
1 can be described as follows.

Σα,eigv
1 is the collection of computational spectral problems concerning normal operators

that are in Σα1 , where there exists an algorithm that can also compute approximate eigen-
vectors.

6.3. Inexact input. Suppose we are given a computational problem {Ξ,Ω,M,Λ}, and that Λ = {fj}j∈β ,
where β is some index set that can be finite or infinite. However, obtaining fj may be a computational task
on its own, which is exactly the problem in most areas of computational mathematics. In particular, for
A ∈ Ω, fj(A) could be the number e

π
j i for example. Hence, we cannot access fj(A), but rather fj,n(A)

where fj,n(A) → fj(A) as n → ∞. Or, just as for problems that are high up in the SCI hierarchy, it could
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be that we need several limits, in particular one may need mappings fj,nm,...,n1
: Ω → Q + iQ, where Q

denotes the rational numbers, such that

(6.5) lim
nm→∞

. . . lim
n1→∞

‖{fj,nm,...,n1
(A)}j∈β − {fj(A)}j∈β‖∞ = 0 ∀A ∈ Ω.

In particular, we may view the problem of obtaining fj(A) as a problem in the SCI hierarchy, where ∆1

classification would correspond to the existence of mappings fj,n : Ω→ Q + iQ such that

(6.6) ‖{fj,n(A)}j∈β − {fj(A)}j∈β‖∞ ≤ 2−n ∀ι ∈ Ω.

This idea is formalised in the following definition.

Definition 6.17 (∆m-information). Let {Ξ,Ω,M,Λ} be a computational problem. For m ∈ N we say that
Λ has ∆m+1-information if each fj ∈ Λ is not available, however, there are mappings fj,nm,...,n1

: Ω →
Q + iQ such that (6.5) holds. Similarly, for m = 0 there are mappings fj,n : Ω → Q such that (6.6) holds.
Finally, if k ∈ N and Λ̂ is a collection of such functions described above such that Λ has ∆k-information,
we say that Λ̂ provides ∆k information for Λ. Moreover, we denote the family of all such Λ̂ by Lk(Λ).

With this definition we can now define what we mean by a computational problem with ∆m information.

Definition 6.18 (Computational problem with ∆m information). Given m ∈ N, a computational problem
where Λ has ∆m-information is denoted by {Ξ,Ω,M,Λ}∆m and denotes the family of computational prob-
lems {Ξ,Ω,M, Λ̂} where Λ̂ ∈ Lm(Λ).

With this definition established we can now introduce the concept of a tower of algorithms with ∆m-
information.

Definition 6.19 (Tower with ∆m-information). A tower of algorithms of height k with ∆m-information is a
tower of algorithms of height k for the computational problem {Ξ,Ω,M,Λ}, where Λ has ∆m-information
such that the tower converges (all m-limits) for any evaluation set Λ̂ ∈ Lm(Λ). For any general algorithm Γ

we will, to simplify notation, use a slight abuse of notation by letting dM(Γ(A),Ξ(A)) denote the supremum
of dM(Γ(A),Ξ(A)) over all computational problems in {Ξ,Ω,M,Λ}∆m .

The SCI and the SCI hierarchy, given ∆m-information, is then defined in the standard obvious way, where
the convergence has to happen given any Λ̂ ∈ Lm(Λ). We will use the notation {Ξ,Ω,M,Λ}∆m ∈ ∆α

k to
denote that the computational problem is in ∆α

k with respect to towers of algorithms with ∆m-information.
Since {Ξ,Ω,M,Λ}∆m is the collection of all computational problems with Λ replaced by Λ̂ ∈ Lm(Λ),

we note that the use of ∈ is a slight abuse of notation. When M and Λ are obvious then we will write
{Ξ,Ω}∆m ∈ ∆α

k for short.

7. MAIN THEOREM ON THE GENERAL COMPUTATIONAL SPECTRAL PROBLEM

For A ∈ Ω, where Ω is an appropriate domain of operators, we define the problem functions

Ξsp(A) := sp(A) (spectrum), Ξe-sp(A) := spess(A) (essential spectrum)(7.1)

ΞNsp,ε(A) := spN,ε(A) (pseudospectrum) Ξzsp(A) := Yes if z ∈ sp(A), No otherwise.(7.2)

Here sp(A) denotes the spectrum, spess(A) the essential spectrum (invariant under compact perturbations)
and spN,ε(A) denotes the (N, ε)-pseudospectrum [26, 69, 122]

(7.3) spN,ε(A) := cl
({
z ∈ C : ‖(A− zI)−2N ‖2

−N
> 1/ε

})
, N ∈ Z≥0, ε > 0,

where we use the convention that ‖(A − zI)−2N ‖ = ∞ when z ∈ sp(A). This set has been popular
in spectral theory, analysis of pseudo differential operators and non-Hermitian quantum mechanics. For
computing the spectrum/essential spectrum/(N, ε)-pseudospectrum, we consider computational problems
{Ξ,Ω,M,Λ} a la the ones in Example 6.1 in §6 (i.e. with respect to the Hausdorff metric). For the final
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problem of determining if z ∈ sp(A), the metric space becomes the discrete metric on {Yes,No}. To avoid
trivialities for this final problem, when considering self-adjoint classes of operators we will restrict to z ∈ R
and when considering compact operators we will restrict to z 6= 0. The key question then becomes:

Given a problem function Ξ of the form (7.1) or (7.2) with a domain Ω and evaluation set
Λ, where in the SCI hierarchy is the computational problem {Ξ,Ω,M,Λ}?

Since one can consider different classes of operators, the above question obviously becomes an infinite
classification theory, however, we will establish some of the foundations. In order to do that we consider
certain key domains such as the set of bounded self-adjoint or normal operators on l2(N), compact operators,
operators on l2(N) with off-diagonal decay (bounded dispersion), operators with controlled growth of the
resolvent etc. To define such domains we need a couple of definitions.

Definition 7.1 (Dispersion). We say that the dispersion of an operator A ∈ B(l2(N)) is bounded by the
function f : N→ N if

Df,m(A) := max{‖(I − Pf(m))APm‖, ‖PmA(I − Pf(m))‖} → 0 as m→∞.

Note that for every operator A there is always a function f which is a bound for its dispersion since APm,
PmA are compact and {Pn} converges strongly to the identity. But there is no function f which acts as
a uniform bound for all operators. Nevertheless, there are important (sub)classes of operators having well
known uniform bounds, which should be mentioned:

(i) Banded operators with bandwidth less than d: f(k) = k + d. More generally, we can consider
operators with sparse matrices (only finitely many non-zero entries in each row and column) where
f captures the sparsity pattern. For example, for discrete Schrödinger operators on l2(Z2), we can
choose an ordering of the lattice sites so that f(k)− k = O(

√
k).

(ii) Band-dominated and weakly band-dominated operators: f(k) = 2k. For definitions and properties
of band and band-dominated operators see [89, 100, 105]. Weakly band-dominated operators can be
found in [93].

(iii) Laurent/Toeplitz operators with piecewise continuous generating function: f(k) = k2 (cf. [27]
and [80, Proposition 5.4]).

(iv) LetF be a family of bounded operators with a common bound f . Then f̃ , given by f̃(k) = f(k)+k,
is a common bound for all operators in the Banach algebra which is generated by F .

Without loss of generality, we assume that f is strictly increasing and f(n) > n. We are also interested in
operators where the control of the growth of the resolvent is bounded.

Definition 7.2 (Controlled growth of the resolvent). Let g : [0,∞) → [0,∞) be a continuous function,
vanishing only at x = 0 and tending to infinity as x → ∞ with g(x) ≤ x. We say that a closed operator A
with non-empty spectrum on the Hilbert spaceH has controlled growth of the resolvent by g if

(7.4) ‖(A− zI)−1‖−1 ≥ g(dist(z, sp(A))) ∀z ∈ C,

where we use the convention ‖B−1‖−1 := 0 if B has no bounded inverse.

Notice that for every bounded operator A there always exists such a g (define g(α) := min{‖(A −
zI)−1‖−1 : z ∈ C with dist(z, sp(A)) = α}, taking continuity and compactness into account) although
there is no g which works for all A.

Remark 7.3 (Assumptions on Λ). In order to make the “additional knowledge” g available for the algorithms
we assume that Λ also contains the constant functions gi,j : A 7→ g(i/j) (i, j ∈ N), which provide the
values of g in all positive rational numbers. When considering the case of ∆1-information and arithmetic
algorithms over Q, we assume that g maps Q≥0 to Q≥0 without loss of generality (e.g. by replacing g with
a suitable piecewise linear function). In the case when the dispersion of the operator is known, the values



24 J. BEN-ARTZI, M. J. COLBROOK, A. C. HANSEN, O. NEVANLINNA, AND M. SEIDEL

f(m) (m ∈ N) shall be available to the algorithms as constant evaluation functions. When computing
problems with SCI = 1 for Ωf (and Ωfg), our algorithms also require the knowledge of a null sequence
{cm}m∈N ⊂ Q such that Df,m(A) ≤ cm.

We consider the following domains defined below. In the cases of bounded dispersion or controlled
growth of the resolvent we assume that we are given either f or g as above.

ΩB := bounded operators ΩN := bounded normal operators,

ΩSA := bounded self-adjoint operators ΩC := compact operators,

Ωf := bounded oper. w/ dispersion bounded by f Ωg := bounded oper. w/ contr. res. growth by g.

Ωfg := Ωf ∩ Ωg ΩD := bounded, diagonal, self-adjoint operators.

Note that to avoid trivialities, in the case of {Ξzsp,ΩD} or {Ξzsp,ΩSA} we take z to be real, and in the case
of {Ξzsp,ΩC} we take z 6= 0. Given the different domains, we can now state the main theorem for bounded
operators.

Remark 7.4 (The upper bounds hold both in the Turing and BSS model). Note that the results in Theorem
7.5 hold with inexact input (∆1 information) as well as with exact input. Hence, our results are valid in both
the Turing and the BSS model. To avoid extra notation we will simply write {Ξ,Ω} ∈ ∆/Π/Σ rather than
the correct notation {Ξ,Ω}∆1 ∈ ∆/Π/Σ.

Theorem 7.5 (The bounded computational spectral problem). Given the set-up above we have the following
classification results in the SCI hierarchy.

(i) Spectrum:

∆G
3 63 {Ξsp,ΩB} ∈ ΠA

3 (all oper.), ∆G
2 63 {Ξsp,ΩN} ∈ ΣA2 (normal),

∆G
2 63 {Ξsp,ΩSA} ∈ ΣA2 (self-adj.), ΣG1 ∪ΠG

1 63 {Ξsp,ΩC} ∈ ∆A
2 (compact),

∆G
2 63 {Ξsp,Ωf} ∈ ΠA

2 (disp. bound. by f), ∆G
2 63 {Ξsp,Ωg} ∈ ΣA2 (resolvent growth bound. by g),

∆G
1 63 {Ξsp,Ωfg} ∈ ΣA1 ∆G

1 63 {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv
1 .

(ii) Essential spectrum:

∆G
3 63 {Ξe-sp,ΩB} ∈ ΠA

3 (all oper.), ∆G
3 63 {Ξe-sp,ΩN} ∈ ΠA

3 (normal),

∆G
3 63 {Ξe-sp,ΩSA} ∈ ΠA

3 (self-adj.), ∆G
2 63 {Ξe-sp,ΩD} ∈ ΠA

2 (self-adj. diag.),

∆G
2 63 {Ξe-sp,Ωf} ∈ ΠA

2 (disp. bound. by f), ∆G
3 63 {Ξe-sp,Ωg} ∈ ΠA

3 (resolvent growth bound. by g),

∆G
2 63 {Ξsp,Ωfg} ∈ ΠA

2 (res. growth bound. by g and disp. bound. by f).

(iii) Pseudospectrum:

∆G
2 63 {ΞNsp,ε,ΩB} ∈ ΣA2 (all oper.), ∆G

2 63 {ΞNsp,ε,ΩN} ∈ ΣA2 (normal),

∆G
2 63 {ΞNsp,ε,ΩSA} ∈ ΣA2 (self-adj.), ΣG1 ∪ΠG

1 63 {ΞNsp,ε,ΩC} ∈ ∆A
2 (compact),

∆G
1 63 {ΞNsp,ε,Ωf} ∈ ΣA1 (disp. bound. by f), ∆G

2 63 {ΞNsp,ε,Ωg} ∈ ΣA2 (resolvent growth bound. by g),

∆G
1 63 {Ξsp,Ωfg} ∈ ΣA1 (res. growth bound. by g and disp. bound. by f).

(iv) Is z in the spectrum?:

∆G
3 63 {Ξzsp,ΩB} ∈ ΠA

3 (all oper.), ∆G
3 63 {Ξzsp,ΩN} ∈ ΠA

3 (normal),

∆G
3 63 {Ξzsp,ΩSA} ∈ ΠA

3 (self-adj.), ∆G
2 63 {Ξzsp,ΩC} ∈ ΠA

2 (compact),

∆G
2 63 {Ξzsp,Ωf} ∈ ΠA

2 (disp. bound. by f), ∆G
3 63 {Ξzsp,Ωg} ∈ ΠA

3 (resolvent growth bound. by g),

∆G
2 63 {Ξzsp,ΩD} ∈ ΠA

2 (self-adj. diag.), ∆G
2 63 {Ξsp,Ωfg} ∈ ΠA

2 (res. growth bound. by g and disp. bound. by f).
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Remark 7.6. In order to gain the ΣA1 algorithms for ΞNsp,ε we need an upper bound for ‖A‖ when N > 0

(without which we gain a ∆A
2 classification). No such knowledge is needed for the other towers of algo-

rithms.

Remark 7.7. The proofs also show that the above lower bounds for compact operators hold when consider-
ing self-adjoint compact operators.

8. MAIN THEOREMS ON COMPUTATIONAL QUANTUM MECHANICS

Here we formally state the results summarised in §2.3. We consider the spectral and pseudospectral
mappings Ξsp, Ξsp,ε from (7.1) for Schrödinger operators:

(8.1) H = −∆ + V, V : Rd → C.

We assume that the information the algorithm can read are point samples V (x) for x ∈ Qd. In particular,
Λ is as in 6.1 in §6. Moreover, M is the collection of non-empty closed subsets of C with the standard
Attouch–Wets metric (6.4). If we fix the domain of H such that it is appropriate for a class of potentials V ,
the spectrum of H is uniquely determined by V . The basic question is therefore:

Given a class of Schrödinger operators −∆ + V ∈ Ω, let Ξ be either Ξsp or Ξsp,ε, Λ and
M as above, where in the SCI hierarchy is the computational problem {Ξ,Ω,M,Λ}?

Though we have stuck to the Hilbert space L2(Rd) for simplicity, the algorithms we construct can also be
adapted for other spaces commonly found in applications such as L2(R>0).

Bounded Potentials. We first consider cases with bounded potential. In particular, let φ : [0,∞) → [0,∞)

be some increasing function and M > 0, define

Ωφ := {H : D(H) = W2,2(Rd), V ∈ BVφ(Rd), ‖V ‖∞ ≤M},

Ωφ,g := {H ∈ Ωφ : ‖(−∆ + V − zI)−1‖−1 ≥ g(dist(z, sp(H)))},

where

(8.2) BVφ(Rd) = {f : TV(f[−a,a]d) ≤ φ(a)},

(f[−a,a]d means f restricted to the box [−a, a]d) with TV being the total variation of a function in the sense
of Hardy and Krause (see [97]). Here as in §7, g : [0,∞) → [0,∞) is a continuous strictly increasing
function with g(x) ≤ x, vanishing only at x = 0 and tending to infinity as x→∞.

Note that the set Ωφ requires a little bit more than V just being locally of bounded variation. There is a
universal upper bound across the class on the growth of the total variation of the potential function as we
restrict the function to a larger set. The class Ωφ,g obviously includes self-adjoint Schödinger operators in
Ωφ, however, it is much larger. We denote the class of self-adjoint Schödinger operators in Ωφ by Ωφ,SA.

Remark 8.1 (Assumptions on Λ). In addition to containing the point sampling functions fx such that
fx(V ) = V (x) for x ∈ Qd we have the following. As done in the case of bounded Hilbert space operators
discussed in Remark 7.3, the additional knowledge of g, describing the growth of the resolvent, is available
for the algorithms by assuming that Λ also contains the constant functions gi,j : V 7→ g(i/j) (i, j ∈ N),
which provide the values of g in all positive rational numbers (again in the case of ∆1-information and arith-
metic algorithms over Q, we assume that g(Q≥0) ⊂ Q≥0 without loss of generality). Moreover, Λ contains
the constant functions φn : V 7→ φ(n) for n ∈ N and we assume without loss of generality that φ(n) ∈ Q.

Remark 8.2 (The upper bounds hold both in the Turing and BSS model). Note that the results in Theorem 8.3
and Theorem 8.5 hold with inexact input (∆1 information) as well as with exact input. Hence, our results are
valid in both the Turing and the BSS model. To avoid extra notation we will simply write {Ξ,Ω} ∈ ∆/Π/Σ

rather than the correct notation {Ξ,Ω}∆1 ∈ ∆/Π/Σ.
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Theorem 8.3 (Bounded potential). Given the above set-up, we have the following classification results.

∆G
1 63 {Ξsp,Ωφ} ∈ ΠA

2 , ∆G
1 63 {Ξsp,ε,Ωφ} ∈ ΣA1 ,

∆G
1 63 {Ξsp,Ωφ,g} ∈ ΣA1 , ∆G

1 63 {Ξsp,ε,Ωφ,g} ∈ ΣA1 ,

∆G
1 63 {Ξsp,Ωφ,SA} ∈ ΣA,eigv

1 .

Remark 8.4. When considering the problem of computing approximate eigenvectors by arithmetic algo-
rithms, we need a suitable way of encoding the space. We choose do to so via computing coefficients of a
function with respect to an orthonormal basis in L(Rd), where each of these is a simple function consisting
of trigonometric and rational functions.

As will be evident from the proof techniques, one can build towers of algorithms for operators with more
general classes of potentials (for example L1(Rd)∩BVloc(Rd) or L2(Rd)∩BVloc(Rd)), however, the height
of these towers will be higher than the ones considered in this paper. The main future task is to obtain exact
values of the SCI of the spectrum, given the different potential classes.

Unbounded Potentials. We get a rather intriguing phenomenon for sectorial operators. Namely, the SCI
of both the spectrum and the pseudospectrum is one, but no type of error control is possible. In particular,
suppose that we have non-negative θ1, θ2 such that θ1 + θ2 < π. Define

(8.3) Ω∞ = {V ∈ C(Rd) : ∀x arg(V (x)) ∈ [−θ2, θ1], |V (x)| → ∞ as x→∞}.

We define the operator H via the minimal operator h as: H = h∗∗, h = −∆ + V, D(h) = C∞c (Rd). When
V ∈ Ω∞ it follows that H has compact resolvent, a result that we also establish as a part of the proof of the
following theorem.

Interestingly, no constant functions are needed in Λ in order to obtain the results in the following theorem,
as opposed to the case where we have a bounded potential.

Theorem 8.5 (Unbounded potential). Given the above set-up, we have the following classification results

ΣG1 ∪ΠG
1 63 {Ξsp,Ω∞} ∈ ∆A

2 , ΣG1 ∪ΠG
1 63 {Ξsp,ε,Ω∞} ∈ ∆A

2 .

Note that the key to this result is the compact resolvent of H . It is therefore natural that these problems
have the same SCI classification as for compact operators ΩC (see Theorem 7.5 in §7). The continuity as-
sumption on V in Theorem 8.5 is to make sure that the discretisation used converges. However, by tweaking
with the approximation, this assumption can be weakened to include potentials that have certain discontinu-
ities.

9. MAIN THEOREMS ON SOLVING LINEAR SYSTEMS

Suppose that b ∈ l2(N),A ∈ Binv(l2(N)) (the set of bounded invertible operators) and Ω ⊂ Binv(l2(N))×
l2(N) and we define the mappings Ξinv : Ω 3 (A, b) 7→ A−1b, and Ξnorm : A 7→ ‖A−1‖−1. Depending
on the problem function, M is either l2(N) or R with the canonical metrics. We ask the following basic
question:

Where in the SCI hierarchy are the computational problems {Ξ,Ω,M,Λ} for different do-
mains Ω when Ξ is either Ξinv or Ξnorm, with the appropriate choices ofM?

Remark 9.1 (Assumptions on Λ). Here, as in Example 6.1, we again suppose that the set Λ of evalua-
tions consists of the functions which read the matrix elements {〈Aej , ei〉}i,j∈N and the sequence entries
{〈b, ek〉}k∈N of (A, b) ∈ Ω. Also, in the case when the dispersion of the operator is known, the values f(m)

(m ∈ N) shall be available to the algorithms as constant evaluation functions. However, if the dispersion is
not known, then Λ will not contain any constant functions in the theorems below.
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Remark 9.2 (The upper bounds hold both in the Turing and BSS model). Note that the results in Theorem 9.3
and Theorem 9.4 hold with inexact input (∆1 information) as well as with exact input. Hence, our results are
valid in both the Turing and the BSS model. To avoid extra notation we will simply write {Ξ,Ω} ∈ ∆/Π/Σ

rather than the correct notation {Ξ,Ω}∆1 ∈ ∆/Π/Σ.

Theorem 9.3 (Solving linear systems). Let Binv,f (l2(N)) denote the class of bounded invertible operators
with dispersion bounded by f : N→ N, BMinv,f (l2(N)) denote the class of operators A ∈ Binv,f (l2(N)) with
the ‖A−1‖ ≤ M , Binv,sa(l2(N)) denote the class of bounded invertible self-adjoint operators, and define
the domains Ω1 = Binv(l2(N))× l2(N), Ω2 = Binv,sa(l2(N))× l2(N) and Ω3 = Binv,f (l2(N))× l2(N).

∆G
2 63 {Ξinv,Ω1} ∈ ∆A

3 ,

∆G
2 63 {Ξinv,Ω2} ∈ ∆A

3 ,

∆G
1 63 {Ξinv,Ω3} ∈ ∆A

2 .

Furthermore, if we define Ω4 = BMinv,f (l2(N))× l2(N), and in this particular case we assume knowledge of
a null sequence {cm}m∈N such that Df,m(A) ≤ cm and ‖b− Pmb‖ ≤ cm then we have the error control

(9.1) ∆G
0 63 {Ξinv,Ω4} ∈ ∆A

1 .

Another problem of interest when dealing with solutions of linear systems of equations is the computation
of the norm of the inverse. This is obviously related to the stability of the problem. The task of computing
the norm of the inverse of an operator can also be analysed in terms of the SCI, and that is the topic of
the next theorem. Note that since our metric space is R with the usual metric, we have a notion of Σ or Π

convergence.

Theorem 9.4 (Computing norm of the inverse). Let Ω1 = B(l2(N)), Ω2 the subset of self-adjoint operators,
Ω3 the subset of operators with dispersion bounded by an f : N → N, and let Ξnorm : A 7→ ‖A−1‖−1. 1

Then

(9.2) ∆G
2 63 {Ξnorm,Ω1} ∈ ΠA

2 , ∆G
2 63 {Ξnorm,Ω2} ∈ ΠA

2 , ∆G
1 63 {Ξnorm,Ω3} ∈ ΠA

1 .

Remark 9.5. As in the spectral case, we require the knowledge of a null sequence cm such that Df,m(A) ≤
cm in order to gain {Ξnorm,Ω3} ∈ ΠA

1 . Without this knowledge the constructed algorithm gives a ∆A
2

classification.

10. PROOF OF THEOREM 7.5

We start the sections on the proofs of our main results with a simple but fundamental observation on the
smallest singular values σ1(B) of finite matrices B ∈ Cm×n, which constitutes one of the cornerstones for
most of the general algorithms we will construct in the subsequent proofs. Note that when dealing with
infinite-dimensional operators, we will also use the notation σ1 to denote the injection modulus defined, for
A ∈ B(H) on some Hilbert spaceH, as

σ1(A) := inf
‖x‖=1

‖Ax‖.

Proposition 10.1. Given a matrixB ∈ Cm×n and a number ε > 0 one can test with finitely many arithmetic
operations of the entries of B whether the smallest singular value σ1(B) of B is greater than ε.

Proof. The matrix B∗B is self-adjoint and positive semi-definite, hence has its eigenvalues in [0,∞). The
singular values of B are the square roots of these eigenvalues of B∗B. The smallest singular value is greater
than ε if and only if the smallest eigenvalue of B∗B is greater than ε2, which is the case if and only if

1As usual, ‖A−1‖−1 := 0 if A is not invertible. We could have equally chosen to compute ‖A−1‖ with the point at infinity added
to a suitable metrisation of R. In this case we would get a Σ rather than a Π classification.
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C := B∗B − ε2I is positive definite. It is well known that C is positive definite if and only if the pivots left
after Gaussian elimination (without row exchange) are all positive. Thus, if C is positive definite, Gaussian
elimination leads to pivots that are all positive, and this requires finitely many arithmetic operations. If C
is not positive definite, then at some point a pivot is zero or negative, at this point the algorithm aborts. An
alternative is the Cholesky decomposition. Although forming the lower triangular L ∈ Cn×n (if it exists)
such that C = LL∗ requires the use of radicals, the existence of L can be determined using finitely many
arithmetic operations. This follows from the standard Cholesky algorithm, and we omit the details. �

Proposition 10.2. Given a matrix B ∈ Cm×n with ∆1-information for the matrix entries of B, and η > 0,
we can compute σ1(B) to accuracy η using finitely many arithmetic operations and comparisons over Q.

Proof. Without loss of generality, we can assume that η ∈ Q. Let B̂ be a rational approximation of B,
obtained using ∆1-information, such that ‖B − B̂‖ ≤ η/2. Note that we can bound the operator norm
by the Frobenius norm and hence can guarantee ‖B − B̂‖ ≤ η/2 if each matrix entry of B̂ is accurate to
η(2
√
mn)−1 (we can choose a smaller rational accuracy parameter). It then follows that |σ1(B)−σ1(B̂)| ≤

‖B − B̂‖ ≤ η
2 . The proposition follows if we can compute σ1(B̂) to accuracy η/2. To do this, let M ∈ N

be such that M−1 < η/2. Using Proposition 10.1 (note that this only requires arithmetic operations and
comparisons over Q) and applying successive tests to ε = 1/M, 2/M, ..., we can compute the smallest
k ∈ N such that σ1(B̂) ≤ k/M . Our approximation is then given by k/M . �

Remark 10.3 (Proofs of {Ξ,Ω}∆1 ∈ ∆/Π/Σ). All our theorems are valid regardless of inexact input (∆1

information), and the main reason is Proposition 10.2. There are only minor alterations that need to be done
in the proofs in order to deal with inexact input, and there will be guidelines specifying where the changes
are needed. Note that there are much more numerically efficient procedures than the one in the proof of
Proposition 10.2. However, the purpose of Proposition 10.2 is to show that the algorithms we construct in
this paper can be made to work in a 100% rigorous manner on a Turing machine with inexact ∆1-information.

We will split the proof of Theorem 7.5 into several parts, and a brief roadmap for the proof is as follows.
We first deal with computing the spectra and pseudospectra of compact operators since the constructive
parts of the proof uses a different (most likely more familiar) method, the finite section method, than the
proof for the other classes of operators. Step I of this part also contains one of the arguments used to prove
lower bounds throughout this paper and is written out in detail for the reader’s convenience. We then move
onto pseudospectra where variants on the method of uneven sections are used to approximate the relevant
resolvent norms. In some cases, these towers are used directly to provide (with an additional limit) towers
of algorithms for the spectra. The proof that {Ξsp,Ωg} ∈ ΣA2 uses a very different method to those usually
found in the literature, a local estimation of the resolvent norm (using similar ideas to §10.2) together with
the function g gives rise to upper bounds on the distance of a point to the spectrum. This is then used in a
local search routine to compute the spectrum. The proof that {Ξsp,ΩB} /∈ ∆G

3 relies on reducing a decision
problem, known to require three limits, to {Ξsp,ΩB}. Proof that the decision problem requires three limits
is provided in §10.6 via a Baire category argument. The constructive proofs for essential spectra build on
the towers of algorithms for computing spectra but are more involved. We end with the problem Ξzsp where
the proof of lower bounds uses similar arguments for the other problem functions, and the construction of
towers of algorithms uses the towers constructed in §10.3 for the spectrum.

10.1. Spectra and pseudospectra of compact operators.

Proof of Theorem 7.5 for compact operators. Step I: {Ξsp,ΩC} /∈ ΣG1 . We argue by contradiction and sup-
pose that there is a sequence {Γn} of general algorithms such that, for every A ∈ ΩC, Γn(A) → sp(A)

with Γn(A) ⊂ sp(A) + B2−n(0), and in particular each ΛΓn(A) is finite. Thus, we define N(A,n) :=
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max{i, j | fi,j ∈ ΛΓn(A)}. We consider an operator of the type

A := Ak ⊕ diag{0, 0, ...} with Ak :=



1 1

0
. . .

0

1 1

 ∈ Ck×k,

where we will choose the specific value of k later. Let C = diag{1, 0, 0, ...} then sp(C) = {0, 1} and
clearly A is compact with sp(A) = {0, 2}. We choose k to gain a contradiction as follows. There exists n
such that Γn(C) ∩ B1/4(1) 6= ∅. Let k > N(C, n). By this construction, it follows that Γn(C) = Γn(A).

Indeed, since any evaluation function fi,j ∈ Λ just provides the (i, j)-th matrix element, it follows by the
choice of k that for any evaluation functions fi,j ∈ ΛΓn(A) we have that that fi,j(A) = fi,j(C). Thus,
by assumption (iii) in the definition of a general algorithm (Definition 6.3), we get that ΛΓn(A) = ΛΓn(C)

which, by assumption (ii) in Definition 6.3, yields Γn(C) = Γn(A). But then Γn(A) ∩B1/4(1) 6= ∅, which
is impossible since Γn(A) ⊂ {0, 2}+B2−n(0), a contradiction.

Step II: {Ξsp,ΩC} /∈ ΠG
1 . This is essentially the same argument. Assume that there exists Γn such that

sp(A) ⊂ Γn(A) + B2−n(0). Let A and C be as before. But now we know that there exists n such that
Γn(C) ∩ B3/4(2) = ∅. We argue as before, choosing k > N(C, n), to get Γn(C) = Γn(A). But we must
have 2 ∈ Γn(A) +B2−n(0), a contradiction.

Step III: {ΞNsp,ε,ΩC} /∈ ΠG
1 ∪ ΣG1 . For sufficiently small ε we have the required separation such that the

above argument works for ΞNsp,ε. For larger ε we simply rescale the operators in the argument appropriately.
Step IV: {Ξsp,ΩC} ∈ ∆A

2 . For n ∈ N, let Gn = 1
n (Z + iZ) ∩ Bn(0). For A ∈ ΩC let Γn(A) = {z ∈

Gn : σ1(Pn(A − zI)Pn) ≤ 1/n}, where Pn denotes the orthogonal projection onto the linear span of the
first n basis vectors. By Proposition 10.1, it is clear that this can be computed in finitely many arithmetical
operations and comparisons. Hence we are done if we can prove convergence, the proof of which will
make clear that we can make Γn(A) non-empty by replacing Γn(A) with Γm(n)(A) such that m(n) ≥ n

is minimal with Γm(n)(A) 6= ∅. Let ε > 0, then choose N > 2/ε. If n ≥ N and z ∈ Γn(A) then we
must have σ1(Pn(A− zI)Pn) ≤ ε/2. Hence there exists xn ∈ l2(N) of norm 1 and with xn = Pnxn such
that ‖(PnA− zI)xn‖ ≤ ε/2. A is compact and hence we can choose N large if necessary to ensure that
‖(I − Pn)A‖ ≤ ε/2. It follows that ‖(A− zI)xn‖ ≤ ε and hence z is in spε(A). Note that N does not
depend on the point z so for large n we have Γn(A) ⊂ spε(A).

Conversely, let z ∈ sp(A). The method of finite section converges for compact operators and hence
there exists zn ∈ sp(PnAPn) with zn → z. Let wn ∈ Gn be of minimal distance to zn then for large n
we must have |wn − zn| ≤ 1/(

√
2n) and hence σ1(Pn(A − wnI)Pn) ≤ 1/(

√
2n) < 1/n. It follows that

wn ∈ Γn(A). Let ε > 0, then we can choose a finite set Sε ⊂ sp(A) with dH(Sε, sp(A)) < ε/2. Applying
the above argument to all points in Sε implies that for large n we must have that sp(A) ⊂ Γn(A) + Bε(0).

Hence, since ε > 0 was arbitrary, the fact that Γn(A) ⊂ spε(A) implies the required convergence.
Step V: {ΞNsp,ε,ΩC} ∈ ∆A

2 . This will follow from the classification of {ΞNsp,ε,Ωf} since we can use a
dispersion bounding function f(n) = n+ 1. Note that we do not necessarily know the dispersion bound (in
the form of the null sequence {cn}) and hence (see Remark 7.6) this provides a ∆A

2 tower (however not the
ΣA1 classification). �

Remark 10.4. To deal with ∆1-information in the above construction (Step IV), we can replace σ1(Pn(A−
zI)Pn) by a rational approximation accurate to 1/n2 (see Proposition 10.2) and the proof follows through
with minor changes.
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10.2. Pseudospectrum. Since ΩSA ⊂ ΩN ⊂ Ωg ⊂ ΩB, Ωfg ⊂ Ωf and we have already dealt with
compact operators, we only need to show that {ΞNsp,ε,ΩB} ∈ ΣA2 , {ΞNsp,ε,Ωf} ∈ ΣA1 , {ΞNsp,ε,ΩSA} /∈ ∆G

2

and {ΞNsp,ε,Ωfg} /∈ ∆G
1 .

Proof of Theorem 7.5 for the pseudospectrum. Step I: {ΞNsp,ε,ΩB} ∈ ΣA2 . Let A ∈ ΩB, and ε > 0. We
introduce the following continuous functions γN : C→ R+, γNm : C→ R+ and γNm,n : C→ R+,

γN (z) :=
(

min
{
σ1

(
(A− zI)2N

)
, σ1

(
(A∗ − z̄I)2N

)})2−N

=
∥∥∥(A− zI)−2N

∥∥∥−2−N

γNm(z) :=
(

min
{
σ1

(
(A− zI)2NPm

)
, σ1

(
(A∗ − z̄I)2NPm

)})2−N

γNm,n(z) :=
(

min
{
σ1

(
(Pn(A− zI)Pn)2NPm

)
, σ1

(
(Pn(A∗ − z̄I)Pn)2NPm

)})2−N

,

where σ1(B) denotes the injection modulus ofB, and in the terms such as σ1(PnBPm) the operator PnBPm
is regarded as element of B(Ran(Pm),Ran(Pn)). For the proof that γN (z) = ‖(A−zI)−2N ‖−2−N see [71].
We define initial approximations Γ̂m,n(A) for spN,ε(A) by Γ̂m,n(A) := {z ∈ Gn : γNm,n(z) ≤ ε}, where
Gj := (j−1(Z + iZ)) ∩ Bj(0). Writing γNm,n(z) ≤ ε as (γNm,n(z))2N ≤ ε2

N

and due to Proposition 10.1 it
is clear that the computation of Γ̂m,n(A) requires only finitely many arithmetic operations on finitely many
evaluations {〈Aej , ei〉 : i, j = 1, . . . , n} of A. The problem with this tower is that it might produce the
empty set. To get round this and construct our ΣA2 arithmetical tower, there are several facts we will state
that can be found in [71]. First, γNm,n converges uniformly to γNm on compact subsets of C as n → ∞.
Second, γNm is non-increasing in m and converges uniformly to γN on compact subsets of C as m → ∞.
Finally, we have

(10.1) cl{z ∈ C : γNm(z) < ε} = {z ∈ C : γNm(A) ≤ ε}

for all ε > 0. Now it is straightforward to show via a Neumann series argument (see the proof that
{Ξsp,Ωg} ∈ ΣA2 below) that there exists a compact ball K such that if z /∈ K then γNm,n(z) > 2ε for
all m,n. In particular, by considering the minimum of γNm(·), this together with the above closure property,
shows that the minimum is zero and {z ∈ C : γNm(A) ≤ ε} 6= ∅.

Now let z0 ∈ {z ∈ C : γNm(z) < ε}. On the compact set K, and for any m, the functions γNm,n and
γNm are Lipschitz continuous with a uniform Lipschitz constant. Using this and (10.1), it follows that for
large enough n, there exists zn ∈ Γ̂m,n(A) with zn → z0. Furthermore, if zn ∈ Γ̂m,n(A) and we select a
subsequence such that znj → z as nj →∞, we see that γNm(z) ≤ ε. This observations together imply that

lim
n→∞

Γ̂m,n(A) = {z ∈ C : γNm(A) ≤ ε} ⊂ spN,ε(A).

Since γNm converges to γN uniformly on compact sets and are uniformly Lipschitz, it is easy to show that
limm→∞{z ∈ C : γNm(A) ≤ ε} = spN,ε(A). Hence in order to construct our ΣA2 arithmetical tower we
define Γm,n(A) = Γ̂m,j(m,n)(A), where j(m,n) ≥ n is minimal such that Γ̂m,j(m,n)(A) 6= ∅. Such a
j(m,n) is guaranteed to exist and can be found by successively computing finitely many of the Γ̂m,k(A)’s.

Step II: {ΞNsp,ε,Ωf} ∈ ΣA1 . Let A be such that f is a bound for its dispersion, and ε > 0. Recall that
f(n) ≥ n+ 1 for every n. Define the composition FN := f ◦ · · · ◦ f of 2N copies of f . Besides the already
defined functions γN , γNm and γNm,n we additionally introduce ψNm := γNm,FN (m), i.e.

ψNm(z) :=
(

min
{
σ1

(
(PFN (m)(A− zI)PFN (m))

2NPm

)
, σ1

(
(PFN (m)(A

∗ − z̄I)PFN (m))
2NPm

)})2−N

,

and we define the desired approximations Γ̂m(A) for spN,ε(A) by Γ̂m(A) := {z ∈ Gm : ψNm(z) ≤ ε}.
Writing ψNm(z) ≤ ε as (ψNm(z))2N ≤ ε2

N

and using Proposition 10.1, we see that again the computation
of Γ̂m(A) requires only finitely many arithmetic operations on finitely many evaluations {〈Aej , ei〉 : i, j =

1, . . . , FN (m)} of A.
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Again, there exists a compact ball K ⊂ C such that γNm(z) > 2ε and ψNm(z) > 2ε for all z ∈ C \ K
and all m. Further note that ψNm converges to γNm uniformly on K. Indeed, since all z 7→ (PFN (m)(A −
zI)PFN (m))

2NPm and z 7→ (A − zI)2NPm are operator-valued polynomials of the same degree whose
coefficients converge in the norm due to the choice of the function FN , we can take into account that
|σ1(B + C) − σ1(B)| ≤ ‖C‖ holds for arbitrary bounded operators B,C, and we arrive at the conclusion
that |γNm(z)−ψNm(z)| → 0 as m→∞ uniformly with respect to z ∈ K. To construct a ΣA1 tower we bound
this difference using the sequence {cn} and the constant ‖A‖ (for the case N > 0 as follows).

If N = 0 then clearly we have ‖Pf(m)(A − zI)Pm − (A − zI)Pm‖ ≤ cm by definition of the {cn}.
Suppose that we have a bound

(10.2) ‖(PFN (m)(A− zI)PFN (m))
2NPm − (A− zI)2NPm‖ ≤ α(N,m, z),

for some function α(N,m, z). We can write

(PFN+1(m)(A− zI)PFN+1(m))
2N+1

Pm − (A− zI)2N+1

Pm

=
(
(PFN+1(m)(A− zI)PFN+1(m))

2N − (A− zI)2N
)
(PFN+1(m)(A− zI)PFN+1(m))

2NPm

− (A− zI)2N
(
(A− zI)2N − (PFN+1(m)(A− zI)PFN+1(m))

2N
)
Pm.

Using the fact that FN+1(m) = FN (FN (m)) and PFN (m)PFN+1(m) = PFN+1(m), we can bound the first
of the above terms in norm by α(N,FN (m), z)(‖A‖+ |z|)2N . Arguing similarly, we can bound the second
term in norm by the same quantity. It follows that we can choose

α(N,m, z) = 2α(N − 1, FN−1(m), z)(‖A‖+ |z|)2N−1

and iterating this N times we can take

α(N,m, z) = 2Ncn (‖A‖+ |z|)2N−1, n = F
N(N−1)

2 (m),

such that (10.2) holds. Note that this estimate can be computed with finitely many arithmetic operations and
comparisons from the given data.

In order to simplify the notation we choose a sequence (δm) which converges monotonically to zero such
that

γNm(z) + δm ≥ ψNm(z) ≥ γNm(z)− δm for every m and every z ∈ K.

Moreover, we point out that each of the functions z 7→ ψNm(z) is continuous on the compact set K, hence
even uniformly continuous, and we can assume without loss of generality that, for every m,

(10.3) |ψNm(z)− ψNm(y)| < δm for arbitrary z, y ∈ K, |z − y| < 1/m.

Now let ζε(A) := {z ∈ C : γN (z) ≤ ε}, ζε,m(A) := {z ∈ C : γNm(z) ≤ ε}, and Ψε,m(A) := {z ∈ C :

ψNm(z) ≤ ε}. By the discussion above, we conclude for all m ≥ k that

(10.4) ζε+δk,m(A) ⊃ ζε+δm,m(A) ⊃ Ψε,m(A) ⊃ ζε−δm,m(A) ⊃ ζε−δk,m(A).

Since, Pm ≤ Pm+1 and Pm → I strongly, γNm → γN monotonically from above pointwise (and hence
locally uniformly by Dini’s Theorem). Thus, by [71], ζε+δk,m(A) → ζε+δk(A) = spN,ε+δk(A) and
ζε−δk,m(A) → ζε−δk(A) = spN,ε−δk(A) as m → ∞. Hence, since spN,ε±δk(A) → spN,ε(A) as k → ∞,
(10.4) yields limm→∞Ψε,m(A) = spN,ε(A). To finish the convergence proof we observe that it is clear
that on the one hand Ψε,m(A) ⊃ Γ̂m(A). On the other hand, for sufficiently large m it holds true that
for every point x ∈ Ψε−δm,m(A) there is a point yx ∈ Gm with |x− yx| < 1/m and, by (10.3) we get
|ψNm(yx) − ψNm(x)| < δm that is yx even belongs to Γ̂m(A). Thus, Γ̂m(A) + B1/m(0) ⊃ Ψε−δm,m(A) for
sufficiently large m. Combining this, we arrive at

Ψε,m(A) +B1/k(0) ⊃ Γ̂m(A) +B1/m(0) ⊃ Ψε−δm,m(A) ⊃ Ψε−δk,m(A),
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for m ≥ k large. By the above, the sets on the left converge to spN,ε(A) +B1/k(0) as m→∞, and the sets
on the right converge to spN,ε−δk(A) for every k. Since both of these sets converge to spN,ε(A) as k →∞
this provides limm→∞ Γ̂m(A) = spN,ε(A). This shows that (upon altering as in Step I to avoid the empty
set), we can gain convergence in one limit without the knowledge of {cn} and ‖A‖.

Now we have that |(ψNm(z))2N − (γNm(z))2N | ≤ α(N,m, z). Hence we define

Γ̃m(A) := {z ∈ Gm : (ψNm(z))2N ≤ ε2
N

− α(N,m, z), ε2
N

− α(N,m, z) > 0},

which can be computed in finitely many arithmetic operations and comparisons. Of course this may be empty
but it has the property that Γ̃m(A) ⊂ spN,ε(A). Suppose for a contradiction that we do not have convergence
to spN,ε(A). Without loss of generality, by taking a subsequence if necessary, there exists zm ∈ spN,ε(A),
z ∈ spN,ε(A) and δ > 0 such that γN (z) < ε, zm → z but dist(zm, Γ̃m(A)) ≥ δ. Let ẑm ∈ Gm with
ẑm → z. Then for large m we must have γN (ẑm) < ε. But α(N,m, ẑm) → 0 and hence ẑm ∈ Γ̃m(A) for
large m, the required contradiction. To finish we simply define Γm(A) = Γ̂j(m)(A), where j(m) ≥ m is
minimal such that Γ̂j(m)(A) 6= ∅. Such a j(m) must exist and we hence avoid the empty set. Finally, the
fact that Γ̃m(A) ⊂ spN,ε(A) ensures we have ΣA1 convergence.

Step III: {ΞNsp,ε,ΩSA} /∈ ∆G
2 . Assume for a contradiction that there is a sequence {Γk} of general

algorithms such that Γk(A)→ spN,ε(A) for all A ∈ ΩSA, and consider operators of the type

(10.5) A :=

∞⊕
r=1

Alr with {lr} ⊂ N and An :=



1 1

0
. . .

0

1 1

 ∈ Cn×n.

Then sp(An) = {0, 2}, hence A is bounded, self-adjoint, and sp(A) = {0, 2} as well. For sufficiently small
ε the (N, ε)-pseudospectrum is a certain neighbourhood of {0, 2} disjoint from B 1

2
(1), independently of the

choice of {lr}. In order to find a counterexample we simply construct an appropriate sequence {lr} ⊂ N
by induction: For C := diag{1, 0, 0, 0, . . .} one obviously has sp(C) = {0, 1}. Choose k0 := 1 and
l1 > N(C, k0), where N(C, n) = max{i, j | fi,j ∈ ΛΓn(C)} for n ∈ N. Now, suppose that l1, . . . , ln are
already chosen. Then we obviously have that sp (Al1 ⊕ · · · ⊕Aln ⊕ C) = {0, 1, 2}, hence there exists a kn
such that Γk (Al1 ⊕ · · · ⊕Aln ⊕ C) ∩ B 1

n
(1) 6= ∅ for every k ≥ kn, where B 1

n
(1) denotes the closed ball

of radius 1/n and centre 1. Now, choose

(10.6) ln+1 > N(Al1 ⊕ · · · ⊕Aln ⊕ C, kn)− l1 − l2 − . . .− ln.

By construction, it follows that

(10.7) Γkn(⊕∞r=1Alr ) ∩B 1
n

(1) = Γkn(Al1 ⊕ . . .⊕Aln ⊕ C) ∩B 1
n

(1) 6= ∅ ∀ n ∈ N.

Indeed, since any evaluation function fi,j ∈ Λ just provides the (i, j)-th matrix element, it follows by (10.6)
that for any evaluation functions fi,j ∈ ΛΓkn

(Al1⊕· · ·⊕Aln⊕C) we have that fi,j(Al1⊕· · ·⊕Aln⊕C) =

fi,j(⊕∞r=1Alr ). Thus, by assumption (iii) in the definition of a General algorithm (Definition 6.3), we get
that ΛΓkn

(Al1 ⊕ · · · ⊕ Aln ⊕ C) = ΛΓkn
(⊕∞r=1Alr ) which, by assumption (ii) in Definition 6.3, yields

(10.7). So, from (10.7), we see that the point 1 is contained in the partial limiting set of the sequence
{Γk(⊕∞r=1Alr )}∞k=1 which approximates spN,ε(A), a contradiction. For general N and ε, we apply the
above argument after appropriate re-scaling.

Step IV: {ΞNsp,ε,Ωfg} /∈ ∆G
1 . This is clear by considering diagonal operators. The point is that given

any general ∆G
1 tower, Γn, and any n, Γn(A) uses only finitely many matrix evaluations {fi,j(A) : i, j ≤

N0(n,A)}. We can choose m large such that m > N0(1, 0) and set fm,m(A) = 2ε + 2. Then Γ1(A) =

Γ1(0) ⊂ B1/2+ε(0), a contradiction since 2ε+ 2 ∈ spN,ε(A). �
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Remark 10.5. To deal with ∆1-information in Step I of the above proof, we can simply replace (γNm,n(z))2N

by a suitable rational approximation accurate to 1/n (see Proposition 10.2). For Step II, we can replace
(ψNm(z))2N and α(N,m, z) by rational approximations from above accurate to 1/m. If ε is not rational, then
we approximate with a rational from below accurate to 1/n2 in Step I and 1/m2 in Step II.

10.3. Spectrum. Again, using the inclusions ΩSA ⊂ ΩN ⊂ Ωg ,when considering the spectrum we only
need to show that {Ξsp,Ωfg} ∈ ΣA1 , {Ξsp,Ωf} ∈ ΠA

2 , {Ξsp,Ωg} ∈ ΣA2 , {Ξsp,ΩB} ∈ ΠA
3 , {Ξsp,ΩSA} /∈

∆G
2 , {Ξsp,Ωf} /∈ ∆G

2 and {Ξsp,ΩB} /∈ ∆G
3 (the fact that {Ξsp,Ωfg} /∈ ∆G

1 is clear by considering diagonal
operators). We then prove that {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv

1 separately since the argument easily extends to
the Schrödinger case in §11.1. The proof that {Ξsp,ΩB} /∈ ∆G

3 relies on some results from decision making
problems which we shall prove in Section 10.6.

Proof of Theorem 7.5 for the spectrum. Step I: We begin with the easy cases that {Ξsp,Ωf} ∈ ΠA
2 and

{Ξsp,ΩB} ∈ ΠA
3 . To prove that {Ξsp,Ωf} ∈ ΠA

2 , let ε > 0 and let Γεn denote the height one arithmetic tower
to compute the (classical) pseudospectrum of operators in Ωf . Using the fact that spN,ε(A) are continuous
with respect to the parameter ε > 0, and converge to sp(A) as ε→ 0 for every A, we simply set Γm,n(A) =

Γ
1/m
n (A). This is a ΠA

2 tower since sp0,1/m(A) contains sp(A). {Ξsp,ΩB} ∈ ΠA
3 is similar and just requires

the additional first limit.
Step II: {Ξsp,Ωg} ∈ ΣA2 . Let g : [0,∞) → [0,∞) be as in Definition 7.4, in particular, continuous,

vanishing only at x = 0 and diverging to ∞ as x → ∞. Note that g(x) ≤ x for all x and without loss
of generality we can also assume that g is strictly increasing. Then the inverse function h(y) := g−1(y) :

[0,∞)→ [0,∞) is well defined, continuous, strictly increasing, h(y) ≥ y for every y, and limy→0 h(y) = 0.
Let K ⊂ C be a compact set and δ > 0. We introduce a δ-grid for K by Gδ(K) := (K + Bδ(0)) ∩

(δ(Z+ iZ)), where Bδ(0) denotes the closed ball of radius δ centred at 0. Without loss of generality we may
assume that δ−1 is an integer, and obviously, Gδ(K) is finite. Moreover, introduce hδ(y) := min{kδ : k ∈
N, g(kδ) > y} and observe that for each y, evaluating hδ(y) requires only finitely many evaluations of g.
Also, notice that h(y) ≤ hδ(y) ≤ h(y) + δ. For a given function ζ : C → [0,∞) we define sets Υδ

K(ζ) as
follows: For each z ∈ Gδ(K) let Iz := Bhδ(ζ(z))(z) ∩ (δ(Z + iZ)). Further

• If ζ(z) ≤ 1 then introduce the set Mz of all w ∈ Iz for which ζ(w) ≤ ζ(v) holds for all v ∈ Iz .
• Otherwise, if ζ(z) > 1, just set Mz := ∅.

Now define

(10.8) Υδ
K(ζ) :=

⋃
z∈Gδ(K)

Mz.

Notice that for the computation of Υδ
K(ζ) only finitely many evaluations of ζ and g are required.

Claim: Let K be a compact set containing the spectrum of A and 0 < δ < ε < 1/2. Further assume that
ζ is a function with ‖ζ − γ‖∞,K̂ := ‖(ζ − γ)χK̂‖∞ < ε on K̂ := (K + Bh(diam(K)+2ε)+ε(0)), where χK̂
denotes the characteristic function of K̂. Finally, let

(10.9) u(ξ) := max{h(3ξ + h(t+ ξ)− h(t)) + ξ : t ∈ [0, 1]}.

Then we have that dH(Υδ
K(ζ), sp(A)) ≤ u(ε) and limξ→0 u(ξ) = 0.

Proof of claim: To prove the claim, let z ∈ Gδ(K) and notice that Iz ⊂ K̂ since, for every v ∈ Iz ,

|z − v| ≤ hδ(ζ(z)) ≤ hδ(γ(z) + ε) ≤ h(dist(z, sp(A)) + ε) + δ

≤ h(diam(K) + δ + ε) + δ.
(10.10)

Suppose that Mz 6= ∅. Note that by (7.4), the monotonicity of h, and the compactness of sp(A) there is a
y ∈ sp(A) of minimal distance to z with |z − y| ≤ h(γ(z)). Since ‖ζ − γ‖∞,K̂ < ε we get |z − y| ≤
h(ζ(z) + ε). Hence, at least one of the v ∈ Iz , let’s say v0, satisfies |v0 − y| < h(ζ(z) + ε)− h(ζ(z)) + δ.
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Noting again that γ(v0) ≤ dist(v0, sp(A)), we get ζ(v0) < γ(v0) + ε < h(ζ(z) + ε) − h(ζ(z)) + 2ε. By
the definition of Mz this estimate now holds for all points w ∈Mz and we conclude that, for all w ∈Mz ,

dist(w, sp(A)) = h(g(dist(w, sp(A)))) ≤ h(γ(w))

≤ h(ζ(w) + ε) ≤ h(h(ζ(z) + ε)− h(ζ(z)) + 3ε).
(10.11)

This observation holds for every z ∈ Gδ(K) and all w ∈Mz , hence all points in Υδ
K(ζ) are closer to sp(A)

than u(ε).
Conversely, take any y ∈ sp(A) ⊂ K. Then there is a point z ∈ Gδ(K) with |z − y| < δ < ε, hence

ζ(z) < γ(z) + ε ≤ dist(z, sp(A)) + ε < 2ε < 1. Thus, Mz is not empty and contains a point which is closer
to y than h(ζ(z)) + ε ≤ h(2ε) + ε ≤ u(ε). Finally notice that the mapping

(t, ξ) 7→ h(h(t+ ξ)− h(t) + 3ξ) + ξ

is continuous on the compact set [0, 1] × [0, 1], hence uniformly continuous. Moreover, for every fixed t it
tends to 0 as ξ → 0, thus we can conclude u(ξ)→ 0, and we have proved the claim. �

Define the function γm,n(z,A) := min{σ1(Pn(A−zI)Pm), σ1(Pn(A∗− z̄I)Pm)}, and note that we can
compute an approximation to γm,n(z,A) from above to within an accuracy of 1/m in finitely many arith-
metic operations and comparisons using Proposition 10.2 (this also includes the case of ∆1-information).
Call this approximation function ζm,n(z,A) and we can assume that it takes values in 1

2mN. As n → ∞,
γm,n(·, A) converges to γm(z,A) := min{σ1((A−zI)Pm), σ1((A∗− z̄I)Pm)}monotonically from below.
By taking successive maxima over n and then minima overm if necessary: min1≤j≤m max1≤k≤n ζj,k(z,A),

we can assume that ζm,n(·, A) is non-decreasing in n and non-increasing in m. Since γm,n obeys these
monotonicity relations, this preserves the error bound of 1/m. It follows that ζm,n(·, A) converges to
ζm(·, A) which takes values in the set 1

2mN (i.e. ζm,n(z,A) is eventually constant for a given z) and such
that γm(z,A) ≤ ζm(z,A) ≤ γm(z,A) + 1/m.

Now let

Γ̂m,n(A) = Υ
1/2m

Bm(0)(ζm,n).

To show that this provides an arithmetic tower of algorithms, note that the computation of Υ
1/2m

Bm(0)(ζm,n)

requires only finitely many evaluations of ζm,n, and the finite number of constants g(k/m) ≤ 1, k = 1, 2, . . ..
Since G1/2m(Bm(0)) is finite and we restricted values of ζm,n to 1

2mN, we must have that for large n,
Γ̂m,n(A) is constant and equal to Υ

1/2m

Bm(0)(ζm). Denote this eventually constant set by Γ̂m(A). We must now

adapt Γ̂m,n such that the output is non-empty and such that we gain the desired convergence in the Hausdorff
topology yielding the ΣA2 classification. For any Γ̂m,n(A) let S(m,n,A) := maxz∈Γ̂m,n(A) ζm,n(z,A),

where we take the maximum over the empty set to be +∞. Note that Γ̂m,n(A) is empty if and only if
ζm,n(z,A) > 1 for all z ∈ G1/2m(Bm(0)) and note also that S(m,n,A) can be computed using finitely
many arithmetic operations and comparisons from the given data.

For given m,n, if n < m then set Γm,n(A) = {0}. Otherwise, compute S(k, n,A) for m ≤ k ≤ n. If
there exists such a k with S(k, n,A) ≤ g(2−m), then choose a minimal such k and set Γm,n(A) = Γ̂k,n(A)

(which must be non-empty by the definition of S(m,n,A)), otherwise set Γm,n(A) = {0}. It follows that
this defines an arithmetic algorithm mapping into the appropriate metric space (in particular it outputs a
non-empty compact set). Since ζm,n increases to ζm and g is continuous, if Γ̂l(A) 6= ∅ then S(l, n, A) is
finite for all n ∈ N. For such an l, we must have S(l, n, A) non-decreasing in n, convergent to Sl(A) :=

maxz∈Γ̂l(A) g(ζl(z,A)). On the other hand if Γ̂l(A) = ∅ then ζl(z,A) > 1 for all z ∈ G1/2l(Bl(0)) and the
fact that ζm,n increases to ζm shows that S(l, n, A) = +∞ for large n.

Define the function γ(z) := min{σ1(A−zI), σ1(A∗−zI)} = ‖(A−zI)−1‖−1. To see why min{σ1(A−
zI), σ1(A∗ − zI)} = ‖(A− zI)−1‖−1 see for example [71]. Now

σ1(Pn(A− zI)Pm) = inf{‖Pn(A− zI)Pmξ‖ : ξ ∈ Ran(Pm), ‖ξ‖ = 1}
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and σ1((A − zI)Pm) = inf{‖(A − zI)Pmξ‖ : ξ ∈ Ran(Pm), ‖ξ‖ = 1}. Thus, since Pm → I strongly
and Pm+1 ≥ Pm, then γm → γ pointwise and monotonically from above, and by Dini’s Theorem the
convergence is uniform on every compact set, in particular on the ball K := Bm0(0), with a fixed m0 >

2‖A‖ + 4. Also, γm,n → γm pointwise monotonically from below as n → ∞, hence again by Dini’s
Theorem it follows that the convergence is uniform on the ball K = Bm0

(0). Outside this ball we have, for
n > m, by a Neumann argument

γm,n(z) = min{σ1(Pn(A− zI)PnPm), σ1(Pn(A∗ − zI)PnPm)}

≥ min{σ1(Pn(A− zI)Pn), σ1(Pn(A∗ − zI)Pn)}

= ‖(Pn(A− zI)Pn)−1‖−1 = |z|‖(Pn − z−1PnAPn)−1‖−1 ≥ 2.

For all n > m > m0, the points in the finite set G1/2m(Bm(0)) \ K lead to function values of ζm,n
being larger than 1 (since ζm,n approximates γm,n to within 1/m), hence Γ̂m,n(A) = Υ

1/2m

K (ζm,n).
Fix ε ∈ (0, 1/2). Then there is an m1 > m0 with m1 > 3/ε such that ‖γ − ζm‖∞,K̂ < ε/3 on
K̂ := Bh(diam(K)+2ε)+ε(0) for all m > m1. Moreover, for every m there is an n1(m) such that ‖γm −
γm,n‖∞,K̂ < ε/3 for all n > n1(m). This yields

‖γ − ζm,n‖∞,K̂ ≤ ‖γ − γm‖∞,K̂ + ‖γm − γm,n‖∞,K̂ + ‖γm,n − ζm,n‖∞,K̂
≤ ε/3 + ε/3 + 1/m < ε

(10.12)

whenever m > m1 and n > n1(m). Hence, by the above claim, we must have that dH(Γ̂m,n(A), sp(A)) ≤
u(ε) whenever m > m1 and n > n1(m). Since this bound tends to zero as ε→ 0, it is proved that

lim
m→∞

lim sup
n→∞

dH(Γ̂m,n(A), sp(A)) = 0.

It follows that there exists N0 ∈ N minimal such that SN0
(A) < +∞, equivalently such that Γ̂N0

(A) 6= ∅.
Monotonicity of ζm in m and the fact that the grid refines itself now ensures that if m ≥ N0 then Sm(A) <

+∞. Furthermore, the above claim (as well as continuity in g) shows that limm→∞ Sm(A) = 0. Let
N1(m) ≥ m be minimal such that SN1(m) ≤ g(2−m). It follows that we must have limn→∞ Γm,n(A) =

Γ̂N1(m)(A). We must also have limm→∞ Γm(A) = sp(A). Furthermore,

(10.13) max
z∈Γm(A)

g(dist(z, sp(A))) ≤ max
z∈Γm(A)

γ(z,A) ≤ SN1(m)(A) ≤ g(2−m).

But g is strictly increasing so that we must have Γm(A) ⊂ sp(A) +B2−m(0) and hence ΣA2 convergence.
Step III: {Ξsp,Ωfg} ∈ ΣA1 . This is very similar to Step II, but now we use the function f to collapse the

first limit. We can approximate

Fn(z,A) := min{σ1(Pf(n)(A− zI)Pn), σ1(Pf(n)(A
∗ − z̄I)Pn)}+ cn,

from above to within an accuracy 1/n in finitely many arithmetic operations and comparisons using Propo-
sition 10.2 (this also includes the case of ∆1-information). Call this approximation function F̃n(z,A) and
assume that F̃n(z,A) ∈ Q. Note that by definition of Df,n and the fact that Df,n(A) ≤ cn, we must have
F̃n(z,A) ≥ γn(z,A) and without loss of generality (take successive minima if necessary) we can assume
that F̃n converges locally uniformly to γ monotonically from above. Now let Γn(A) = Υ

1/2n

Bn(0)(F̃n). Argu-
ing as before, we see that this provides an arithmetic tower of algorithms, is non-empty for large n (so we
can assume this holds for all n without loss of generality) and has limn→∞ Γn(A) = sp(A). Hence we only
need to argue for the ΣA1 error control. Define

(10.14) En(A) = sup
z∈Γn(A)

h2−n(F̃n(z,A)),

then since h2−n ≥ h, we must have En(A) ≥ supz∈Γn(A) dist(z, sp(A)). Moreover, supz∈Γn(A) F̃n(z,A)

converges to 0 as n → ∞. Since h2−n ≤ h + 2−n, it follows that En(A) → 0 and hence (by the usual
argument of taking subsequences if necessary) we have {Ξsp,Ωfg} ∈ ΣA1 .
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Step IV: {Ξsp,ΩSA} /∈ ∆G
2 . This is almost the same argument as the pseudospectrum case. Assume that

there is a sequence {Γk} of general algorithms such that Γk(A) → sp(A) for all A ∈ ΩSA, and consider
operators of the type (10.5). The spectrum is {0, 2} disjoint to B 1

2
(1), independently of the choice of {lr}.

By exactly the same procedure as before, one obtains again that 1 belongs to the partial limiting set of Γk(A)

for a certain A, hence a contradiction.
Step V: {Ξsp,Ωf} /∈ ∆G

2 . Recall that Ωf denotes the set of bounded operators on l2(N) whose dispersion
is bounded by f . Thus, to show the claim, it suffices to show that for any height one general tower of
algorithms {Γn}n∈N for Ξsp, there exists a weighted shift S, with (Su)1 = 0 for all u ∈ l∞(N) and
Sen = αnen+1 where α = {αn}n∈N ∈ l∞(N), such that Γm(S) 9 sp(S) when m → ∞, Obviously
S ∈ Ωf (recall f(n) ≥ n+ 1). To construct such an S we let

α = {0, 0, . . . , 0, 1, 0, 0, . . . , 0, 1, 1, 0, 0, . . . , 0, 1, 1, 1, 0, . . .}, αlj+1, αlj+2, . . . , αlj+j = 1,

for some sequence {lj}j∈N where lj+1 > lj + 2j that we will determine. Observe that regardless of the
choice of {lj}j∈N we have that sp(S) = B1(0) (the closed disc centred at zero with radius one). Indeed,
on the one hand ‖S‖ = 1, hence sp(S) ⊂ B1(0). On the other hand, one can define the elementary shift
operator V : en 7→ en+1, n ∈ N, and its left inverse V − : en+1 7→ en, n ∈ N, e1 7→ 0. Then the shifted
copies (V −)ljSV lj converge strongly to the limit operator V whose spectrum sp(V ) = B1(0) is necessarily
contained in the essential spectrum of S (cf. [100] or [89]).

To construct S we will inductively choose {lj}j∈N with the help of another sequence {mj}j∈Z+
that

will also be chosen inductively. Before we start, define, for any A ∈ Ωf and m ∈ N, N(A,m) to be the
smallest integer so that ΛΓm(A) only includes matrix entries Aij = 〈Aej , ei〉 with i, j ≤ N(A,m). Now let
m0 = 1 and choose l1 > N(0,m1). Suppose that l1, . . . , ln and m0, . . . ,mn−1 are already chosen. Note
that sp(PrS) = {0}, since PrS = PrSPr can be regarded as a r × r-triangular matrix with zero-diagonal.
Thus, since by assumption {Γm}m∈N is a General tower of algorithms for Ξ1, there is an mn such that
Γm(Pln+n+1S) ⊂ B 1

2
(0), for all m ≥ mn. Let

(10.15) ln+1 > N(Pln+n+1S,mn) such that also ln+1 > ln + 2n.

Then, it follows that Γmn(S) = Γmn(Pln+1S) = Γmn(Pln+n+1S). Indeed, since any evaluation func-
tion fi,j ∈ Λ just provides the (i, j)-th matrix element, it follows by (10.15) that for any evaluation func-
tions fi,j ∈ ΛΓmn

(S) we have that fi,j(S) = fi,j(Pln+1
S) = fi,j(Pln+n+1S). Thus, by assumption

(iii) in the definition of a General algorithm (Definition 6.3), we get that ΛΓmn
(S) = ΛΓmn

(Pln+1
S) =

ΛΓmn (Pln+n+1S) which, by assumption (ii) in Definition 6.3 implies the assertion. Thus, by the choice of
the sequences {lj}j∈N and {mj}j∈Z+ , it follows that Γmn(S) = Γmn(Pln+n+1S) ⊂ B 1

2
(0) for every n.

Since sp(S) = B1(0) we observe that Γm(S) 9 sp(S).
Step VI: {Ξsp,ΩB} /∈ ∆G

3 . To prove this we shall need one of the results from §10.6. Namely, if we
define Ω′ to be the collection of all infinite matrices {ai,j}i,j∈Z with entries ai,j ∈ {0, 1} and consider

Ξ′ : Ω′ 3 {ai,j}i,j∈Z 7→

(
∃D∀j

((
∀i

i∑
k=−i

ak,j < D

)
∨

(
∀R∃i

i∑
k=0

ak,j > R ∧
0∑

k=−i

ak,j > R

)))
(“there is a bound D such that every column has either less than D 1s or is two-sided infinite”)

(where we map into the discrete space {Yes,No}), then SCI(Ξ′,Ω′)G = 3.
We may identify ΩB = B(l2(N)) with Ω = B(X), where X = ⊕∞n=−∞Xn in the l2-sense and where

Xn = l2(Z). Consider sequences a = {ai}i∈Z over Z with ai ∈ {0, 1}, and define respective operators
Ba ∈ B(l2(Z)) with matrix representation Ba = {bk,i} by

bk,i :=


1 : k = i and ak = 0

1 : k < i and ak = ai = 1 and aj = 0 for all k < j < i

0 : otherwise.
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Then Ba is again a shift on a certain subset of basis elements and the identity on the other basis elements,
hence we have the following possible spectra:

• sp(Ba) ⊂ {0, 1} if {ai} has finitely many 1s.
• sp(Ba) = T, the unit circle, if there are infinitely many i > 0 with ai = 1 and infinitely many i < 0

with ai = 1 (we say {ai} is two-sided infinite).
• sp(Ba) = D, the unit disc, if {ai} has infinitely many 1s, but only finitely many for i < 0 or finitely

many for i > 0 (we say {ai} is one-sided infinite in that case).

Next for a matrix {ai,j}i,j∈Z we define the operator

(10.16) C :=

∞⊕
k=−∞

Bk

on X , where Bk = B{ai,k}i∈Z corresponds to the column {ai,k}i∈Z in the above sense. Concerning its
spectrum we have

⋃
k∈Z sp(Bk) ⊂ sp(C) ⊂ D since ‖C‖ = 1. Clearly, if one of the columns is one-sided

infinite then sp(C) = D. The same holds true if for every k ∈ N there is a finite column with at least k 1s.
Otherwise (that is if there is a number D such that for every column it holds that it either has less than D 1s
or is two-sided infinite) the spectrum sp(C) is a subset of {0} ∪ T.

Suppose for a contradiction that there exists a height two tower, Γn2,n1
solving {Ξsp,ΩB}. Consider the

intervals J1 = [0, 1/8], and J2 = [3/8,∞). Set αn2,n1
= dist(1/2,Γn2,n1

(A)). Let k(n2, n1) ≤ n1 be
maximal such that αn2,k(A) ∈ J1 ∪ J2. If no such k exists or αn2,k(A) ∈ J1 then set Γ̃n2,n1

({ai,j}) = No.
Otherwise set Γ̃n2,n1({ai,j}) = Yes. It is clear from the construction of the matrix C from {ai,k}i∈Z that
this defines a generalised algorithm. In particular, given N we can evaluate {fk,l(C) : k, l ≤ N} using
only finitely many evaluations of {ai,j}, where we can use a bijection between the canonical bases to view
C as acting on l2(N). The point of the intervals J1, J2 is that we can show limn1→∞ Γ̃n2,n1

({ai,j}) =

Γ̃n2
({ai,j}) exists (the distance to the point 1/2 cannot oscillate infinitely often between J1 and J2). If

Ξ′({ai,j}) = No then for large n2 we have limn1→∞ αn2,n1
(A) < 1/8 and hence limn2→∞ Γ̃n2

({ai,j}) =

No. Similarly, if Ξ′({ai,j}) = Yes then for large n2 we have limn1→∞ αn2,n1(A) > 3/8 and hence
limn2→∞ Γ̃n2({ai,j}) = Yes. Hence Γ̃n2,n1 is a height two tower of general algorithms solving {Ξ′,Ω′}, a
contradiction. �

Remark 10.6. We note that in the case of self-adjoint bounded operators the spectrum sp(A) is real and the
function g can be chosen as x 7→ x. Thus, in the definition of Υδ

K(ζ) it suffices to consider compact K ⊂ R,
the real grid Gδ(K) := (K + [−δ, δ]) ∩ (δZ), and for all z ∈ Gδ(K) only the two points z1/2 := z ± ζ(z)

in Iz . Also in the case of normal operators, where g : x 7→ x does the job again, the construction simplifies.
In particular, for a given function ζ : C → [0,∞) we may define sets Υδ

K(ζ) as follows: For z ∈ Gδ(K)

consider Iz := {z + ζ(z)ejδi : j = 0, 1, . . . ,
⌈
2πδ−1

⌉
} and define Υδ

K(ζ) again as in (10.8). The proof is
then the same, up to some obvious adaptations.

Proof that {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv
1 . Since Ωf ∩ ΩN ⊂ Ωfg , the only part left of the proof is the result

concerning approximate eigenvectors. Let {Γn}n∈N denote the sequence of arithmetic algorithms defined
in Step III of the above proof. By the now standard argument of taking subsequences, it is enough to show
that given z ∈ Γn(A) and δ ∈ Q>0 with δ < 1, we can compute in finitely many arithmetic operations and
comparisons a vector ψn such that max {‖Aψn − zψn‖, |1− ‖ψn‖|} ≤ En(A) + 2cn + 2δ, where En(A)

is defined in (10.14). Without loss of generality, we can assume that z = 0 by an appropriate shift of the
operator A. By construction of the algorithm, we must have that σ1(Pf(n)ÃPn) + cn < En(A) + δ, where
Ã is the approximation of the matrix A used when computing Γn(A) (recall we deal with ∆1 information).
We assume without loss of generality that ‖APn − Pf(n)ÃPn‖ ≤ cn + δ/2. Let ε = (En(A) + δ)2 and
consider the matrix

B =
(
Pf(n)ÃPn

)∗ (
Pf(n)ÃPn

)
− εI ∈ Cn×n
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which is Hermitian but not positive definite. It follows that B can be put into the form PBPT = LDL∗,

where L is lower triangular with 1’s along its diagonal, D is block diagonal with block sizes 1 or 2 and P is a
permutation matrix. This can be computed in finitely many arithmetic operations. Without loss of generality
we assume that P = I . Let x be an eigenvector of B with non-positive eigenvalue then set y = L∗x. Such
an x exists by assumption. Note that, since δ > 0,

(10.17) 〈y,Dy〉 = 〈L∗x,DL∗x〉 = 〈x,Bx〉 < 0.

It follows that there exists a non-zero vector yn with 〈yn, Dyn〉 ≤ 0. Since the inequality in (10.17) is strict,
such a vector is easy to compute using arithmetic operations by considering determinants and traces of 1

blocks or 2 blocks in the block diagonal matrix D. L∗ is invertible and upper triangular so we can solve for
ψ̃n = (L∗)−1yn. We can then approximately normalise ψ̃n to ψn using finitely many arithmetic operations
(e.g. by approximating the norm of ψ̃n) so that 1− δ < ‖ψn‖ ≤ 1. Note also that

‖Pf(n)ÃPnψn‖2 = 〈ψn, Bψn〉+ ‖ψn‖2ε =
‖ψn‖2

‖ψ̃n‖2
〈yn, Dyn〉+ ‖ψn‖2ε ≤ ε.

It follows that (using ψn to also denote the zero padding of ψn to form a vector in l2(N))

‖APnψn‖ ≤ En(A) + δ + ‖APn − Pf(n)ÃPn‖‖ψn‖

≤ En(A) + δ + (cn + δ/2)(1 + δ) ≤ En(A) + 2cn + 2δ

since δ < 1. The result now follows. �

10.4. Essential Spectrum. In this section, we prove the results for the essential spectrum. Since ΩD ⊂
Ωfg ⊂ Ωf and ΩSA ⊂ ΩN ⊂ Ωg ⊂ ΩB, we only need to prove that {Ξe-sp,ΩD} /∈ ∆G

2 , {Ξe-sp,ΩSA} /∈ ∆G
3 ,

{Ξe-sp,ΩB} ∈ ΠA
3 and {Ξe-sp,Ωf} ∈ ΠA

2 .

Proof of Theorem 7.5 for the essential spectrum. Step I: {Ξe-sp,ΩD} /∈ ∆G
2 . To see this, suppose for a

contradiction that a height one tower Γn solves the computational problem. For the contradiction we
will construct A ∈ ΩD with diagonal entries in {0, 1} such that Γn(A) does not converge. Let An =

diag(0, 0, ..., 0) ∈ Cn×n and Bn = diag(1, 1, ..., 1) ∈ Cn×n (we let A∞ and B∞ be the obvious infinite
analogues). We will construct

A =
⊕
n∈N

Aan ⊕Bbn ,

for an, bn ∈ N inductively. Suppose that a1, b1, a2, b2, ..., am, bm have been chosen. Then the operator

Cm :=
( m⊕
n=1

Aan ⊕Bbn
)
⊕A∞

has essential spectrum {0}. Hence there exists nm ≥ m such that Γnm(Cm) ⊂ B1/4(0). But by the
definition of a general tower there must exist some N(m) such that Γnm(Cm) only uses the evaluations of
matrix elements fi,j(Cm) with i, j ≤ N(m). Now choose am+1 ≥ max{Nm−(a1 +b1 + ...+am+bm), 1}
then we must have Γnm(A) = Γnm(Cm). Similarly, if a1, b1, a2, b2, ..., bm, am+1 have been chosen then we
consider

Dm :=
( m⊕
n=1

Aan ⊕Bbn
)
⊕Am+1 ⊕B∞

and choose bm+1 large so that Γn̂m(A) = Γn̂m(Dm) ⊂ B1/4(1) for some n̂m ≥ nm. This then gives the
required contradiction, since the sequence Γn(A) does not converge.

Step II: {Ξe-sp,ΩSA} /∈ ∆G
3 . Suppose for a contradiction that Γn2,n1

is a height two tower solving this
problem. Let (M, d) be the discrete space {Yes,No}, let Ω′ denote the collection of all infinite matrices
{ai,j}i,j∈N with entries ai,j ∈ {0, 1} and consider the problem function

Ξ′({ai,j}) : Does {ai,j} have (only) finitely many columns with (only) finitely many 1s?
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In Section 10.6 we prove that SCI(Ξ′,Ω′)G = 3. We will gain a contradiction by using the supposed height
two tower for {Ξe-sp,ΩSA}, Γn2,n1 , to solve {Ξ′,Ω′}.

Without loss of generality, identify ΩSA with self adjoint operators in B(X) where X =
⊕∞

j=1Xj in
the l2-sense with Xj = l2(N). Now let {ai,j} ∈ Ω′ and for the jth column define Bj ∈ B(Xj) with the
following matrix representation:

Bj =

Mj⊕
r=1

Aljr , Am :=



1 1

0
. . .

0

1 1

 ∈ Cm×m,

where if Mj is finite then ljMj
=∞ with A∞ = diag(1, 0, 0, ...). The ljr are defined by the relation

(10.18)

∑m
i=1 ai,j∑
r=1

ljr = m+

m∑
i=1

ai,j ,

and measure the lengths (+1) of successive gaps between 1’s in the jth column. Define the self-adjoint
operator A =

⊕∞
j=1Bj . We then have that

spess(A) =

{0, 1, 2}, if Ξ′({ai,j}) = No

{0, 2}, otherwise .

Consider the intervals J1 = [0, 1/2], and J2 = [3/4,∞). Set αn2,n1
= dist(1,Γn2,n1

(A)). Let
k(n2, n1) ≤ n1 be maximal such that αn2,k(A) ∈ J1 ∪ J2. If no such k exists or αn2,k(A) ∈ J1

then set Γ̃n2,n1
({ai,j}) = No. Otherwise set Γ̃n2,n1

({ai,j}) = Yes. It is clear from (10.18) and the
definition of the Am that this defines a generalised algorithm. In particular, given N we can evaluate
{Ak,l : k, l ≤ N} using only finitely many evaluations of {ai,j}, where we can use a bijection between
the canonical bases to view A as acting on l2(N). Again, the point of the intervals J1, J2 is that we
can show limn1→∞ Γ̃n2,n1

({ai,j}) = Γ̃n2
({ai,j}) exists. If Ξ′({ai,j}) = No then for large n2 we have

limn1→∞ αn2,k(A) < 1/2 and hence limn2→∞ Γ̃n2
({ai,j}) = No. Similarly, if Ξ′({ai,j}) = Yes then for

large n2 we have limn1→∞ αn2,k(A) > 3/4 and hence limn2→∞ Γ̃n2
({ai,j}) = Yes. Hence Γ̃n2,n1

is a
height two tower of general algorithms solving {Ξ′,Ω′}, a contradiction.

Step III: {Ξe-sp,ΩB} ∈ ΠA
3 . We start by defining the following functions on C, where Qn := I − Pn,

µm,n,k : z 7→ min{σ1(Pk(A− zI)QmPn), σ1(Pk(A− zI)∗QmPn)}

µm,n : z 7→ min{σ1((A− zI)QmPn), σ1((A− zI)∗QmPn)}

µm : z 7→ min{σ1((A− zI)Qm), σ1((A− zI)∗Qm)}.

Here Pk(A − zI)QmPn is considered as operator on Ran(QmPn), etc. as usual. Recall from the previous
proofs that, for every n,m, µm,n,k → µm,n pointwise and monotonically from below as k → ∞ and for
every m µm,n → µm pointwise and monotonically from above as n → ∞. Furthermore, {µm}m∈N is
pointwise increasing and bounded, hence converges as well. By Proposition 10.2 we can compute with
finitely many arithmetic operations and comparisons, for any given z, an approximation µ̃m,n,k(z) ∈ Q with
|µm,n,k(z)− µ̃m,n,k(z)| ≤ 1/k. Furthermore, we can approximate from below and assume without loss
of generality (by taking successive maxima) that µ̃m,n,k(z) converges to µm,n pointwise and monotonically
from below (again, this also includes the case of ∆1-information).

Next, we define the finite grids

Gn :=

{
s+ it

2n
: s, t ∈ {−22n, . . . , 22n}

}
,
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and, for A ∈ B(l2(N)),

Γ̂m,n,k(A) :=

{
z ∈ Gn : µ̃m,n,k(z) ≤ 1

m

}
Γ̂m,n(A) :=

⋂
k∈N

Γ̂m,n,k(A) = lim
k→∞

Γ̂m,n,k(A),(10.19)

Γ̂m(A) :=
⋃
n∈N

Γ̂m,n(A) = lim
n→∞

Γ̂m,n(A),(10.20)

Γ̂(A) :=
⋂
m∈N

Γ̂m(A) = lim
m→∞

Γ̂m(A).(10.21)

It easily follows again that all Γ̂m,n,k are general algorithms in the sense of Definition 6.3 that require only
finitely many arithmetic operations. We shall show that for large enough n, the above sets are non-empty
and establish the limits in (10.19), (10.20) and (10.21) and that Γ̂(A) equals spess(A). We will show that it
is possible to choose a subsequences of n such that this holds (each output and any limits must never empty
since we require convergence in the Hausdorff metric) allowing us to construct a height three arithmetic
tower. The final limit will be from above and hence the ΠA

3 classification.
To do that we abbreviateH := l2(N) and first show that

(10.22) µ(z) := lim
m→∞

µm(z) equals ‖(A− zI +K(H))−1‖−1 for all z ∈ C,

where A − zI + K(H) denotes the element in the Calkin algebra B(H)/K(H) and where we use the con-
vention ‖b−1‖−1 := 0 if the element b is not invertible. Clearly it suffices to consider z = 0. The estimate
“≤” is trivial in case µ(0) = 0. So, let µ(0) > ε > 0. Choose m ∈ N such that µm(0) ≥ µ(0) − ε. The
operator A0 := AQm : RanQm → Ran(AQm) is invertible, hence the kernel of A = AQm + APm has
finite dimension. σ1(A∗Qm) > 0 yields that RanA has finite codimension, hence both A and AQm are
Fredholm. Let R be the orthogonal projection onto RanAQm, B0 the inverse of A0 and B := B0R. Then

BA− I = (BA− I)Pm + (BA− I)Qm = (BA− I)Pm and

AB − I = (AB − I)(I −R) + (AB − I)R = (AB − I)(I −R)

are compact, i.e. B is a regulariser for A. Now

‖(A+K(H))−1‖−1 ≥ ‖B‖−1 = ‖B0R‖−1

≥ (‖B0‖‖R‖)−1 = ‖B0‖−1 = σ1(AQm) ≥ µ(0)− ε

gives the estimate “≤” since ε is arbitrary.
Conversely, there is nothing to prove if A is not Fredholm, so let ε > 0 and B ∈ (A + K(H))−1 be a

regulariser with ‖B‖ ≤ ‖(A + K(H))−1‖ + ε. Since the operator K := BA − I is compact we get for
all sufficiently large m that ‖QmBAQm − Qm‖ = ‖QmKQm‖ is so small such that Qm + QmKQm is
invertible in B(Ran(Qm)),

Qm(Qm +QmKQm)−1QmB︸ ︷︷ ︸
=: B1 ∈ B(H)

AQm = Qm and ‖QmB −B1‖ < ε.

We get that σ1(AQm) > 0, hence the compression AQm : Ran(Qm) → Ran(AQm) is invertible and
the compression B1|Ran(AQm) : Ran(AQm) → Ran(Qm) is its (unique) inverse. Thus, we have ‖B1‖ ≥
‖B1|Ran(AQm)‖ = σ1(AQm)−1 and further ‖B‖ ≥ ‖QmB‖ ≥ ‖B1‖− ‖QmB −B1‖ ≥ σ1(AQm)−1 − ε.
We conclude for sufficiently large m that σ1(AQm)−1 ≤ ‖B‖+ ε ≤ ‖(A+K(H))−1‖+ 2ε. Since ε > 0 is
arbitrary we arrive at limm→∞ σ1(AQm) ≥ ‖(A+ K(H))−1‖−1. Applying this observation to A∗ we also
find

lim
m→∞

σ1(A∗Qm) ≥ ‖(A∗ +K(H∗))−1‖−1 = ‖(A+K(H))−1‖−1,
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which finishes the proof of (10.22). In particular we now can apply that all of the above functions µm,n,k,
µm,n, µm, µ are continuous with respect to z, and together with the already discussed pointwise monotone
convergence results, Dini’s Theorem gives that the convergences are even locally uniform.

We can now establish the limits in (10.19), (10.20) and (10.21) for large enough n. Obviously, {Γ̂m,n,k(A)}k
is decreasing. If Γ̂m,n(A) = ∅ then there must exist some finite k with Γ̂m,n,k(A) = ∅ since the sets
are nested, closed and uniformly bounded. Furthermore, {Γ̂m,n(A)}n is increasing since, for every k,
Γ̂m,n(A) ⊂ Γ̂m,n,k(A) ⊂ Γ̂m,n+1,k(A). Let z ∈ spess(A). For m ∈ N, µm(z) = 0 and furthermore,
there is an n0(m) and a zm ∈ Gn0(m) with |z − zm| < 1/m, µm(zm) < 1/(2m) and µm,n(zm) < 1/m

for every n ≥ n0(m). Then, for every k, µ̂m,n,k(zm) < 1/m as well. Since the essential spectrum of a
bounded linear operator is non-empty it follows that there exists a minimal N(m) such that if n ≥ N(m)

then Γ̂m,n(A) 6= ∅.
We now alter Γ̂m,n,k as follows. For a givenm,n and k we successively compute Γ̂m,n,k(A), Γ̂m,n+1,k(A), ...

and choose N(m,n, k) ≥ n minimal such that Γ̂m,N(m,n,k),k(A) 6= ∅. By the above remarks, it fol-
lows that this process must terminate. We also have that Γm,n(A) := limk→∞ Γm,n,k(A) exists (in fact
Γm,n,k(A) is eventually constant as we increase k since µ̂m,n,k is increasing) and also that Γm,n(A) =

Γ̂m,max{n,N(m)}(A). Since Γm,n(A) are increasing in n, it then follows that

Γm(A) := lim
n→∞

Γm,n(A) =
⋃
n∈N

Γm,n(A) =
⋃
n∈N

Γ̂m,n(A).

Finally, {Γm(A)}m is decreasing. To see this, choose z ∈ Γm(A) and a sequence (zn) with zn → z and
zn ∈ Γ̂m,n(A) (for large n), respectively. The functions µm,n are non-decreasing in m and hence we have

Γ̂m,n(A) =

{
z ∈ Gn : µm,n(z) ≤ 1

m

}
⊂ Γ̂m−1,n(A)

from which we conclude zn ∈ Γ̂m−1,n(A), hence z ∈ Γm−1(A). It follows that the limit Γ(A) :=

limm→∞ Γm(A) exists.
We are left with proving that Γ(A) = spess(A). Let z ∈ spess(A). Arguing as before, for m ∈ N,

µm(z) = 0 and furthermore, there is an n0(m) and a zm ∈ Gn0(m) with |z−zm| < 1/m, µm(zm) < 1/(2m)

and µm,n(zm) < 1/m for every n ≥ n0(m). Then for every k µm,n,k(zm) < 1/m as well. We conclude
that zm ∈ Γm(A) ⊂ Γl(A), l = 1, . . . ,m. Thus the limit z of the sequence {zm} belongs to all Γl(A) and
hence spess(A) ⊂ Γ(A). Conversely, let z /∈ spess(A). Then µ(z) > ε > 0 for a certain ε > 0 and for all z
in a certain neighbourhood U of z. Moreover there is an m0 > 3/ε such that µm(z) > ε/2 for all m ≥ m0

and z ∈ U , hence µm,n(z) > ε/2 for all m ≥ m0, all n and all z ∈ U . Further, for every m > m0 and n
there is a k0(m,n) such that µm,n,k(z) > ε/3 > 1/m0 > 1/m for all k ≥ k0(m,n) and z ∈ U . Thus, the
intersection of U and Γ(A) is empty, in particular z /∈ Γ(A).

Step IV: {Ξe-sp,Ωf} ∈ ΠA
2 . Knowing a bound f on the dispersion of A obviously suggests to plug it into

the previously defined algorithms and define

κm,n : z 7→ min{σ1(Pf(n)(A− zI)QmPn), σ1(Pf(n)(A− zI)∗QmPn)}

Γ̃m,n(A) :=

{
z ∈ Gn : κ̂m,n(z) ≤ 1

m

}
.

Where, as usual, we will approximate κm,n to within 1/n by a function κ̂m,n taking rational values that
can be computed (using Proposition 10.2 to cope with ∆1-information if needed) at any point using finitely
many arithmetic operations and comparisons. Unfortunately, all we know about the functions κm,n, µm is
that they are Lipschitz continuous with Lipschitz constant 1 and that κm,n converge pointwise to µm, but
not, whether or when this convergence is monotone. Therefore we have to make a modification in order to
guarantee the existence of the desired limiting sets. The following idea is similar to the use of the intervals
J1 and J2 in Step II and avoids possible oscillations at the boundary.
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Let Vm denote the square Vm := {z ∈ C : |<(z)|, |=(z)| ≤ 2−(m+1)} and Vm(z) := z + Vm the
respective shifted copies. Moreover, set Zm := { s+it

2m : s, t ∈ Z} and

Sm,n(z) := {i = m+ 1, . . . , n : ∃z ∈ Vm(z) ∩Gi : κ̂m,i(z) ≤ 1/m}

Tm,n(z) := {i = m+ 1, . . . , n : ∃z ∈ Vm(z) ∩Gi : κ̂m,i(z) ≤ 1/(m+ 1)},

as well as

Em,n(z) := |Sm,n(z)|+ |Tm,n(z)| − n

Im,n := {z ∈ Zm : Em,n(z) > 0 and |z| ≤ n}

Γ̂m,n(A) :=
⋃

z∈Im,n

Vm(z).

Roughly speaking, Γ̂m,n(A) is the union of a family of squares Vm(z) with Em,n(z) being positive, which
is the case if “most of the κ̂m,i are small on Vm(z)”.

To make this precise, we first notice that all κ̂m,i(z), i ≥ m + 1, with z outside the compact ball
K := B2‖A‖+2(0) are larger than one, Im,n are finite, and all Γ̂m,n(A) are contained in K, due to a sim-
ple Neumann series argument. Furthermore, κ̂m,n → µm uniformly on K due to the Lipschitz continuity
(uniform in n) of κ̂m,n and µm.

We now show that for each m ≥ 5 the sign of Em,n(z) are eventually constant with respect to n for every
z ∈ Zm ∩ K, if n is sufficiently large. That is, for every z there is an n(z) such that either Em,n(z) ≤ 0

or Em,n(z) > 0 for all n ≥ n(z). For fixed z and m ≥ 5 we have to consider three possible cases: The
first one is µm(w) > 1/m for all w ∈ Vm(z). Then there exists an n0 such that κ̂m,n(w) > 1/m for all
n ≥ n0 and all w ∈ Vm(z) (take into account that Vm(z) is compact and κ̂m,n → µm locally uniformly),
hence |Sm,n(z)| + |Tm,n(z)| is constant and Em,n(z) is monotonically decreasing. Secondly, assume that
µm(w) < 1/m for all w ∈ Vm(z). Then there exists an n0 such that κ̂m,n(w) < 1/m for all n ≥ n0

and all w ∈ Vm(z), hence |Sm,n(z)| = n − c with a certain constant c, and Em,n(z) = |Tm,n(z)| − c is
monotonically increasing. Finally, assume that 1/m belongs to the interval

[min{µm(w) : w ∈ Vm(z)},max{µm(w) : w ∈ Vm(z)}]

and notice that the length of that interval is at most 2−m which is less than 1/m−1/(m+1) form ≥ 5. Then
there exists an n0 such that κ̂m,n(w) > 1/(m+1) for all n ≥ n0 and allw ∈ Vm(z), hence {|Tm,n(z)|}n≥n0

is constant, and

Em,n(z) = (|Sm,n(z)| − n) + |Tm,n(z)|

is monotonically decreasing.
Taking the maximum N of the finite set {n(z) : z ∈ Zm ∩K} then yields that the Γ̂m,n(A), n ≥ N , are

constant, hence converge (if this constant set is non empty) as n → ∞. If z0 ∈ spess(A) then µ(z0) = 0,
hence µm(z0) = 0 for all m. So, for fixed m, we have κ̂m,n(z) < 1/(m + 1) for all sufficiently large n
and all z in the neighbourhood U1/(2m)(z0). Choose z ∈ Zm such that z0 ∈ Vm(z) ⊂ U1/(2m)(z0). This
is possible since m ≥ 5. Then it is immediate from the definitions that Em,n(z) = n − c with a constant
c for all sufficiently large n, hence z0 ∈ Γm,n(A) for n large. Now given m,n, successively compute
Γ̂m+5,n(A), Γ̂m+5,n+1(A), ... and let N(m,n) ≥ n be minimal such that Γ̂m+5,N(m,n)(A) 6= ∅. Define
Γm,n(A) = Γ̂m+4,N(m,n)(A). The above arguments, in particular the fact that spess(A) 6= ∅, demonstrate
that this sequence of computations halts and Γm,n is an arithmetical algorithm. Note also that Γm(A) :=

limn→∞ Γm,n(A) exists and the above argument shows that it contains the essential spectrum. Note also
that Γm,n(A) is in fact equal to Γm(A) for large n.

We claim that {Γm(A)}m is a decreasing nested sequence, hence converges as well. Indeed, let z ∈
Γm+1(A), then z ∈ Γ̂m+5,n(A) for large n, i.e. z ∈ Vm+5(w) for a w ∈ Im+5,n, i.e. w ∈ Zm+5 and
Em+5,n(w) > 0. Clearly, (for large enough n) there exists a w0 ∈ Zm+4 with Vm+5(w) ⊂ Vm+4(w0),
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and further (since we can assume without loss of generality by computing maxima over successive m that
κ̂m+4,i(z) ≤ κ̂m+5,i(z) holds whenever n > m+ 5)

Sm+5,n(w) = {i = m+ 6, . . . , n : ∃z ∈ Vm+5(w) ∩Gi : κ̂m+5,i(z) ≤ 1/(m+ 5)}

⊂ {i = m+ 5, . . . , n : ∃z ∈ Vm+4(w0) ∩Gi : κ̂m+4,i(z) ≤ 1/(m+ 4)} = Sm+4,n(w0)

and analogously Tm+5,n(w) ⊂ Tm+4,n(w0). Therefore Em+5,n(w) ≤ Em+4,n(w0), which shows that
w0 ∈ Im+4,n and thus z ∈ Γm(A).

It remains to prove that the final limiting set limm→∞ Γm(A) coincides with the essential spectrum.
We have already proven that it must contain the essential spectrum. Conversely, let z0 /∈ spess(A), i.e.
µ(z0) > 0. Then, for large m0, there exists an ε > 3/m0 such that µm(z0) > ε and κ̂m,n(z0) > ε/2 for
m ≥ m0 and large n, and then also κ̂m,n(z) > ε/3 > 1/m0 for all z in a certain neighbourhood U of z0.
For all sufficiently large m ≥ m0 all Vm(z) which contain z0 are subsets of U , hence Em,n(z) = d − n
with a constant d for large n, that is limn→∞ Γ̂m,n(A) and {z0} are separated. But since the {Γm(A)}m are
nested, it follows z0 is not in the limiting set limm→∞ Γm(A). This finishes the proof. �

10.5. Determining if a point z lies in sp(A). Recall that for this problem, we restrict to z ∈ R when
considering ΩD or ΩSA. We also restrict to z 6= 0 when considering ΩC. Since ΩD ⊂ Ωfg ⊂ Ωf ,
ΩC ⊂ Ωf and ΩSA ⊂ ΩN ⊂ Ωg ⊂ ΩB it is enough to prove that {Ξzsp,ΩSA} 6∈ ∆G

3 , {Ξzsp,ΩB} ∈ ΠA
3 ,

{Ξzsp,Ωf} ∈ ΠA
2 , {Ξzsp,ΩD} 6∈ ∆G

2 and {Ξzsp,ΩC} 6∈ ∆G
2 .

Proof of Theorem 7.5 for determining if a point lies in the spectrum. Step I: {Ξzsp,ΩSA} 6∈ ∆G
3 . By consid-

ering the shift A− zI , we can without loss of generality assume that z = 0. Suppose for a contradiction that
Γn2,n1

is a height two tower solving {Ξ0
sp,ΩSA}. Let (M, d) be the discrete space {Yes,No}, let Ω′ denote

the collection of all infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and consider the problem function

Ξ′({ai,j}) : Does {ai,j} have (only) finitely many columns with (only) finitely many 1s?

In Section 10.6 we prove that SCI(Ξ′,Ω′)G = 3. Our strategy will be the same as the proof that {Ξsp,ΩB} /∈
∆G

3 - we will gain a contradiction by using the supposed height two tower Γn2,n1
to solve {Ξ′,Ω′}.

First we need a certain periodic semi-infinite Jacobi matrix which gives rise to spectral pollution when
applying the finite section method. Define

A∞ :=



0 3

3 0 1

1 0 3

3 0 1

1 0
. . .

. . . . . .


It is well known that sp(A∞) = [−4,−2]∪ [2, 4] (see for instance [42]). However, an easy check shows that
0 is an eigenvalue of the finite truncated matrix PnA∞Pn whenever n is odd. With an abuse of notation we
also define An := PnA∞Pn ⊕C∞ ∈ B(l2(N)), where Cn denotes the n× n diagonal matrix with diagonal
entries equal to −4.

Without loss of generality, we identify ΩSA with self adjoint operators in B(X) where X =
⊕∞

j=1Xj in
the l2-sense with Xj = l2(N). Now let {ai,j} ∈ Ω′ and for the jth column define Bj ∈ B(Xj) as follows.
Let Ij = {i ∈ N : ai,j = 1} and Jj = {i ∈ N : ai,j = 0}. We partition N into two sets:

N1(j) = {1} ∪ {2k, 2k + 1 : k ∈ Ij}, N2(j) = {2k, 2k + 1 : k ∈ Jj}.

On span{ek : k ∈ N1(j)} we let Bj act as A|N1(j)|, whereas on span{ek : k ∈ N2(j)} we let Bj act as
C|N2(j)| (both with respect to the natural bases and ordering). It is clear that Bj is unitarily equivalent to
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A|N1(j)| ⊕ C|N2(j)|. Hence sp(Bj) is equal to [−4,−2] ∪ [2, 4] ∪Kj , where K = {0} if
∑
i ai,j < ∞ and

Kj = ∅ otherwise.
Next we define the operator

C :=

∞⊕
j=1

(
Bj +

1

2j
I

)
on X . Concerning its spectrum, we note that any non-zero point of sp(C) inside the interval [−1, 1] is equal
to 1/(2j) corresponding to precisely when the column {ai,j}i∈N has finitely many 1’s. It is also clear that
0 ∈ sp(C) precisely when this happens infinitely many times (0 is a limit point of a descending sequence in
the spectrum). Hence Ξ0

sp(C) = Yes if and only if Ξ′({ai,j}) = No.
We then define Γ̃n2,n1

({ai,j}) = Yes if Γn2,n1
(C) = No and Γ̃n2,n1

({ai,j}) = No if Γn2,n1
(C) = Yes.

Given N , we can evaluate {fk,l(C) : k, l ≤ N} using only finitely many evaluations of {ai,j}, where we
can use a bijection between the canonical bases to view C as acting on l2(N). This follows since given any
finite i, we can compute the sets {1, ..., i}∩N1(j) and {1, ..., i}∩N2(j). Hence Γ̃n2,n1

defines a generalised
algorithm and provides a height two tower of general algorithms solving {Ξ′,Ω′}, a contradiction.

Step II: {Ξzsp,ΩB} ∈ ΠA
3 . By considering the shiftA−zI , we can without loss of generality assume that

z = 0 (note also that only having ∆1-information regarding z is captured by only having ∆1-information on
matrix entries after this shift). Define the numbers

γ := min{σ1(A), σ1(A∗)}, γm := min{σ1(APm), σ1(A∗Pm)},

γm,n := min{σ1(PnAPm), σ1(PnA
∗Pm)}

δm,n := min{2−mk : k ∈ N, 2−mk ≥ σ1(PnAPm) or 2−mk ≥ σ1(PnA
∗Pm)}.

As pointed out before, A is invertible if and only if γ > 0. Furthermore, note that γm ↓m γ, and that
γm,n ↑n γm for every fixedm. The sequences {δm,n}n are bounded and monotonically non-decreasing, and
γm,n ≤ δm,n ≤ γm,n + 2−m ≤ γm + 2−m. Thus, for ε > 0 there is an m0, and for every m ≥ m0 there is
an n0 = n0(m) such that

(10.23) |γ − δm,n| ≤ |γ − γm|+ |γm − γm,n|+ |γm,n − δm,n| ≤ ε/3 + ε/3 + 2−m ≤ ε

whenever m ≥ m0 and n ≥ n0(m). So we see that the numbers δm,n converge monotonically from be-
low for every m as n → ∞, and the respective limits form a non-increasing sequence with respect to m,
tending to γ. Moreover, each δm,n can be computed with finitely many arithmetic operations by Propo-
sition 10.1. Thus, if we define Γk,m,n(A) := (δm,n < k−1), the monotonicity ensure that Γk(A) :=

limm→∞ limn→∞ Γk,m,n(A) exists. Moreover, if γ < k−1 then Γk(A) = Yes. If Γk(A) = No then we
must have that γ ≥ k−1 and hence Ξ0

sp(A) = No. Finally, if γ > k−1 then Γk(A) = No. Hence Γk,m,n

provides a ΠA
3 tower.

Step III: {Ξzsp,Ωf} ∈ ΠA
2 . Again, by considering the shift A − zI , we can without loss of generality

assume that z = 0. If one considers operators for which a bound f on their dispersion is known, then
choosing n = f(m) turns (10.23) into

(10.24) |γ − δm,f(m)| ≤ |γ − γm|+ |γm − γm,f(m)|+ |γm,f(m) − δm,f(m)| ≤ ε/3 + ε/3 + 2−m ≤ ε

for large m taking |σ1(BPm)− σ1(Pf(m)BPm)| ≤ ‖(I − Pf(m))BPm‖ into account. Therefore, a natural
first guess for our general algorithms could be Γ̃k,m(A) := (δm,f(m) < k−1). Unfortunately, although
δm,f(m) converges to γ as m → ∞ by (10.24), this is not monotone in general. Hence, it might be the case
that γ = k−1, but δm,f(m) oscillates around k−1 such that {Γ̃k,m(A)}m may not converge. To overcome
this drawback, we can use the same interval trick as before. Define J1

k = [0, k−1] and J2
k = [2k−1,∞). For

any given m, let j(m) ≤ m be maximal such that δj,f(j) ∈ J1
k ∪ J2

k . If no such j exists or δj,f(j) ∈ J2
k

then set Γk,m(A) = No, otherwise set Γk,m(A) = Yes. By our now standard argument, this converges as
m → ∞. If γ > 0, then for large enough k (such that 2k−1 < γ), Γk,m(A) = No for large m. Conversely,



COMPUTING SPECTRA 45

if γ = 0 then for any k, δm,f(m) ∈ J1
k for large m and hence Γk,m(A) = Yes for large m. This gives ΠA

2

convergence.
Step IV: {Ξzsp,ΩD} 6∈ ∆G

2 . Again, by considering the shift A − zI , we can without loss of generality
assume that z = 0. If we assume that there is a general height-one-tower of algorithms {Γn} over ΩD then
we can again construct counterexamples very easily: For a decreasing sequence {ai} of positive numbers
we consider the diagonal operator A := diag{ai}. Clearly, 0 belongs to the spectrum of A if and only if
the ais tend to zero. As a start, set {a1

i } := {1, 1, . . .}, choose n1 such that Γn(diag{a1
i }) = No for all

n ≥ n1, and i1 such that max{i, j | fi,j ∈ ΛΓn1
(diag{a1

i })} < i1. This is possible by (iii) in Definition 6.3
and our now standard argument. Then set {a2

i } := {1, 1, . . . , 1, 1/2, 1/2, . . .} with 1/2s starting at the i1th
position. If n1, . . . , nk−1 and i1, . . . , ik−1 are already chosen then pick nk such that Γn(diag{aki }) = No
for all n ≥ nk, and ik such that max{i, j | fi,j ∈ ΛΓnk

(diag{aki })} < ik, and modify {aki } to {ak+1
i } :=

{1, . . . , 2−k, 2−k, . . .} with 2−ks starting at the ikth position. Now, the contradiction is as in the previous
proofs and we see that {Ξ0,ΩD} 6∈ ∆G

2 .
Step V: {Ξzsp,ΩC} 6∈ ∆G

2 . Recall in this case that z 6= 0. By scaling any A ∈ ΩC by the factor
3/(2z), we can assume without loss of generality that z = 3/2. Suppose for a contradiction that a general

height-one-tower of algorithms {Γn} solves {Ξ
3
2
sp,ΩC}. Consider the arrowhead matrix:

An(ε) :=



1 ε ε2 · · · εn

ε 0

ε2
. . .

... 0

εn 0


,

where ε ∈ (0, 1). A simple calculation yields that the eigenvalues of An(ε) are {0, 1/2±
√

1 + 4an(ε)/2},
where an(ε) = ε2(1−ε2n)

1−ε2 . In particular, we choose ε =
√

3/7 for which the only positive eigenvalue is bn :=

1+
√

1+3(1− 3n

7n )

2 . We now choose an increasing sequence of integers (greater than 1) r1, r2, ... inductively,
and define A ∈ ΩC such that when projected onto the span of the basis vectors {e1, er1 , ..., ern} (with
the natural order), with projection denoted by Qn, QnAQn has matrix An(

√
3/7). We also enforce that if

j /∈ {rn}n∈N∪{1}, then the jthe column and row ofA are zero. In other words,A1,rn = Arn,1 = (
√

3/7)n,

A1,1 = 1 and all other entries are 0. It follows that sp(A) = {0, 1/2±1} and hence Ξ
3
2
sp(A) = Yes. However,

we choose {rn} such that there is an increasing sequence {cn}with Γcn(A) = No, yielding the contradiction.
Suppose that r1, ..., rn have been chosen. Then let Bn be the infinite matrix with QnBnQn having

matrix An(
√

3/7) and zeros elsewhere. Clearly the only positive eigenvalue of Bn is bn < 3/2 and hence

Ξ
3
2
sp(Bn) = No. So there exists cn > rn with Γcn(Bn) = No. But by our now standard argument using the

Definition 6.3 of a general algorithm, we can choose rn+1 > rn large such that Γcn(A) = Γcn(Bn). �

Remark 10.7. To deal with ∆1-information in Step II of the above proof, we can approximate δm,n from
below to accuracy 1/n (taking rational values) and take successive maxima to preserve monotonicity as
n→∞. In Step III, we simply approximate δm,f(m) to accuracy 1/m (taking rational values). In both cases
we use Proposition 10.2.

10.6. Techniques for proving lower bounds. Here we collect two results concerning decision making
problems which are used to show lower bounds for two of our spectral problems. Within this section we
exclusively deal with problems (functions)

Ξ : Ω→M := {Yes,No},

where M is equipped with the discrete metric. This means that for such problems we search for General
algorithms Γnk,...,n1

: Ω → M which, for a given input ω ∈ Ω, answer Yes or No. We will refer to
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such problems as decision making problems. Clearly, a sequence {mi} ⊂ M of such “answers” converges
to m ∈ M if and only if finitely many mi are different from m. Let Ω1 denote the collection of all
infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and let Ω2 denote the collection of all infinite matrices
{ai,j}i,j∈Z with entries ai,j ∈ {0, 1}. Consider the following two problems:

Ξ1 : Ω1 3 {ai,j}i,j∈N 7→ Does {ai,j} have (only) finitely many columns with (only) finitely many 1s?

Ξ2 : Ω2 3 {ai,j}i,j∈Z 7→

(
∃D∀j

((
∀i

i∑
k=−i

ak,j < D

)
∨

(
∀R∃i

i∑
k=0

ak,j > R ∧
0∑

k=−i

ak,j > R

)))
(“there is a bound D such that every column has either less than D 1s or is two-sided infinite”)

Theorem 10.8 (Decision making problems). Given the set-up above we have

SCI(Ξ1,Ω1)G = SCI(Ξ1,Ω1)A = 3,

SCI(Ξ2,Ω2)G = SCI(Ξ2,Ω2)A = 3.

Remark 10.9. Note that the SCI of the decision problems above are considered with respect to general and
arithmetic towers. These towers do not assume any computability model, but only a model on the mathe-
matical tools allowed (arithmetic operations in the case of an arithmetic tower) and the way the algorithm
can read the available information (only finite amount of input). However, the SCI framework with towers
of algorithms fit naturally into the classical theory of computability and the Arithmetical Hierarchy.

To prove Theorem 10.8, we need to introduce some helpful background. Equip the set of all sequences
{xi}i∈N ⊂ {0, 1} with the following metric:

(10.25) dB({xi}, {yi}) :=
∑
n∈N

3−n|xn − yn|.

The resulting metric space is known as the Cantor space. By the usual enumeration of the elements of N2 this
metric translates to a metric on the set Ω1 of all matrices A = {ai,j}i,j∈N with entries in {0, 1}. Similarly,
we do this for the set Ω2 of all matrices A = {ai,j}i,j∈Z with entries in {0, 1}. In each case this gives a
complete metric space, hence a so called Baire space, i.e. it is of second category (in itself). To make this
precise we recall the following definitions:

Definition 10.10 (Meager set). A set S ⊂ Ω in a metric space Ω is nowhere dense if every open set U ⊂ Ω

has an open subset V ⊂ U such that V ∩ S = ∅, i.e. if the interior of the closure of S is empty. A set S ⊂ Ω

is meager (or of first category) if it is an at most countable union of nowhere dense sets. Otherwise, S is
non-meager (or of second category).

Notice that every subset of a meager set is meager, as is every countable union of meager sets. By the
Baire category theorem, every (non-empty) complete metric space is non-meager.

Definition 10.11 (Initial segment). We call a finite matrix σ ∈ Cn×m an initial segment for an infinite matrix
A ∈ Ω1 and say that A is an extension of σ if σ is in the upper left corner of A. In particular, σ = PnAPm

for some n,m ∈ N, where we, with slight abuse of notation, consider PnAPm ∈ Cn×m. Pn is as usual the
projection onto span{ej}nj=1, where {ej}j∈N is the canonical basis for l2(N).

Similarly, a finite matrix σ ∈ C(2n+1)×(2m+1) is an initial segment for an infinite matrix B ∈ Ω2 if σ is
in the centre of B i.e. σ = P̃nBP̃m where P̃n is the projection onto span{ej}nj=−n, where {ej}j∈Z is the
canonical basis for l2(Z). We denote that A is an extension of σ by σ ⊂ A, and the set of all extensions of σ
by E(σ). The notion of extension extends in an obvious way to finite matrices.

Notice that the set E(σ) of all extensions of σ is a non-empty open and closed neighbourhood for every
extension of σ.
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Lemma 10.12. Let {Γn}n∈N be a sequence of General algorithms mapping Ω1 → M, T ⊂ Ω1 be a non-
empty closed set, and S ⊂ T be a non-meager set (in T ) such that ξ = limn→∞ Γn(A) exists and is the
same for all A ∈ S. Then there exists an initial segment σ and a number n0 such that ET (σ) := T ∩ E(σ)

is not empty, and such that Γn(A) = ξ for all A ∈ ET (σ) and all n ≥ n0. The same statement is true if we
consider Ω2 instead of Ω1.

Proof. We are in a complete metric space T . Since S =
⋃
k∈N Sk with Sk := {A ∈ S : Γn(A) = ξ ∀n ≥ k}

and S is non-meager, not all of the Sk can be meager, hence there is a non-meager Sk, and we set n0 := k.
Now, let A be in the closure Sn0

, i.e. there is a sequence {Aj} ⊂ Sn0
converging to A. Note that by

assumption (i) in Definition 6.3 and the fact that Γn are General algorithms, we have that, for every fixed
n ≥ n0, |ΛΓn(A)| < ∞. Thus, by (ii) in Definition 6.3, the General algorithm Γn only depends on a
finite part of A, in particular {Af}f∈ΛΓn (A) where Af = f(A). Since each f ∈ ΛΓn(A) represents a
coordinate evaluation of A and by the definition of the metric dB in (10.25), it follows that for all sufficiently
large j, f(A) = f(Aj) for all f ∈ ΛΓn(A). By assumption (iii) in Definition 6.3, it then follows that
ΛΓn(Aj) = ΛΓn(A) for all sufficiently large j. Hence, by assumption (ii) in Definition 6.3, we have that
Γn(A) = Γn(Aj) = ξ for all sufficiently large j. Thus, Γn(A) = ξ for all n ≥ n0 and all A ∈ Sn0

. Since
Sn0

is not nowhere dense, we can choose a point Ã in the interior of Sn0
and fix a sufficiently large initial

segment σ of Ã such that ET (σ) is a subset of Sn0 . The assertion of the lemma now follows. The extension
of the proof to Ω2 is clear. �

Roughly speaking, this shows that there is a nice open and closed non-meager subspace of T for which
limn→∞ Γn(A) exists even in a uniform manner. Note that this result particularly applies to the case T = Ω.

Proof of Theorem 10.8. Step I: SCI(Ξ1,Ω2)G ≥ 3. We argue by contradiction and assume that there is a
height two tower {Γr}, {Γr,s} for Ξ1, where Γr denote, as usual, the pointwise limits lims→∞ Γr,s. We
will inductively construct initial segments {σn} with σn+1 ⊃ σn yielding an infinite matrix A ⊃ σn for
all n ∈ N, such that limr→∞ Γr(A) does not exist. We construct {σn} with the help of two sequences of
subsets {Tn} and {Sn} of Ω, with the properties that Tn+1 ⊂ Tn, each Tn is closed, and either Tn = Ω1 or
there is an initial segment σ ∈ Cm×m where m ≥ n such that Tn is the set of all extensions of σ with all the
remaining entries in the first n columns being zero.

Suppose that we have chosen Tn. Note that the subset of all matrices in Tn with one particular entry
being fixed is closed in Tn, hence the set of all matrices with one particular column being fixed is closed
(as an intersection of closed sets). The latter set has no interior points in Tn, hence is nowhere dense in Tn.
This provides that the set of all matrices in Tn for which a particular column has only finitely many 1s is a
countable union of nowhere dense sets in Tn, hence is meager in Tn. Hence the set of all matrices in A ∈ Tn
with Ξ1(A) = No (i.e. matrices with infinitely many “finite columns”) is meager in Tn as well. Let R be its
complement in Tn, i.e. the non-meager set of all matrices A ∈ Tn with Ξ1(A) = Yes.

Clearly, R =
⋃
r∈NRr with Rr := {A ∈ R : Γk(A) = Yes ∀k ≥ r}, and there is an rn such that Sn :=

Rrn is non-meager in Tn. Note that Γrn,s are General algorithms and Γrn(A) = lims→∞ Γrn,s(A) = Yes
for all A ∈ Sn. Thus, Lemma 10.12 applies and yields an initial segment σn, such that

(10.26) ETn(σn) 6= ∅ and Γrn(A) = Yes for all A ∈ ETn(σn).

Now, let Tn+1 ⊂ Tn be the (closed) set of all matrices in ETn(σn) with all remaining 2 entries in the first
n+ 1 columns being zero. Letting T0 = Ω1 we have completed the construction.

The nested initial segments σn+1 ⊃ σn obviously yield a matrixA ∈ ∩∞n=0Tn and thisA has only finitely
many 1s in each of its columns. However, by the construction of {Tn}, we have that A ∈ ETn(σn) for all
n ∈ N. Thus, Ξ1(A) = No, but by (10.26), Γk(A) = Yes for infinitely many k.

2I.e. outside the initial segment σn.
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Step II: SCI(Ξ2,Ω2)G ≥ 3. The proof is very similar to the proof of Step I. In particular, we argue by
contradiction and assume that there is a height two tower {Γr}, {Γr,s} for Ξ2. As above, we inductively
construct initial segments {σn} with σn+1 ⊃ σn yielding an infinite matrix A ⊃ σn for all n ∈ N, such
that limr→∞ Γr(A) does not exist. We construct {σn} with the help of two sequences of subsets {Tn} and
{Sn} of Ω2, with the properties that Tn+1 ⊂ Tn, each Tn is closed, and either Tn = Ω2 or there is an
initial segment σ ∈ C(2m+1)×(2m+1) where m ≥ n such that Tn is the set of all extensions of σ with all
±nth semi-columns being filled by n additional 1s and infinitely many 0s, and and all the other kth columns,
|k| ≤ n− 1, are being filled with zeros. In particular, if {ai,j}i,j∈Z ∈ Tn then

{ai,±n}i∈Z = {. . . , 0, 1, . . . , 1︸ ︷︷ ︸
n times

, σ−m,±n, . . . , σm,±n, 1, . . . , 1︸ ︷︷ ︸
n times

, 0, . . .}T ,

{ai,k}i∈Z = {. . . , 0, σ−m,k, . . . , σm,k, 0, . . .}T , k ∈ Z+, |k| ≤ n− 1.

(10.27)

Suppose that we have chosen Tn. We argue as in Step I and deduce that for k ∈ Z the set of all matrices
in Tn with one of the two kth semi-columns being fixed is nowhere dense in Tn, hence the set of all matrices
in Tn with (one of the two) kth semi-columns having finitely many 1s is meager in Tn. We conclude that the
set of all matrices in Tn with one semi-column having finitely many 1s is meager, thus its complement in Tn,
the set of all matrices with all semi-columns having infinitely many 1s, is non-meager. Therefore the same
holds for the superset {A ∈ Tn : Ξ2(A) = Yes}. Denoting this set by R we obviously have R =

⋃
r∈NRr

with Rr := {A ∈ R : Γk(A) = Yes ∀k ≥ r}, and there is an rn such that Sn := Rrn is non-meager in
Tn. Note that Γrn,s are General algorithms and Γrn(A) = lims→∞ Γrn,s(A) = Yes for all A ∈ Sn. Thus,
Lemma 10.12 applies and yields an initial segment σn, such that

(10.28) ETn(σn) 6= ∅ and Γrn(A) = Yes for all A ∈ ETn(σn).

Now, let Tn+1 ⊂ Tn be the (closed) set of all matrices {ai,j}i,j∈N in ETn(σn) with the property that (10.27)
holds with σ = σn. Letting T0 = Ω2 concludes the construction. The nested sequence {σn}again defines
a matrix A ∈ ∩∞n=0Tn with the property that A has finitely many but at least k non-zero entries in the each
of its kth semi-column which gives Ξ2(A) = No, but, by (10.28), Γk(A) = Yes for infinitely many k, a
contradiction.

Step III: SCI(Ξ1,Ω1)A ≤ 3 and SCI(Ξ2,Ω2)A ≤ 3. This can again be proved by defining an appropriate
tower of height 3 directly. For Ξ1 we define

Γk,m,n({ai,j}i,j∈N) = Yes ⇔ |{j = 1, . . . ,m :

n∑
i=1

ai,j < m}| < k.

For Ξ2 we define

Γk,m,n({ai,j}i,j∈Z) = Yes ⇔ |{j = −m, . . . ,m : k <

n∑
i=1

ai,j < m or k <
−1∑
i=−n

ai,j < m}| = 0.

It is straightforward to show these provide height three arithmetical towers. �

The lower bounds of the SCI of the decision problems Ξ1 and Ξ2 allow us to obtain the lower bounds of
the SCI of spectra and essential spectra of operators.

11. PROOFS OF THEOREM 8.3 AND THEOREM 8.5

Remark 11.1 (Fourier Transform). In this section we require the Fourier transform on L2(Rd), which will
be denoted by F : L2(Rd)→ L2(Rd). Our definition of F is as follows:

[Fψ](ξ) =

∫
Rd
ψ(x)e−2πix·ξ dx.

For brevity we may write ψ̂ instead of Fψ. With this definition F is unitary on L2(Rd).
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Remark 11.2 (The Attouch–Wets Topology). In (6.4) we introduced the Attouch–Wets metric dAW on the
spaceM of non-empty closed subsets of C. Since it is not convenient to work with dAW directly, we make
note of the following simple characterisation of convergence w.r.t. dAW. Let A ⊂ C and An ⊂ C be a
sequence of closed and non-empty sets. Then:

(11.1) dAW(An, A)→ 0 if and only if dK(An, A)→ 0 for any compact K ⊂ C,

where

(11.2) dK(S, T ) = max

{
sup

s∈S∩K
d(s, T ), sup

t∈T∩K
d(t, S)

}
,

where we use the convention that sups∈S∩K d(s, T ) = 0 if S∩K = ∅. We refer to [16, Chapter 3] for details
and further discussion. Equivalently, we observe that

dAW(An, A)→ 0

if and only if

∀δ > 0, K ⊂ C compact, ∃N s.t. ∀n > N, An ∩ K ⊂ Nδ(A) and A ∩ K ⊂ Nδ(An)

(11.3)

whereNδ(X) is the usual open δ-neighbourhood of the setX . In this section we will simply use the notation
An → A to denote this convergence, since there is no room for confusion.

11.1. The case of bounded potential V : The proof of Theorem 8.3. We will split the proof of Theorem
8.3 into two sections:

a. SCI(Ξsp,Ωφ,g)A = 1: Whilst the proof of this is somewhat long and technical (extra care has been
taken to deal with ∆1-information and arithmetic algorithms over Q), it is done via similar steps to
the proof of Theorem 7.5 in §10.3, namely through approximations of the resolvent norm. However,
some work is needed to convert point samples of V into approximations of the relevant matrices
with respect to a Gabor basis. Lemmas 11.6 and 11.7 are technical lemmas needed to achieve this,
whereas Lemma 11.8 concerns the approximations obtained via discretisations of the relevant inner
products (and is need to gain the ΣA1 classification).

b. Error control and rest of proof: Lemma 11.8 is used to prove {Ξsp,Ωφ,g} ∈ ΣA1 and we extend
the argument in §10.3 to prove {Ξsp,Ωφ,SA} ∈ ΣA,eigv

1 . To prove the rest of the theorem, we
argue that it is enough to prove {Ξsp,ε,Ωφ} ∈ ΣA1 . This is done via Lemma 11.10 which uses the
approximations of γ(z) constructed in part (a).

Before we embark on the proof, the reader unfamiliar with the concept of Halton sequences may want to
review this material. An excellent reference is [97] (see p. 29 for definition). We will also be needing the
following definition and theorem in order to prove Theorem 8.3.

Definition 11.3. Let {t1, . . . tN} be a sequence in [0, 1]d. Then we define the star discrepancy of {t1, . . . tN}
to be

D∗N ({t1, . . . tN}) = sup
K∈K

∣∣∣∣∣ 1

N

N∑
k=1

χK(tk)− ν(K)

∣∣∣∣∣ ,
where K denotes the family of all subsets of [0, 1]d of the form

∏d
k=1[0, bk), χK denotes the characteristic

function on K, bk ∈ (0, 1] and ν denotes the Lebesgue measure.

Theorem 11.4 ( [97]). If {tk}k∈N is the Halton sequence in [0, 1]d in the pairwise relatively prime bases
b1, . . . , bd, then

(11.4) D∗N ({t1, . . . tN}) ≤
d

N
+

1

N

d∏
k=1

(
bk − 1

2 log(bk)
log(N) +

bk + 1

2

)
N ∈ N.

For a proof of this theorem see [97], p. 29. Note that as the right-hand side of (11.4) is somewhat
cumbersome to work with, it is convenient to define the following constant.
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Definition 11.5. Define C∗(b1, . . . , bd) to be the smallest integer such that for all N ∈ N

d

N
+

1

N

d∏
k=1

(
bk − 1

2 log(bk)
log(N) +

bk + 1

2

)
≤ C∗(b1, . . . , bd)

log(N)d

N

where b1, . . . , bd are as in Theorem 11.4.

Further to these definitions, we shall require a Gabor basis which is the core in the discretisation carried
out to produce the tower of algorithms. In particular, let

(11.5) ψk,l(x) = e2πikxχ[0,1](x− l), k, l ∈ Z.

It is well-known that ψk,l form an orthonormal basis for L2(R). Thus, by applying the Fourier transform,

(11.6) {ψ̂k1,l1 ⊗ ψ̂k2,l2 ⊗ · · · ⊗ ψ̂kd,ld : k1, l1, . . . , kd, ld ∈ Z}

forms an orthonormal basis for L2(Rd) since the Fourier transform F is unitary. Let {ϕj}j∈N be an enumer-
ation of the collection of functions above, define

(11.7) S = span{ϕj}j∈N

and let

(11.8) θ : N 3 j 7→ (k1, l1)× . . .× (kd, ld) ∈ Z2d

be the bijection used in this enumeration. Define

k̃(m, d) := max{|kp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},

l̃(m, d) := max{|lp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},
(11.9)

and let

(11.10) C1(m, d, a) := d2

(
4

(max{l̃(m, d)2 + l̃(m, d) + 1/3, 1})2

|a− k̃(m, d)|+ 1

)d
, m, d, a ∈ N,

(11.11) C2(m, d) := 2d
(

2((l̃(m, d) + 1)4 + l̃(m, d)4)2(2(k̃(m, d) + 1) + 2)
)d
, m, d ∈ N.

The quantities C1(m, d, a) and C2(m, d) may seem to come out of the blue. They stem from Lemma 11.6
and Lemma 11.7 that are technical lemmas needed in order to construct the tower of algorithms. However,
C1(m, d, a) and C2(m, d) occur in the main proof and thus it is advantageous to introduce them here to
prepare the reader.

11.1.1. Proof that SCI(Ξsp,Ωφ,g)A = 1. The proof will make clear that we do not need to worry about the
algorithm outputting the empty set - given m, simply compute Γj(m)(V ) with j(m) ≥ m minimal such that
Γj(m)(V ) 6= ∅.

Proof of SCI(Ξsp,Ωφ,g)A = 1. Step I: Defining Γm({Vρ}ρ∈ΛΓm (V )) and ΛΓm(V ). To do so recall S from
(11.7). Note that since D(H) = W2,2(Rd), it is easy to show that S is a core for H . Let Pm, m ∈ N, be the
projection onto span{ϕj}mj=1, and let z ∈ C. Define

Sm(V, z) := (−∆ + V − zI)Pm and S̃m(V, z) := (−∆ + V − zI)Pm.

Let
σ1(Sm(V, z)) := min{(〈Sm(V, z)f, Sm(V, z)f〉) 1

2 : f ∈ Ran(Pm), ‖f‖ = 1}

and σ1(S̃m(V, z)) := min{(〈S̃m(V, z)f, S̃m(V, z)f〉) 1
2 : f ∈ Ran(Pm), ‖f‖ = 1}, and define

(11.12) γm(z) := min{σ1(Sm(V, z)), σ1(S̃m(V, z))}}.

Note that if we could evaluate γm at any point z using only finitely many arithmetic operations of elements of
the form V (x), x ∈ Rd, we could have defined a general algorithm as desired by using Υ

1/m
Bm(0)(γm) where
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Υ
1/m
Bm(0) is defined in (10.8). Unfortunately, such evaluation is not possible (γm may depend on infinitely

many samples of V ), and we will now focus on finding an approximation to γm.
Let S = {tk}k∈N, where tk ∈ [0, 1]d is a Halton sequence (see [97] p. 29 for definition) in the pairwise

relatively prime bases b1, . . . , bd (note that the particular choice of the bjs is not important). Define, for
a > 0 and N ∈ N, the discrete inner product

(11.13) 〈f, u〉a,N =
(2a)d

N

N∑
k=1

fa(tk)ua(tk), f, u ∈ L2(Rd) ∩ BVloc(Rd)),

where we have defined the rescaling function on [0, 1]d by

(11.14) fa = f(a(2 · −1), . . . , a(2 · −1))|[0,1]d ,

(we will throughout the proof use the superscript a on a function to indicate (11.14)), where BVloc(Rd)) =

{f : TV(f |[−b,b]d) < ∞, ∀b > 0} and TV(f |[−b,b]d) denotes the total variation, in the sense of Hardy
and Krause (see [97]), of f restricted to [−b, b]d. Note that since V ∈ L∞(Rd) ∩ BVloc(Rd) and any
f ∈ Ran(Pm) is smooth we have that Sm(V, z)f ∈ L2(Rd) ∩ BVloc(Rd)). Hence, we can define for
n,m ∈ N

σ1,n(Sm(V, z)) := min{(〈Sm(V, z)f, Sm(V, z)f〉n,N(n))
1
2 : f ∈ Ran(Pm), ‖f‖ = 1}

σ1,n(S̃m(V, z)) := min{(〈S̃m(V, z)f, S̃m(V, z)f〉n,N(n))
1
2 : f ∈ Ran(Pm), ‖f‖ = 1},

(11.15)

where N(n) := dnφ(n)4e and where φ comes from the definition of Ωφ. We also set

Zm(z)ij = 〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N(n), i, j ≤ m,

Z̃m(z)ij = 〈S̃m(V, z)ϕj , S̃m(V, z)ϕi〉n,N(n), i, j ≤ m.
(11.16)

We have the following expansion

〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N =〈∆ϕj ,∆ϕi〉n,N − 〈V ϕj ,∆ϕi〉n,N − 〈∆ϕj , V ϕi〉n,N
+ 〈V ϕj , V ϕi〉n,N − 2<(z)〈∆ϕj , ϕi〉n,N
+ 〈2<(zV )ϕj , ϕi〉n,N + |z|2〈ϕj , ϕi〉n,N ,

(11.17)

with a similar expansion holding for the matrix entries of Z̃m(z). Recall that the ϕjs are an enumeration of
the Fourier transforms of the basis ψk,l(x) = e2πikxχ[0,1](x − l), k, l ∈ Z. It is easy to derive closed form

expressions for ψ̂k,l and ∂2ψ̂k,l
∂ξ2 , and these expressions are variations of products of exponential functions

and functions of the form x 7→ 1/xp for p = 1, 2, 3. It follows that the matrix entries of Zm(z) and Z̃m(z)

also have closed form expressions in terms of point evaluations of the potential V (at the Halton nodes - see
(11.13)). Note that the Halton nodes are rational. Using (11.17), it follows that given ∆1-information for Λ,
we can compute in finitely many arithmetic operations and comparisons, approximations to Zm(z) to any
required accuracy. The same holds true for Z̃m(z). From Proposition 10.2, it follows that σ1,n(Sm(V, z))

and σ1,n(S̃m(V, z)) can be computed to any given accuracy using finitely many arithmetic operations and
comparisons.

Consider the quantity

β̃(m,n) := (m+ 1)mC1(m, d, n)

+ (2n)dd2
(
m2 + σ2φ2(n) + 2(σm+ 1)(φ(n) + 1)

)
×
(
1 + σ2 + 2σ

)
C2(m, d)C∗(b1, . . . , bd)

log(N(n))d

N(n)
,

(11.18)

where σ = 3d−2d+1+2,C1(m, d, n) is defined in (11.10),C2(m, d) is defined in (11.11) andC∗(b1, . . . , bd)
is defined in Definition 11.5. The function β̃ may seem to come somewhat out of the blue, however, it stems
from certain bounds in (11.36) (see also (11.37)) on errors of discrete integrals related to (11.15). For any
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m,n, we can compute an upper bound in Q for β̃(m,n) accurate to 1/m4 using finitely many arithmetic
operations over Q. Denote such an approximation by τ̃(m,n) and set

(11.19) n(m) := min

{
n : τ̃(m,n) ≤ 1

m3

}
.

First, note that the choice of N(n) in (11.18) implies that β̃(m,n) → 0 as n → ∞. Thus, n(m) is well
defined since τ̃(m,n) < m−3 for large n. Second, note that it is clear that τ̃ , and hence also n(m), can be
evaluated by using finitely many arithmetic operations and comparisons.

We now let ζm(z) be a non-negative real valued function with

(11.20) 0 ≤ ζm(z)−min{σ1,n(m)(Sm(V, z)), σ1,n(m)(S̃m(V, z))} ≤ 1

m
.

Combining the above remarks shows that, given ∆1-information for Λ, we can compute such an approxi-
mation ζm(z) for any z ∈ C in finitely many arithmetic operations and comparisons over Q. We can now
define

Γm(V ) := Υ
1/m
Bm(0)(ζm),

where Υ
1/m
Bm(0)(ζm) is defined in (10.8). We conclude this step by noting that Γm are arithmetic towers of

algorithms using ∆1-information for Λ.
Step II: We show that Γm(V )→ Ξsp(V ), as m→∞. Note that, by the properties of the Attouch–Wets

topology, and as discussed in Remark 11.2, it suffices to show that for any compact set K ⊂ C

dK(Γm(V ),Ξsp(V )) −→ 0, m→∞,(11.21)

where dK is defined in (11.2). To show (11.21) we start by defining

γ(z) := min
{

inf{‖(−∆ + V − zI)ψ‖ : ψ ∈W2,2(Rd), ‖ψ‖ = 1},

inf{‖(−∆ + V − zI)ψ‖ : ψ ∈W2,2(Rd), ‖ψ‖ = 1}
}

= ‖(−∆ + V − zI)−1‖−1,
(11.22)

where we use the convention that ‖(−∆ +V −zI)−1‖−1 = 0 when z ∈ sp(−∆ +V ) and proceed similarly
to the proof of Theorem 7.5 with the following claim. Before we state the claim recall h from the definition
of Υδ

K(ζ) in Step II of the proof of Theorem 7.5 in §10.3.
Claim: LetK ⊂ C be any compact set, and letK be a compact set containingK such that sp(−∆+V )∩

K 6= ∅ and 0 < δ < ε < 1/2. Suppose that ζ is a function with ‖ζ − γ‖∞,K̂ := ‖(ζ − γ)χK̂‖∞ < ε on
K̂ := (K + Bh(diam(K)+2ε)+ε(0)), where χK̂ denotes the characteristic function of K̂ and h is the inverse
of g. Finally, let u be defined as in (10.9). Then limξ→0 u(ξ) = 0 and

(11.23) dK(Υδ
K(ζ), sp(−∆ + V )) ≤ u(ε).

To prove the claim, we first show that

(11.24) sup
s∈ΥδK(ζ)∩K

dist(s, sp(−∆ + V )) ≤ u(ε).

If Υδ
K(ζ) ∩K = ∅ then there is nothing to prove, thus we assume that Υδ

K(ζ) ∩K 6= ∅. Let z ∈ Gδ(K) and
recall Gδ(K), hδ and Iz = Bhδ(ζ(z))(z) ∩ (δ(Z + iZ)) from the definition of Υδ

K(ζ) in Step II of the proof
of Theorem 7.5 in §10.3. Notice that we may argue exactly as in (10.10) and deduce that Iz ⊂ K̂. Suppose
that Mz 6= ∅. Note that from

‖(−∆ + V − zI)−1‖−1 ≥ g(dist(z, sp(H))),

the monotonicity of h, and the compactness of sp(−∆+V )∩K 6= ∅ there is a y ∈ sp(−∆+V ) of minimal
distance to z with |z − y| ≤ h(γ(z)). Since ‖ζ − γ‖∞,K̂ < ε, and by using the monotonicity of h, we get
|z−y| ≤ h(ζ(z)+ε). Hence, at least one of the v ∈ Iz , say v0, satisfies |v0−y| < h(ζ(z)+ε)−h(ζ(z))+2δ.
Thus, by noting that γ(v0) ≤ dist(v0, sp(−∆ + V )), and by the assumption that δ < ε, we get ζ(v0) <
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γ(v0) + ε < h(ζ(z) + ε) − h(ζ(z)) + 3ε. By the definition of Mz , this estimate now holds for all points
w ∈Mz . Thus, we may argue exactly as in (10.11) and deduce that

dist(w, sp(−∆ + V )) ≤ h(h(ζ(z) + ε)− h(ζ(z)) + 3ε),

which yields (11.24). To see that

(11.25) sup
t∈sp(−∆+V )∩K

dist(Υδ
K(ζ), t) ≤ u(ε),

(where we assume that sp(−∆ + V ) ∩ K 6= ∅) take any y ∈ sp(−∆ + V ) ∩ K ⊂ K. Then there is a point
z ∈ Gδ(K) with |z − y| < δ < ε, hence

ζ(z) < γ(z) + ε ≤ dist(z, sp(−∆ + V )) + ε < 2ε < 1.

Thus, Mz is not empty and contains a point which is closer to y than h(ζ(z)) + ε ≤ h(2ε) + ε ≤ u(ε), and
this yields (11.25). The fact that limξ→0 u(ξ) = 0 is shown in Step II of the proof of Theorem 7.5 in §10.3,
and we have proved the claim.

Armed with this claim we continue on the path to prove (11.21). We define

(11.26) γm,n(z) := min{σ1,n(Sm(V, z)), σ1,n(S̃m(V, z))}.

Then
∥∥ζm − γm,n(m)

∥∥
∞ ≤ 1/m where n(m) is defined as in (11.19). By Lemma 11.8 (below), ζm → γ

locally uniformly, when m → ∞. Let m0 be large enough so that for all m ≥ m0, Γm(V ) ∩ K =

Υ
1/m
Bm0

(0)(ζm) ∩ K. Choose K = Bm0
(0) and ε ∈ (0, 1/2) as in the claim. Then, by the claim, there is an

m1 > m0 such that for every m > m1, by (11.23), dK(Γm(V ),Ξsp(V )) ≤ u(ε). Since limξ→0 u(ξ) = 0

then (11.21) follows. �

To finish this step of the proof, we need to establish the convergence of the functions γm, ζm and γm,n.

Lemma 11.6. Consider the functions γm,n and γm defined in (11.26) and (11.12) respectively. Then γm,n →
γm, locally uniformly as n→∞.

Proof. Note that we will be using the notation TV[−a,a]d(f) = TV(f |[−a,a]d). Let, for s, t ∈ {0, 1},
i, j ≤ m and u ∈ {V, V , |V |2}

I(u,∆sϕj ,∆
tϕi) =

∫
Rd
u(x)

∑
p∈Φ(s),q∈Φ(t)

hi,j,p,q(x) dx,

where

hi,j,p,q(x) :=

(
ψ̂θ(j)1

(x1) · · ·
∂s̃ψ̂θ(j)p
∂xs̃p

(xp) · · · ψ̂θ(j)d(xd)

)

×

ψ̂θ(i)1
(x1) · · ·

∂ t̃ψ̂θ(i)q

∂xt̃q
(xq) · · · ψ̂θ(i)d(xd)

 ,

(11.27)

and

(11.28) Φ(t) =

{1, . . . , d}, t = 1

{1}, t = 0.

Observe that by the definition of γm,n and γm in (11.26) and (11.12) the lemma follows if we can show that

(11.29) I(u,∆sϕj ,∆
tϕi)−

(2n)d

N

N∑
k=1

un(tk)
∑

p∈Φ(s),q∈Φ(t)

hni,j,p,q(tk)) −→ 0, n→∞,
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where N = N(n) is from (11.16), i, j ≤ m, s, t ∈ {0, 1} and u is either V, V , |V |2 (recall the notation V a

from (11.14)). Note that, by the multi-dimensional Koksma–Hlawka inequality (Theorem 2.11 in [97]) it
follows that

∣∣∣∣∣∣I(u,∆sϕj ,∆
tϕi)−

(2n)d

N

N∑
k=1

un(tk)
∑

p∈Φ(s),q∈Φ(t)

hni,j,p,q(tk)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥u
∑

p∈Φ(s),q∈Φ(t)

hi,j,p,qχR(n)

∥∥∥∥∥∥
L1

+ (2n)d · TV[−n,n]d

u ∑
p∈Φ(s),q∈Φ(t)

hi,j,p,q

D∗N (t1, . . . , tN ),

(11.30)

where R(n) = ([−n, n]d)c. To bound the first part of the right-hand side of (11.30) note that

(11.31)

∥∥∥∥∥∥u
∑

p∈Φ(s),q∈Φ(t)

hi,j,p,qχR(n)

∥∥∥∥∥∥
L1

≤ ‖u‖∞Ki,j(n),

where

Ki,j(n) :=
∑

p∈Φ(s),q∈Φ(t)

〈∣∣∣∣∣χ([−n,n]d)c ψ̂θ(j)1
· · ·

∂s̃ψ̂θ(j)p
∂xs̃p

· · · ψ̂θ(j)d

∣∣∣∣∣ ,
∣∣∣∣∣ψ̂θ(i)1

· · ·
∂ t̃ψ̂θ(i)q

∂xt̃q
· · · ψ̂θ(i)d

∣∣∣∣∣
〉
,

(recall θ from (11.8)) where χ([−n,n]d)c denotes the characteristic function on ([−n, n]d)c. To boundKi,j(n),
note that it follows by the definition of ψk,l with k, l ∈ Z in (11.5) and some straightforward integration that
for 1 ≤ p ≤ d and (kp, lp) = θ(j)p we have

(11.32)
∣∣∣ψ̂kp,lp(xp)

∣∣∣ ≤
1 when kp − 1 ≤ xp ≤ kp + 1,

1
|xp−kp|+1 otherwise,

(11.33)

∣∣∣∣∣∂2ψ̂kp,lp
∂x2

p

(xp)

∣∣∣∣∣ ≤
l2p + lp + 1

3 when kp − 1 ≤ xp ≤ kp + 1,
l2p+lp+ 1

3

|xp−kp|+1 otherwise.

Hence, if

k̃ = k̃(m, d) := max{|kp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},

l̃ = l̃(m, d) := max{|lp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},

and n > k̃, then it follows that

Ki,j(n) ≤ d2 max
p∈Φ(s)
q∈Φ(t)
s,t∈{0,1}

{〈∣∣∣∣∣χ([−n,n]d)c ψ̂θ(j)1
· · ·

∂2sψ̂θ(j)p
∂x2s

p

· · · ψ̂θ(j)d

∣∣∣∣∣ ,
∣∣∣∣∣ψ̂θ(i)1

· · ·
∂2tψ̂θ(i)q
∂x2t

q

· · · ψ̂θ(i)d

∣∣∣∣∣
〉}

≤ d2

(
4

(max{l̃2 + l̃ + 1/3, 1})2

|n− k̃|+ 1

)d
=: C1(m, d, n).

(11.34)

To bound the second part of the right-hand side of (11.30) observe that, by Lemma 11.7 we have

(2n)d · TV[−n,n]d

u ∑
p∈Φ(s),q∈Φ(t)

hi,j,p,q


≤ (2n)dd2 max

p∈Φ(s),q∈Φ(t)

(
‖u‖∞‖hi,j,p,q‖∞ + σ2TV[−n,n]d(u)TV[−n,n]d(hi,j,p,q)

+ σ
(
TV[−n,n]d(u)‖hi,j,p,q‖∞ + TV[−n,n]d(hi,j,p,q)‖u‖∞

) )
≤ (2n)dd2 max

{
‖V ‖∞, ‖V 2‖∞,TV[−n,n]d(V ),TV[−n,n]d(|V |2)

} (
1 + σ2 + 2σ

)
C2(m, d),

(11.35)
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where σ = 3d − 2d+1 + 2 and C2(m, d) is defined in (11.11). Thus, by (11.30), (11.31), (11.34), (11.35),
Lemma 11.7 and Theorem 11.4 (recall that {tk}k∈N is a Halton sequence) we get

∣∣∣∣∣∣I(u,∆sϕj ,∆
tϕi)−

(2n)d

N

N∑
k=1

V n(tk)
∑

p∈Φ(s),q∈Φ(t)

hni,j,p,q(tk)

∣∣∣∣∣∣
≤ max{‖V ‖∞, ‖V ‖2∞}C1(m, d, n) + (2n)dd2 max

{
‖V ‖∞, ‖V 2‖∞,TV[−n,n]d(V ),TV[−n,n]d(|V |2)

}
×
(
1 + σ2 + 2σ

)
C2(m, d)

(
d

N
+

1

N

d∏
k=1

(
bk − 1

2 log(bk)
log(N) +

bk + 1

2

))
≤ β(‖V ‖∞,m, n),

(11.36)

where the last inequality uses the bound on the total variation of V from (8.2) and

β(‖V ‖∞,m, n) := (‖V ‖∞ + 1)‖V ‖∞C1(m, d, n)

+ (2n)dd2
(
‖V ‖2∞ + σ2φ2(n) + 2(σ‖V ‖∞ + 1)(φ(n) + 1)

)
×
(
1 + σ2 + 2σ

)
C2(m, d)C∗(b1, . . . , bd)

log(N)d

N
, N(n) = dnφ(n)4e

(11.37)

(recall (11.15)) where C∗(b1, . . . , bd) is defined in Definition 11.5. Finally, note that, by the definition of
C1(m, d, n) and the fact that we have chosenN(n) according to (11.37), it follows that β(‖V ‖∞,m, n)→ 0

as n→∞. Hence, (11.29) follows via (11.37), and the proof is finished. �

Lemma 11.7. For all a > 0, i, j ≤ n2 and m,n ≤ d:

(i) TV(hai,j,m,n) = TV[−a,a]d(hi,j,m,n) ≤ C2(m, d),

(ii) ‖hai,j,m,n‖∞ ≤ C2(m, d),

(iii) for u ∈ BVloc(Rd) and σ = 3d − 2d+1 + 2 we have that

TV(uahai,j,p,q) = TV[−a,a]d(uhi,j,p,q) ≤ ‖u‖∞‖hi,j,p,q‖∞ + σ2TV[−a,a]d(u)TV[−a,a]d(hi,j,p,q)

+ σ
(
TV[−a,a]d(u)‖hi,j,p,q‖∞ + TV[−a,a]d(hi,j,p,q)‖u‖∞

)
,

(iv) TV[−a,a]d(|g|2) ≤ ‖g‖2∞ + σ2TV2
[−a,a]d(g) + 2σ‖g‖∞TV[−a,a]d(g)

where

C2(m, d) := 2d
(

2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)
)d
,

and k̃, l̃ are defined in (11.9).

Proof. To prove both (i) and (ii) we will use the easy facts that TV(hai,j,p,q) = TV[−a,a]d(hi,j,p,q) and
TV(gahai,j,p,q) = TV[−a,a]d(ghi,j,p,q). To prove (i) of the claim let us first recall (see for example [97], p.
19) that when ψ ∈ C1([−a, a]d) then

(11.38) TV[−a,a]d(ψ) =

d∑
k=1

∑
1≤i1<...<ik≤d

V (k)(ψ; i1, . . . , ik),

where V (k)(ψ; i1, . . . , ik) = V (k)(ψi1,...,ik) and

ψi1,...,ik : (y1, . . . , yk) 7→ ψ(ỹ1, . . . , ỹd), ỹj = a, j 6= i1, . . . , ik, ỹij = yj ,

V (k)(ϕ) =

∫ a

−a
· · ·
∫ a

−a

∣∣∣∣ ∂kϕ

∂x1 · · · ∂xk

∣∣∣∣ dx1 . . . dxk, ϕ ∈ C1([−a, a]k).
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Note that from (11.27) and (11.5) it follows that hai,j,p,q ∈ C∞([0, 1]d), so by the definition of h in (11.27)
we have that, for k ∈ {1, . . . , d} and 1 ≤ i1 < . . . < ik ≤ d,

V (k)(hai,j,p,q; i1, . . . , ik)

≤
d∏

µ=1

max

[
max
s,t=0,2

∫ a

−a

∣∣∣∣∣∣ ∂∂xµ
∂sψ̂θ(j)µ

∂xsµ
(xµ)

∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ dxµ,
max
s,t=0,2

xµ∈[−a,a]

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣
]
, ∀k, p, q ≤ d.

(11.39)

We will now focus on bounding the right-hand side of (11.39). Note that by using the definition of ψk,l with
k, l ∈ Z in (11.5) and some straightforward integration it follows that for 1 ≤ p ≤ d and (kp, lp) = θ(j)p

we have

(11.40)

∣∣∣∣∣∂ψ̂kp,lp∂xp
(xp)

∣∣∣∣∣ ≤
lp + 1

2 when kp − 1 ≤ xp ≤ kp + 1,
l+ 1

2

|xp−kp|+1 otherwise,

(11.41)

∣∣∣∣∣∂3ψ̂kp,lp
∂x3

p

(xp)

∣∣∣∣∣ ≤


(lp+1)4−l4p
4 when kp − 1 ≤ xp ≤ kp + 1,

(lp+1)4−l4p
4(|xp−kp|+1) otherwise.

Thus, by using (11.32), (11.33), (11.40) and (11.41) it follows that

max
s,t=0,2

∫ a

−a

∣∣∣∣∣∣ ∂∂xµ
∂sψ̂θ(j)µ

∂xsµ
(xµ)

∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ dxµ
≤ 2 max

s,t=0,1,2,3

∫ ∞
−∞

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ dxµ
≤ 2((l̃ + 1)4 + l̃4)2

(
2(k̃ + 1) +

∫
[−∞,−1]∪[1,∞]

1

y2
dy

)
= 2((l̃ + 1)4 + l̃4)2

(
2(k̃ + 1) + 2

)
,

(11.42)

where k̃ := max{|kp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . , n}}, l̃ := max{|lp| : (kp, lp) =

θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . , n}}. Moreover, by (11.32) and (11.33)

(11.43) max
s,t=0,2

xµ∈[−a,a]

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ ≤ max{l̃2 + l̃ + 1/3, 1}, i, j ≤ m, 1 ≤ µ ≤ d.

Hence, from (11.39), (11.42) and (11.43) it follows that for k ∈ {1, . . . , d} and 1 ≤ i1 < . . . < ik ≤ d,

V (k)(hai,j,p,q; i1, . . . , ik) ≤
(

2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)
)d

and thus, by (11.38) we get that

TV[−a,a]d(hi,j,p,q) ≤
(

2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)
)d d∑

k=1

(
d

k

)
≤ 2d

(
2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)

)d
,

and thus we have proved (i) in the claim.
To prove (ii) in the claim, we observe that by (11.5), (11.27) and (11.43) it follows that

‖hai,j,p,q‖∞ ≤
d∏

µ=1

max
s,t=0,2

xµ∈[−∞,∞]

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ ≤
(

max{l̃2 + l̃ + 1/3, 1}
)d
,
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for i, j ≤ m and p, q ≤ d. Obviously, the last part of the above inequality is bounded by C2(m, d), which
yields the assertion.

To prove (iii) and (iv) we will use the fact (see [21]) that

A = {f ∈M([−a, a]d) : ‖f‖∞ + TV[−a,a]d(f) <∞},

where M([−a, a]d) denotes the set of measurable functions on [−a, a]d, is a Banach algebra when A is
equipped with the norm ‖f‖A = ‖f‖∞ + σTV[−a,a]d(f), where σ > 3d − 2d+1 + 1. We will let σ =

3d − 2d+1 + 2. Hence, we get, by the Banach algebra property of the norm and (i) and (ii) that we already
have proved, that

TV[−a,a]d(uhi,j,p,q) ≤ ‖u‖∞‖hi,j,p,q‖∞ + σ2TV[−a,a]d(u)TV[−a,a]d(hi,j,p,q)

+ σ
(
TV[−a,a]d(u)‖hi,j,p,q‖∞ + TV[−a,a]d(hi,j,p,q)‖u‖∞

)
, u ∈ A,

finally proving (iii). The proof of (iv) is almost identical. �

Lemma 11.8. Recall ζm defined in (11.20). Then, ζm → γ locally uniformly, where γ is defined in (11.22).
Furthermore, if m ≥ ‖V ‖∞ then we have

ζm(z) ≥ γm(z)− 2 + |z|
m

,

where γm is defined in (11.12).

Proof. Observe that γm → γ locally uniformly as m → ∞. Indeed, let T = {‖(−∆ + V + zI)ψ‖ : ψ ∈
W2,2(Rd), ‖ψ‖ = 1}. Then, since S is a core forH (recall S from Step I of the proof of SCI(Ξsp,Ωφ,g)A =

1) then every element in T can be approximated arbitrarily well by ‖(−∆+V +zI)ϕ̃‖ for some ϕ̃ ∈ S, thus
it follows from (11.22) that we have convergence. Note that the convergence must be monotonically from
above by the definition of Pm, and thus Dini’s Theorem assures the locally uniform convergence. Thus, it
suffices to show that |ζm − γm| → 0 locally uniformly as m→∞.

Note that if we define, for z ∈ C, the operator matrices

Zm(z)ij = 〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N , i, j ≤ m,

Z̃m(z)ij = 〈S̃m(V, z)ϕj , S̃m(V, z)ϕi〉n,N , i, j ≤ m, N = dnφ(n)4e,
(11.44)

where n = n(m) is defined in (11.19) and

Wm(z)ij = 〈Sm(V, z)ϕj , Sm(V, z)ϕi〉, i, j ≤ m,

W̃m(z)ij = 〈S̃m(V, z)ϕj , S̃m(V, z)ϕi〉, i, j ≤ m,

the desired convergence follows if we can show that ‖Zm(z)−Wm(z)‖ and ‖Z̃m(z)−W̃m(z)‖ tend to zero
as m tends to infinity for all z in some compact set. However, this follows by the choice of n(m) = min{n :

τ̃(m,n) ≤ 1
m3 } in (11.19). In particular, β(m,m, n) = β̃(m,n) ≤ τ̃(m,n) and clearly β(‖V ‖∞,m, n) ≤

β(m,m, n) for ‖V ‖∞ ≤ m (recall β from (11.37)). We also have

〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N =〈∆ϕj ,∆ϕi〉n,N − 〈V ϕj ,∆ϕi〉n,N − 〈∆ϕj , V ϕi〉n,N
+ 〈V ϕj , V ϕi〉n,N − 2<(z)〈∆ϕj , ϕi〉n,N
+ 〈2<(zV )ϕj , ϕi〉n,N + |z|2〈ϕj , ϕi〉n,N .

(11.45)

Thus it follows immediately by (11.36) that

max
{
|Zm(z)ij −Wm(z)ij | , |Z̃m(z)ij − W̃m(z)ij |

}
≤ (4(|z|+ 1) + |z|2)β(‖V ‖∞,m, n)

≤ 4(|z|+ 1) + |z|2

m3
.
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Using the fact that the operator norm of a matrix is bounded by its Frobenius norm ‖ · ‖F , it follows that for
z ∈ K ⊂ C, where K is compact, ‖Zm(z)−Wm(z)‖F = O( 1

m2 ) and ‖Z̃m(z)− W̃m(z)‖F = O( 1
m2 ) for

sufficiently large m. To see the explicit bound, note that the above shows for ‖V ‖∞ ≤ m that

γm(z)2 ≤ 4(|z|+ 1) + |z|2

m2
+ ζm(z)2 ≤

ζm(z) +

√
4(|z|+ 1) + |z|2

m

2

Taking square roots and re-arranging gives the result. �

11.1.2. Proof of the ∈ ΣA1 and ∈ ΣA,eigv
1 classifications in Theorem 8.3. In order to show the ΣA1 classifi-

cation for {Ξsp,Ωφ,g}, consider Γ̂m(A) = Γm+d‖V ‖∞e(V ) where we now use the fact that an upper bound

on ‖V ‖∞ is included in the evaluation functions. From Lemma 11.8, if z ∈ Γ̂m(A) then

dist(z, sp(−∆ + V )) ≤ g−1

(
ζm+d‖V ‖∞e(z) +

2 + |z|
m

)
.

This can be approximated from above to within an error that converges to zero as m → ∞ using finitely
many evaluations of the function g at rational points. Taking the maximum over all z ∈ Γ̂m(A) gives us an
error bound which converges to 0 uniformly on compact subsets of C as m→∞. The following shows this
is enough for the ΣA1 error control.

Lemma 11.9. Let Ξ : Ω → (C(C), dAW) be a problem function and suppose that there is an arithmetic
tower of algorithms {Γm} for Ξ. Suppose also that there exists a function Em : Γm(A) 7→ R≥0 (which may
depend on A) computed along with each Γm (using finitely many arithmetic operations and comparisons)
and converging uniformly to zero on compact subsets, such that

dist(z,Ξ(A)) ≤ Em(z), ∀z ∈ Γm(A).

Suppose also that Γm(A) is finite for each m and A. Then we can compute in finitely many arithmetic
operations and comparisons a sequence of non-negative numbers bm → 0 such that Γm(A) ⊂ Am for some
Am ∈ C(C) with dAW(Am,Ξ(A)) ≤ bm. Hence, by taking subsequences if necessary, we can build an
arithmetic ΣA1 tower for {Ξ,Ω}.

Proof. Let anm = sup{Em(z) : z ∈ Γm(A) ∩Bn(0)}. Define

Anm =
(
(Ξ(A) +Banm(0)) ∩Bn(0)

)
∪ (Γm(A) ∩ {z : |z| ≥ n}).

It is clear that Γm(A) ⊂ Anm and given {Γm(A), Em(A)} (we assume Γm(A) 6= ∅), we can easily compute
a lower bound n1 such that Ξ(A) ∩ Bn1

(0) 6= ∅. Compute this from Γ1(A) and then fix it. Suppose that
n ≥ 4n1, and suppose that |z| < bn/4c. Then the points in Anm and Ξ(A) nearest to z must lie in Bn(0) and
hence dist(z,Anm) ≤ dist(z,Ξ(A)) and dist(z,Ξ(A)) ≤ dist(z,Anm) + anm. It follows that

dAW(Anm,Ξ(A)) ≤ anm + 2−bn/4c.

We now choose a sequence n(m) such that setting Am = A
n(m)
m and bm = a

n(m)
n + 2−bn(m)/4c proves the

result. Clearly it is enough to ensure that bm is null. If m < 4n1 then set n(m) = 4n1, otherwise consider
4n1 ≤ k ≤ m. If such a k exists with akm ≤ 2−k then let n(m) be the maximal such k and finally if no such
k exists then set n(m) = 4n1. For a fixed n, anm → 0 as m→∞. It follows that for large m, we must have
a
n(m)
m ≤ 2−n(m) and that n(m)→∞. �

Finally, we extend the argument of §10.3 for the approximate eigenvectors.

Proof that {Ξsp,Ωφ,SA} ∈ ΣA,eigv
1 . We need only argue for the approximate eigenvectors and we sketch

the proof, since it is a simple adaptation of the discrete case considered in §10.3. Consider a Schrödinger
operator in Ωφ,SA with potential V and z ∈ Γ̂m(V ), where Γ̂m is the constructed ΣA1 tower for Ωφ,g . By



COMPUTING SPECTRA 59

taking subsequences if necessary, it suffices to show that we can compute a vector ψm ∈ Cm such that, for a
given δ ∈ Q>0 with δ < 1,

(11.46) 〈Zm(z)ψm, ψm〉 ≤
√
σ1(Zm(z)) + δ, 1− δ < ‖ψm‖ < 1,

where Zm(z) is the Hermitian positive (semi-)definite matrix defined via (11.44). The vector ψm will then
correspond to the first m coefficients with respect to the Gabor basis. To see why this is sufficient, note that
if T denotes the infinite matrix corresponding to −∆ + V − zI (with respect to the Gabor basis) and Pm
denotes the projection onto the span of the first m basis functions, then (11.46) implies that

‖TPmψm‖2 = 〈T ∗Tψm, ψm〉 = 〈Zm(z)ψm, ψm〉

and that
√
σ1(Zm(z)) is bounded above by a computable null sequence since z ∈ Γ̂m(V ). We can then

adapt the proof of {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv
1 , in §10.3 with suitable approximations of Zm(z) (which

can be computed with error control using ∆1 information by the above arguments) replacing the matrix
(Pf(n)ÃPn)∗(Pf(n)ÃPn). �

11.1.3. Proof of the ∈ ΠA
2 classification in Theorem 8.3. Note that its is clear that none of the problems

lie in ∆G
1 . Hence to finish the proof of Theorem 8.3, we must show that {Ξsp,ε,Ωφ} ∈ ΣA1 since by taking

ε ↓ 0 this will show {Ξsp,Ωφ} ∈ ΠA
2 since we have Ωφ,g ⊂ Ωφ. Note that through the use of ζm and Lemma

11.8 we can compute, using finitely many arithmetic operations and comparisons for any z, a function γ̂m(z)

that converges uniformly to γ(z) from (11.22) on any compact subset of C with γ̂m(z) ≥ γ(z). The next
Lemma then says that this is enough.

Lemma 11.10. Suppose that γ̂m(z) ≥ γ(z) converge uniformly to
∥∥(−∆ + V − zI)−1

∥∥−1
as m→∞ on

compact subsets of C. Set

Γm(V ) = (Bm(0) ∩ 1

m
(Z + iZ)) ∩ {z : γ̂m(z) < ε}.

For large m, Γm(V ) 6= ∅ so we can assume this without loss of generality. Also, dAW(Γm(V ), spε(−∆ +

V ))→ 0 as m→∞ and clearly Γm(V ) ⊂ spε(−∆ + V ).

Proof. Since the pseudospectrum is non-empty, for large m, Γm(V ) 6= ∅ so we may assume that this holds
for all m without loss of generality. We use the characterisation of the Attouch–Wets topology where it
is enough to consider closed balls. Suppose that n is large such that Bn(0) ∩ spε(−∆ + V ) 6= ∅. Since
Γm(V ) ⊂ spε(−∆ + V ), we must show that given δ > 0, there exists N1 such that if m > N1 then
spε(−∆+V )∩Bn(0) ⊂ Γm(V ) +Bδ(0). Suppose for a contradiction that this were false. Then there exists
zj ∈ spε(−∆+V )∩Bn(0), δ > 0 andmj →∞ such that dist(zj ,Γmj (V )) ≥ δ. Without loss of generality,
we can assume that zj → z ∈ spε(−∆ + V ). There exists some w with

∥∥(−∆ + V − wI)−1
∥∥−1

< ε and
|z − w| ≤ δ/2. Assumingmj > n+δ, there exists ymj ∈ (Bmj (0)∩ 1

mj
(Z+iZ)) with

∣∣ymj − w∣∣ ≤ 1/mj .
It follows that

γ̂mj (ymj ) ≤
∣∣γ̂mj (ymj )− γ(ymj )

∣∣+
∣∣γ(w)− γ(ymj )

∣∣+
∥∥(−∆ + V − wI)−1

∥∥−1
.

But γ is continuous and γ̂mj converges uniformly to γ on compact subsets. Hence for largemj , γ̂mj (ymj ) <
ε so that ymj ∈ Γmj (V ). But

∣∣ymj − z∣∣ ≤ |z − w|+ ∣∣ymj − w∣∣ ≤ δ/2 + 1/mj which is smaller than δ for
large mj . This gives the required contradiction. �

11.2. The case of unbounded potential V : The proof of Theorem 8.5. In this section we prove Theorem
8.5 on the SCI of spectra and pseudospectra of Schrödinger operators with unbounded potentials. First of
all, we will build the ∆A

2 algorithms. Let us outline the steps of the proof first:

a. Compactness of the resolvent: The assumptions on the potential imply that the operator H has a
compact resolvent R(H, z) (see Proposition 11.21). Therefore the spectrum is countable, consisting
of eigenvalues with finite-dimensional invariant subspaces.
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b. Finite-dimensional approximations: The main part of the proof centres around showing that it is
possible to construct, with finitely many evaluations of V , square matrices H̃n whose resolvents
(when suitably embedded into the large space) converge to R(H, z0) in norm at a suitable point z0

(see Theorem 11.23). Note that this technique is very different from the techniques used so far in
the paper and is only possible due to compactness.

c. Convergence of the spectrum and pseudospectrum: We use the convergence at z0 to show conver-
gence at other points z in the resolvent set.

Once this is done, we prove that neither problem lies in ΣG1 ∪ΠG
1 .

As the argument is otherwise independent of the particular set-up, we start with a general discussion. In
the end, we demonstrate the construction of the matrices H̃n and the convergence of the resolvents. We
assume the following:

(i) Assumptions on the operator A: Given a closed densely defined operator A in a Hilbert space
H such that at z0 ∈ C the resolvent operator R(z0) = (A − z0)−1 is compact R(z0) ∈ K(H). Thus
sp(A) = {λj}, the spectrum of A, is at most countable with no finite accumulation points.

(ii) Assumptions on the approximations An: Suppose An is a finite rank approximation to A such that
if En is the orthogonal projection onto the range of An, then An = AnEn. We put further Hn = EnH
and denote by Ãn the matrix representing An when restricted to the invariant subspace Hn w.r.t. some
orthonormal basis. Now, take the resolvent (AnEn − zEn)−1 of this restriction, extend it to H⊥n by zero,
and denote this extension by Rn(z). Then Rn(z) = Rn(z)En, and Rn(z) = (An − z)−1 + (I − En)z−1

for all z 6= 0 for which the inverse exists. Finally we assume that Rn(z0) exist and

(11.47) lim
n→∞

‖Rn(z0)−R(z0)‖ = 0.

11.2.1. Convergence of the spectrum and pseudospectrum. The first step is to conclude that if the finite
rank approximations to the resolvent converge in operator norm at one point z0, then they also converge
locally uniformly away from the spectrum of A. To that end denote by Ur(µ) the open disc at centre µ and
radius r.

Proposition 11.11. SupposeR(z) andRn(z) are as above and satisfy (11.47). LetK ⊂ C be compact, r > 0

and defineKr = K\
⋃
j Ur(λj). Then for large enough n,Rn(z) exists for all z ∈ Kr and supz∈Kr ‖Rn(z)−

R(z)‖ → 0 as n→∞.

Proof. Clearly R(z) = R(z0)(I − (z − z0)R(z0))−1 and Rn(z) = Rn(z0)(I − (z − z0)Rn(z0))−1 for all
z in which R(z), resp. Rn(z), exist. By (11.47) it suffices to prove the existence of Rn(z) and

sup
z∈Kr

‖(I − (z − z0)Rn(z0))−1 − (I − (z − z0)R(z0))−1‖ → 0.

However, we know that (I − (z − z0)R(z0))−1 is meromorphic in the whole plane and hence analytic in
the compact set Kr and in particular uniformly bounded. But this means that it is sufficient to show that the
inverses converge, which in turn is immediate from (11.47) since

sup
z∈Kr

‖(I−(z−z0)Rn(z0))−(I−(z−z0)R(z0))‖ ≤ ‖Rn(z0)−R(z0)‖+ sup
z∈Kr

|z−z0| ‖Rn(z0)−R(z0)‖.

To see that this suffices, write Tn(z) = (I − (z − z0)Rn(z0)), T (z) = (I − (z − z0)R(z0)) and Tn(z) =

T (z)[I + T (z)−1(Tn(z)− T (z))]. Then for large enough n and z ∈ Kr by a Neumann series argument

‖Tn(z)−1 − T (z)−1‖ ≤ ‖T (z)−1‖ [(1− ‖T (z)−1‖‖Tn(z)− T (z)‖)−1 − 1].

�

Proposition 11.12. Let K ⊂ C be compact and δ > 0. Then, for all large enough n, sp(A) ∩ K ⊂
Nδ(sp(An)) and sp(An) ∩ K ⊂ Nδ(sp(A)).
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Proof. Since the eigenvalues are precisely the poles of the resolvents, the claim follows immediately from
the previous proposition. �

The last proposition gives the convergence of the spectra. The discussion on pseudospectra is somewhat
more involved. We need to know that the norm of the resolvent is not constant in any open set. The following
is a theorem due to J. Globevnik, E.B. Davies and E. Shargorodsky which we formulate here as a lemma:

Lemma 11.13 ( [61] and [39]). Suppose A is a closed densely defined operator inH such that the resolvent
R(z) = (A − z)−1 is compact. Let Ω ⊂ C be open and connected, and assume that, for all z ∈ Ω,
‖R(z)‖ ≤M. Then, for all z ∈ Ω, ‖R(z)‖ < M. This is particularly true ifH is finite-dimensional.

The theorem in [39] is formulated for Banach spaces X with the extra assumption that X or its dual are
complex strictly convex, a condition which holds for Hilbert spaces. The caseH being of finite dimension is
already settled by [61]. We put γ(z) = 1/‖R(z)‖ and γn(z) = 1/‖Rn(z)‖ and summarise the properties of
γ and γn as follows:

Lemma 11.14. If (i) and (ii) hold, then γn(z) → γ(z) uniformly on compact sets. Neither γ, nor γn
is constant in any open set and they have local minima only where they vanish. Additionally, γ(z) ≤
dist(z, sp(A)). Consequently,

spε(A) = {z : γ(z) ≤ ε} = cl{z : γ(z) < ε}, spε(An) = {z : γn(z) ≤ ε} = cl{z : γn(z) < ε}.

Proof. Note that γ(z) ≤ dist(z, sp(A)) follows from a reformulation of a general property of resolvents.
Next, notice that ‖Rn(z)‖ = ‖R(An, z)‖ and that the norms of resolvents are subharmonic away from
spectra and therefore γ and γn cannot have proper local minima, except when they vanish. Furthermore,
they cannot be constant in an open set by Lemma 11.13.

To conclude the local uniform convergence, let M be such that along the curve {|z| = M} there are
no eigenvalues of A and choose K as the set {|z| ≤ M}. Choose any ε, small enough so that the discs
{|z − λj |} ≤ ε/3 separate the eigenvalues inside K. By Proposition 11.11 we may assume that n is large
enough so that for z ∈ Kε/3 (recall Kr from Proposition 11.11) we have |γn(z) − γ(z)| ≤ ε/3. On the
other hand, if |z − λj | ≤ ε/3 then γ(z) ≤ ε/3 and, since γn has to vanish also somewhere in that disc
(again for large enough n) and γn(z) ≤ dist(z, sp(An|Hn)), we have γn(z) ≤ 2ε/3 in that disc, hence
|γn(z)− γ(z)| ≤ γn(z) + γ(z) ≤ ε. Thus we have |γn(z)− γ(z)| ≤ ε for all z ∈ K.

Finally, to justify the equivalence of the characterisations of pseudospectra just notice that the level sets
{z : γ(z) = ε} and {z : γn(z) = ε} cannot contain open subsets or isolated points. �

Lemma 11.15. Assume ϕn and ϕ are continuous non-negative functions in C which have local minima only
when they vanish, are not constant in any open set and ϕn converges to ϕ uniformly in compact sets. Set
S := {z : ϕ(z) ≤ 1} and Sn := {z : ϕn(z) ≤ 1}. Let K be compact and δ > 0. Then the following hold
for all large enough n: S∩K ⊂ Nδ(Sn), Sn∩K ⊂ Nδ(S), whereNδ(·) denotes the open δ neighbourhood.

Proof. Consider S ∩ K ⊂ Nδ(Sn), and assume that the left hand side is not empty. Due to compactness of
S ∩K there are points zi ∈ S∩K for i = 1, . . . ,m such that S ∩K ⊂

⋃m
i=1 Uδ/2(zi). Notice that ϕ(zi) ≤ 1.

If ϕ(zi) < 1, set yi = zi. Otherwise, ϕ(zi) = 1, in which case zi cannot be a local minimum, but since ϕ is
not constant in any open set, there exists a point yi ∈ Uδ/2(zi) such that ϕ(yi) < 1. But since ϕn converges
uniformly in compact sets to ϕ we conclude that for all large enough n and all i we have ϕn(yi) < 1. Hence
zi ∈ Nδ/2(Sn) and so S ∩ K ⊂

⋃m
i=1 Uδ/2(zi) ⊂ Nδ(Sn).

Consider now Sn ∩ K ⊂ Nδ(S),. If it would not hold, there would exist a sequence {nj} and points
znj ∈ Snj ∩ K such that znj /∈ Nδ(S). Suppose znjk → ẑ. Then dist(ẑ,S) ≥ δ as well. However, writing
ϕ(ẑ) ≤ |ϕ(ẑ) − ϕ(znjk )| + |ϕ(znjk ) − ϕnjk (znjk )| + ϕnjk (znjk ) we obtain ϕ(ẑ) ≤ 1 as the first term
on the right tends to zero because ϕ is continuous, the second term converge to zero as ϕn approximate ϕ
uniformly in compact sets, and ϕnjk (znjk ) ≤ 1. Hence ẑ ∈ S ∩ K which is a contradiction. �
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Note that the same argument for Lemma 11.15 holds when replacing ≤ 1 by ≤ ε in the definitions of S
and Sn. Combining the results of this section, we can state the following result.

Proposition 11.16. Let K ⊂ C be compact and δ > 0. Then, for all large enough n,

spε(A) ∩ K ⊂ Nδ(spε(An)), spε(An) ∩ K ⊂ Nδ(spε(A)).

11.2.2. The general algorithms. Here A, An are operators inH as in (i), (ii) above, while Ãn is the matrix
representing An when restricted to the finite-dimensional invariant subspace Hn = EnH. In particular
‖Rn(z)‖ = ‖(Ãn − z)−1‖. Denoting by σ1 the smallest singular value of a square matrix we have γn(z) =

1/‖Rn(z)‖ = σ1(Ãn − zI). Let r > 0 and define Gr := Br(0) ∩ ( 1
2r (Z + iZ)). Suppose that the matrices

Ãn are available with ∆1-information. From Proposition 10.2 is follows that we can compute, in finitely
many arithmetic operations and comparisons over Q, an approximation to γn(z) from above, accurate to
1/n2, and taking values in Q≥0. Call this approximation γ̂n and let εn ∈ Q be an approximation of ε from
below accurate to 1/n2 and define Γ1

n and Γ2
n by

(11.48) Γ1
n(A) =

{
z ∈ Gn : γ̂n(z) ≤ 1

n

}
, Γ2

n(A) = {z ∈ Gn : γ̂n(z) ≤ εn} ,

which we shall prove to be the towers of algorithms for Ξsp and Ξsp,ε (as defined in Theorem 8.5), respec-
tively. Observe that Γ1

n(A) and Γ2
n(A) can be executed in a finite number of arithmetic operations over Q

using ∆1-information. Also note that our proof will show that Γin(A) 6= ∅ for large n. Hence by our usual
trick of searching for minimal n(m) ≥ m such that this is so, we can assume without loss of generality this
holds for all n.

Proposition 11.17. The algorithms satisfy the following:

(11.49) Γ1
n(A) −→ sp(A), Γ2

n(A) −→ spε(A), n→∞.

Proof. We begin with the second part of (11.49). It suffices to show that given δ and a compact ball K, for
large n:

(i) Γ2
n(A) ∩ K ⊂ Nδ(spε(A)), (ii) spε(A) ∩ K ⊂ Nδ(Γ2

n(A)).

Note that Γ2
n(A) ⊂ spε(Ãn) ∩ Gn and hence the first inclusion follows immediately from Proposition

11.16. To see (ii), we argue by contradiction and suppose not. Then by possibly passing to an increasing
subsequence {kn}n∈N ⊂ N there is a sequence zn ∈ (spε(A)∩K)\Nδ(Γ2

n(A)) for all n. Since spε(A)∩K
is a compact set, by possibly extracting a subsequence, we have that zn → z0 ∈ spε(A) ∩ K. Consider the
open ball Uδ/3(z0) which must contain all zn for n sufficiently large. Since γ(z) is continuous, positive, not
constant in any open set and without nontrivial local minima, it follows that spε(A) equals the closure of
its interior points. In particular int(spε(A)) ∩ Uδ/3(z0) 6= ∅. Suppose then r > 0 and y0 are such that the
closure of the open ball Ur(y0) is inside this open set: Br(y0) ⊂ int(spε(A)) ∩ Uδ/3(z0). We claim that
{z : γ̂n(z) ≤ ε} ∩ Ur(y0) = Ur(y0) for all large enough n. Indeed, since Ur(y0) bounded away from the
boundary of the pseudospectrum ofA, we have γ(z) ≤ ε−s for some s > 0 and for all z ∈ Ur(y0). Now the
claim follows from the locally uniform convergence of γn and hence of γ̂n. By the definition of Gn we have
that Ur(y0) ⊂ Nδ/3(Ur(y0) ∩ Gn) for large n, so, by the claim, Ur(y0) ⊂ Nδ/3({z : γ̂n(z) ≤ ε} ∩ Gn).

Hence, since Ur(y0) ⊂ Uδ/3(z0), it follows that

zn ∈ Uδ/3(z0) ⊂ N2δ/3(Ur(y0)) ⊂ Nδ({z : γ̂n(z) ≤ ε} ∩Gn),

for large n, contradicting zn /∈ Nδ(Γ2
n(A)). To prove the first part of (11.49) we argue as follows. Given

δ > 0 and compact K, we need to show that for large n:

(iii) sp(A) ∩ K ⊂ Nδ({z : γ̂n(z) ≤ 1/n} ∩Gn) (iv) {z : γ̂n(z) ≤ 1/n} ∩Gn ∩ K ⊂ Nδ(sp(A)).

For notational convenience, we let an = 1/n− 1/n2.
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To show (iii), we start by defining G̃n := 1
2n (Z + iZ) and note that for λj ∈ sp(Ãn) we have that

Nan({λj}) ∩ G̃n 6= ∅ for large n. Hence, sp(Ãn) ⊂ N1/n

(
Nan

(
sp(Ãn)

)
∩ G̃n

)
. Since Nan(sp(Ãn)) ⊂

span(Ãn), it follows that sp(Ãn) ⊂ N1/n

(
span(Ãn) ∩ G̃n

)
. Now by the first part of Proposition 11.12 we

have that sp(A) ∩ K ⊂ Nδ/2(sp(Ãn)) for large n. Thus, combining the previous observations, we have for
large n that

sp(A) ∩ K ⊂ Nδ/2+1/n

(
span(Ãn) ∩ G̃n

)
⊂ Nδ/2+1/n

(
{z : γ̂n(z) ≤ 1/n} ∩ G̃n

)
.

However, since K is bounded we have that there exists an r > 0 such that if λ ∈ G̃n ∩ Ur(0)c then
Nδ({λ}) ∩ sp(A) ∩ K = ∅ for all n. Hence, sp(A) ∩ K ⊂ Nδ ({z : γ̂n(z) ≤ 1/n} ∩Gn) as desired.

To see (iv), let r > 0 be so large that Nδ(Ur(0)c) ∩ K = ∅. Note that spε(A) → sp(A) as ε → 0.
Thus, spε1(A) ∩ Br(0) ⊂ Nδ/2(sp(A)) for a sufficiently small ε1. Also, by the second part of Proposition
11.16 it follows that spε1(Ãn) ∩ K ⊂ Nδ/2(spε1(A)) for large n. However, by the choice of r we have that
spε1(Ãn) ∩ K ⊂ Nδ/2(spε1(A) ∩ Br(0)). Clearly, sp1/n(Ãn) ∩ K ⊂ spε1(Ãn) ∩ K for large n. Thus, by
patching the above inclusions together we get that

{z : γ̂n(z) ≤ 1/n}∩Gn ∩K ⊂ sp1/n(Ãn)∩K ⊂ spε1(Ãn)∩K ⊂ Nδ/2(spε1(A)∩Br(0)) ⊂ Nδ(sp(A)),

for large n, as desired. This finishes the proof of Proposition 11.17. �

Next, we pass from these general considerations to the Schrödinger case.

11.2.3. Compactness of the resolvent. We first show that the resolvent of the Schrödinger operator H ∈
Ω∞ is compact. To prove this we recall some well known lemmas and definitions from [83].

Definition 11.18. An operator A on the Hilbert spaceH is accretive if the Re〈Ax, x〉 ≥ 0 for x ∈ D(A). It
is called m-accretive if there exists no proper accretive extension. If A (possibly after shifting with a scalar)
is m-accretive and additionally there exists β < π/2 such that | arg〈Ax, x〉| ≤ β for all x ∈ D(A), then A is
m-sectorial.

Lemma 11.19 ( [83, VI-Theorem 3.3]). Let A be m-sectorial with B = Re A. A has compact resolvent if
and only if B has.

Lemma 11.20 ( [83, V-Theorem 3.2]). If T is closed and the complement of Num(T ) is connected, then for
every ζ in the complement of the closure of Num(T ) the following hold: the kernel of T − ζ is trivial and
the range of T − ζ is closed with constant codimension.

Proposition 11.21. Suppose V is continuous Rd → C satisfying the following: V (x) = |V (x)|eiϕ(x) such
that |V (x)| → ∞ as x→∞, and there exist non-negative θ1, θ2 such that θ1 + θ2 < π and −θ2 ≤ ϕ(x) ≤
θ1. Denote by h the operator h = −∆ + V with domain D(h) = C∞c (Rd) and put in L2(Rd) H = h∗∗.
Then H = −∆ + V is a densely defined operator with compact resolvent, whose spectrum lies in the sector
{z : arg(z) ∈ [−θ2, θ1]}.

Proof. The proof goes as follows: Notice first that the numerical range of H lies in a sector with opening
2β < π. Then we turn the sector into the symmetric position around the positive real axis to get the
operator a(α). It is clearly enough to show that A(α) = a(α)∗∗ is an m-sectorial operator with half-angle
β = (θ1 + θ2)/2 which has a compact resolvent. Next, since the numerical range of a(α) is not the whole
plane, the operator is closable. Then we conclude that every point away from the numerical range belongs
to the resolvent set. This is done based on the fact that the adjoint shares the same key properties as A(α).
Then the compactness of the resolvent follows by considering the resolvent of the real part of A(α).

Here is the notation. Put α = (θ1 − θ2)/2 so that |α| < π/2. Then with

(11.50) ϑ(x) = ϕ(x)− α
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we have a(α) := e−iαh = −e−iα∆ + |V (x)|eiϑ(x) and after extending A(α) = a(α)∗∗ , in particular
H(α) := ReA(α) = −cosα ∆ + cosϑ(x)|V (x)|.

We claim that the operator A(α) := e−iαH is m-sectorial with half-angle β = (θ1 + θ2)/2. Indeed, it is
immediate that the numerical range satisfies the following Num(a(α)) ⊂ {z = reiθ : |θ| ≤ β, r ≥ 0 },
which is not the whole complex plane, and we can therefore (by [83, V-Theorem 3.4 on p. 268]) consider the
extended closed operatorA(α) instead. The next thing is to conclude that points away from this closed sector
are in the resolvent set of A(α). Take any point ζ = reiϕ with β < |ϕ| ≤ π, r > 0. We need to conclude
that ζ /∈ sp(A(α)). Since the complement of Num(A(α)) is connected, the following holds (by Lemma
11.20): the operator A(α)− ζ has closed range with constant codimension. Thus, we need that the range is
the whole space. Put for that purpose T = A(α)− ζ. Suppose there is g 6= 0 such that g ∈ Ran(T )⊥. Then
for all f ∈ D(T ) we have 〈Tf, g〉 = 0 which means, as D(T ) is dense, that T ∗g = 0. But that is not the
case as A(α)∗ − ζ is also closed whose complement of the numerical range is connected and hence does not
have a non-trivial kernel.

The proof of Proposition 11.21 can now be completed by invoking Lemma 11.19 since it is well known
( [101], Theorem XIII.67) that (since α < π/2) the self-adjoint operator H(α) has compact resolvent when
the potential |V (x)| tends to infinity with x. �

We shall next consider the discretisation ofH and ofA(α). It shall be clear that the discrete versions have
their numerical ranges inside the same sectors, where the numerical range of an operator T is denoted by
Num(T ). Thus all resolvents can be estimated using the fact that if (T − ζ)−1 is regular outside the closure
of Num(T ), then ‖(T − ζ)−1‖ ≤ 1/dist(ζ,Num(T )).

11.2.4. Discretizing the Schrödinger operator. We shall show how to assemble the matrices H̃n men-
tioned above. The underlying Hilbert space is again L2(Rd) and we start with approximating the Laplacian.
Let 1 ≤ j ≤ d, t ∈ R and define Uj,t to be the one-parameter unitary group of translations

Uj,tψ(x1, . . . , xd) = ψ(x1, . . . , xj − t, . . . , xd)

and let Pj be the infinitesimal generator of Uj,t so that Uj,t = eitPj and Pj = limt→0
1
it (Uj,t − I). Thus,

defining Φn(x) = n
i (ei 1

nx − 1) with n ∈ N and x ∈ R, it follows that

(11.51) |Φn|2(Pj)ψ(x) = n2(−ψ(x1, . . . , xj + 1/n, . . . xd)− ψ(x1, . . . , xj − 1/n, . . . xd) + 2ψ(x))

is the discretised Laplacian in the j direction. The full discretised Laplacian is therefore
∑d
j=1 |Φn|2(Pj).

Now we replace V by an appropriate approximation. Consider the lattice ( 1
nZ)d as a subset of Rd and for

y ∈ ( 1
nZ)d define the box

(11.52) Qn(y) =

{
x = (x1, . . . , xd) : xj ∈

[
yj −

1

2n
, yj +

1

2n

)
, 1 ≤ j ≤ d

}
.

Let Sn = [−b
√
nc, b
√
nc]d ⊂ Rd and define En to be the orthogonal projection onto the subspaceψ ∈ L2(Rd) : ψ =

∑
y∈( 1

nZ)d∩Sn

αyχQn(y), αy ∈ C

 ,(11.53)

where χQn(y) denotes the characteristic function on Qn(y). Define the approximate potential as

Vn(x) =

V (y) x ∈ Qn(y) ∩ Sn for some y ∈ ( 1
nZ)d,

0 otherwise.

Note that Vn = EnVnEn, but that, in general, Vn 6= EnV En. Finally, we define the approximate Schrödinger
operator Hn : L2(Rd)→ L2(Rd) defined as

(11.54) Hn = En

d∑
j=1

|Φn|2(Pj)En + Vn.
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Remark 11.22. Note that the restriction Hn|Ran(En) of Hn to the image of En has a matrix representation
H̃n ∈ Cm×m (where m = dim(Ran(En))) defined as follows. First, for y1, y2 ∈ ( 1

nZ)d ∩ Sn,

〈|Φn|2(Pj)Enn
d/2χQn(y1), n

d/2χQn(y2)〉 =


2n2 y1 = y2

−n2 y1 − y2 = ±1/nej

0 otherwise

and 〈Vnnd/2χQn(y1), n
d/2χQn(y2)〉 = V (y1) when y1 = y2 and zero otherwise. Thus, we can form the

matrix representation of Hn|Ran(En) with respect to the orthonormal basis {nd/2χQn(y)}y∈( 1
nZ)d∩Sn . It is

important to note that calculating the matrix elements of H̃n requires knowledge only of {Vf}f∈Λn where
we have Λn :=

{
fy : y ∈ (n−1Z)d ∩ Sn

}
and Vfy = fy(V ) = V (y).

11.2.5. Proof that {Ξsp,Ω∞} ∈ ∆A
2 , {Ξsp,ε,Ω∞} ∈ ∆A

2 . We have so far shown that the Assumption (i)
holds, and we are left to show that the discretisation we have chosen satisfies Assumption (ii). In particular,
we need to demonstrate that our discretisation satisfies (11.47). That is the topic of the following theorem.

Theorem 11.23. Let V ∈ C(Rd) be sectorial as defined in (8.3) satisfying |V (x)| → ∞ as |x| → ∞, and
let h = −∆ +V with D(h) = C∞c (Rd) and let H = h∗∗. Let Hn be as in (11.54). Then there exists z0 such
that ‖(H − z0)−1 − (Hn − z0)−1En‖ → 0, as n→∞.

Note that we immediately have

Theorem 11.23 + Proposition 11.17 ⇒ {Ξsp,Ω∞} ∈ ∆A
2 , {Ξsp,ε,Ω∞} ∈ ∆A

2 .

Thus, the rest of the section is devoted to prove Theorem 11.23.
We shall treat the discretisations in a similar way as the continuous case, namely by “rotating” the operator

into symmetric position with respect to the real axis and then, by taking the real part, we are dealing with
a sequence of self-adjoint invertible operators. Before we prove this theorem, we will need a couple of
lemmas. We recall the following definition.

Definition 11.24 (Collectively compact). A set T ⊂ B(H) is called collectively compact if the set {Tx :

T ∈ T , ‖x‖ ≤ 1} has compact closure.

Lemma 11.25. Let {Kn} be a collectively compact operator sequence andK∗n → 0 strongly. Then ‖Kn‖ →
0.

Proof. It is well known that on any compact set B the strong convergence K∗n → 0 turns into norm conver-
gence: sup{‖K∗nx‖ : x ∈ B} →n 0. Since B := cl{Knx : ‖x‖ ≤ 1, n ∈ N} is compact, we get

‖Kn‖2 = ‖K∗nKn‖ = sup{‖K∗nKnx‖ : ‖x‖ ≤ 1} ≤ sup{‖K∗ny‖ : y ∈ B} → 0 as n→∞.

�

We also need a modification of Lemma 11.19.

Lemma 11.26. Let {An} be m-sectorial with common semi-angle β < π/2 and denote Bn = Re An.
Assume that {En} is a sequence of orthogonal projections, converging strongly to identity and such that
AnEn = EnAnEn andBnEn = EnBnEn. Assume further that {B−1

n } is uniformly bounded. If {B−1
n En}

is collectively compact, then so is {A−1
n En}.

Proof. Denote by B1/2
n the unique self-adjoint non-negative square root of Bn. By [83, VI-Theorem 3.2 on

p.337] for each An there exists a bounded symmetric operator Cn satisfying ‖Cn‖ ≤ tan(β) and such that
An = B

1/2
n (1 + i Cn)B

1/2
n . Writing

A−1
n =

∫ ∞
0

e−tAndt
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we conclude that EnA−1
n En = A−1

n En and likewise for B−1
n . Assume now that {B−1

n En} is collectively
compact. But then so is {(Bn + t)−1En} = {B−1

n En(I + tB−1
n )−1En} and writing, compare [83, V

(3.43) on p.282],

B−1/2
n En =

1

π

∫ ∞
0

t−1/2(Bn + t)−1Endt

we see that {B−1/2
n En} is also collectively compact and B−1/2

n En = EnB
−1/2
n En. Finally {A−1

n En} is
then collectively compact as well since A−1

n En is of the form B
−1/2
n EnTn with Tn uniformly bounded. �

Proof of Theorem 11.23. Note that it is clear from the definition of Hn and the assumption on V that
Num(Hn) ⊂ {reiρ : −θ2 ≤ ρ ≤ θ1, r ≥ 0} for all n. Thus, since Hn is bounded and by Proposi-
tion 11.21 we can choose any point z0 ∈ C such that z0 has a positive distance d to the closed sector
{reiρ : −θ2 ≤ ρ ≤ θ1, r ≥ 0}, and both R(H, z0) = (H − z0)−1 and R(Hn, z0) = (Hn − z0)−1 for every
n will exist. Moreover, R(Hn, z0) are uniformly bounded for all n, since for every x, ‖x‖ = 1,

‖(Hn − z0)x‖ ≥ |〈(Hn − z0)x, x〉| ≥ |〈Hnx, x〉 − z0| ≥ d.

Note that by Lemma 11.25 it suffices to show that (i) R(Hn, z0)∗En → R(H, z0)∗ strongly, and (ii)
{R(Hn, z0)En − R(H, z0)} is collectively compact, which follows if we can show that {R(Hn, z0)En}
is collectively compact.

To see (i) observe that C∞c (Rd) is a common core for H and for Hn. Hence by [83, VIII-Theorem
1.5 on p.429], the strong resolvent convergence R(Hn, z0)∗ → R(H, z0)∗ will follow if we show that
H∗nψ → H∗ψ as n→∞ for any ψ ∈ C∞c (Rd). Then the strong convergence R(Hn, z0)∗En → R(H, z0)∗

follows as well. Note that

(11.55) ‖H∗nψ −H∗ψ‖ ≤

∥∥∥∥∥∥
d∑
j=1

|Φn|2(Pj)Enψ −
d∑
j=1

P 2
j ψ

∥∥∥∥∥∥+ ‖(V n − V )ψ‖.

Also, |Φn|2(Pj) = n(τ−1/nej − I)n(τ1/nej − I), where τzψ(x) = ψ(x− z) and {ej} is the canonical basis
for Rd. Moreover, for ψ ∈ C∞c (Rd),

Enψ =
∑

y∈( 1
nZ)d∩Sn

(Ψn ∗ ψ)(y)χQn(y), Ψn = ρn ⊗ . . .⊗ ρn, ρn = nχ[− 1
2n ,

1
2n ),

where Sn was defined in (11.53). Thus, it follows from easy calculus manipulations and basic properties
of convolution that |Φn|2(Pj)Enψ =

∑
y∈( 1

nZ)d(Ψn ∗ ρ̃1 ∗j ρ̃2 ∗j ψ′′)(y)χQn(y), where ρ̃1 = nχ[−1/n,0],
ρ̃2 = nχ[0,1/n] and ∗j denotes the convolution operation in the jth variable. By standard properties of the
convolution we have that Ψn ∗ ρ̃1 ∗j ρ̃2 ∗j ψ′′ → ψ′′ uniformly as n → ∞. Thus, since ψ ∈ C∞c (Rd),
the first part of the right-hand side of (11.55) tends to zero as n → ∞. Due to the continuity of V and the
bounded support of ψ it also follows easily that ‖(V n − V )ψ‖ → 0 as n→∞.

To see (ii) we use the same trick as in the proof of Proposition 11.21. In particular, first set z0 = −eiα

(which is clearly in the resolvent set ofHn for α = (θ1−θ2)/2) then letAn(α) = e−iα(Hn−z0) and further
Hn(α) = Re An(α). Note that, by Lemma 11.26, we would be done if we could show that {Hn(α)−1} is
uniformly bounded and {Hn(α)−1En} is collectively compact as that would yield collective compactness
of {An(α)−1En} and hence of {R(Hn, z0)En}. To establish the uniform bound, note that

(11.56) Hn(α) = cosα En

d∑
j=1

|Φn|2(Pj)En + cosϑ(x)|Vn(x)|+ 1,

where ϑ is defined in (11.50). Thus ‖Hn(α)−1‖ ≤ 1 and by applying Lemma 11.27 we are now done. �

Lemma 11.27. Let Hn(α) be given by (11.56). Then the set {Hn(α)−1En} is collectively compact.
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Proof. We shall show that if we choose an arbitrary sequence {ψn} ⊂ L2(Rd) satisfying ‖ψn‖ ≤ 1, then the
sequence {ϕn} where ϕn = Hn(α)−1Enψn, is relatively compact in L2(Rd). The compactness argument
is based on the Rellich’s criterion.

Lemma 11.28 (Rellich’s criterion ( [101] Theorem XIII.65)). Let F (x) and G(ω) be two measurable non-
negative functions becoming larger than any constant for all large enough |x| and |ω|. Then

S = {ϕ :

∫
|ϕ(x)|2dx ≤ 1,

∫
F (x)|ϕ(x)|2dx ≤ 1,

∫
G(ω)|Fϕ(ω)|2dω ≤ 1}

is a compact subset of L2(Rd).

To prove Lemma 11.27 we proceed as follows. First we conclude that {ϕn} is a bounded sequence itself.
Then, in order to be able to define suitable functions F,G we need to approximate the sequence by another
one of the form Ψn ∗ ϕn. This approximation shall satisfy limn→∞ ‖Ψn ∗ ϕn − ϕn‖ = 0 and this is very
similar to the standard result on local uniform convergence of mollifications of continuous functions. Then
the Rellich’s criterion holds for Ψn ∗ ϕn with F (x) essentially given by |V (x)| and G(ω) by |ω|2. We then
conclude that the sequence {Ψn ∗ ϕn} is relatively compact. But since limn→∞ ‖Ψn ∗ ϕn − ϕn‖ = 0, the
sequence {ϕn} is relatively compact as well, completing the argument.

More precisely, since |ϑ(x)| ≤ α < π/2 we have from (11.56)

(11.57) |〈Hn(α)ϕn, ϕn〉| ≥ cosα

〈 d∑
j=1

|Φn|2(Pj)ϕn, ϕn

〉
+ 〈|Vn|ϕn, ϕn〉

+ ‖ϕn‖2.

But |〈Hn(α)ϕn, ϕn〉| is bounded not only from below but also from above. Indeed, |〈Hn(α)ϕn, ϕn〉| =

|〈Enψn, ϕn〉| ≤ ‖Hn(α)−1En‖‖ψn‖2. Thus, we conclude first from (11.57) that the sequence {ϕn} is
bounded. Next, in view of (11.57), there exist constants C1, C2 > 0 such that for all n ∈ N

(11.58a)

〈
d∑
j=1

|Φn|2(Pj)ϕn, ϕn

〉
≤ C1,

(11.58b) 〈|Vn|ϕn, ϕn〉 ≤ C2.

First we use the bound (11.58a). Letting F denote the Fourier transform , we have that (FΦn(Pj)ϕn)(ω) =

Φn(ωj)(Fϕn)(ω), for a.e. ω and for 1 ≤ j ≤ d. Letting Θn(ω) = sin(ω/2n)
ω/2n , an application of the Fourier

transform to (11.58a) along with Plancherel’s theorem yield∫
Rd
|(Fϕn)(ω)|2

∑
1≤j≤d

|ωjΘn(ωj)|2 dω ≤ C1.

Moreover, since |Θn(ω)| ≤ 1 for all ω, we get

(11.59)
∫
Rd
|ω|2|Θn(ω1) · · ·Θn(ωd)|2|(Fϕn)(ω)|2 dω ≤ C1.

We now define the approximation Ψn∗ϕn. Let Ψ1(z) = χ[−1/2,1/2]d(z) and further Ψn(z) = ndΨ1(nz),
where χA(z) is the usual characteristic function for the set A. We shall prove below that limn→∞ ‖Ψn ∗
ϕn − ϕn‖ = 0, which in particular shows that the sequence {Ψn ∗ ϕn} is bounded. Observe then that
(FΨn)(ω) = Θn(ω1) · · ·Θn(ωd). Therefore we obtain from (11.59)∫

Rd
|ω|2|F(Ψn ∗ ϕn)(ω)|2dω ≤ C1,

which shows that we can choose G(ω) to be (a constant times) |ω|2.
We still need to establish the growth function F (x) for Ψn ∗ ϕn. Consider ϕn. It is of the form ϕn =

(En+EnBnEn)−1Enψn and hence Enϕn = ϕn. Therefore ϕn vanishes outside Sn and we can essentially
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replace Vn by V in the inequality (11.58b). To that end, put F (x) = min|y|≥|x| |V (y)|. Then with some
constant C3

(11.60)
∫
Rd
F (x)|(Ψn ∗ ϕn)(x)|2dx ≤ C3.

In view of the bounds (11.59), (11.60) and since the sequence {Ψn ∗ ϕn}n∈N is bounded in L2, Rel-
lich’s criterion implies that {Ψn ∗ ϕn}n∈N is a relatively compact sequence and it therefore follows that
{ϕn}n∈N is relatively compact, thus finishing the proof. Hence, our only remaining obligation is to show
that limn→∞ ‖Ψn ∗ ϕn − ϕn‖ = 0. This result is very similar to the standard result on local uniform
convergence of mollifications of continuous functions.

Let z ∈ Rd and define the shift operator τz on L2(Rd) by τzf(x) = f(x − z). Now observe that by
Minkowski’s inequality for integrals it follows that

‖Ψn ∗ ϕn − ϕn‖ ≤
∫
Rd
‖τ 1

n z
ϕn − ϕn‖|Ψ1(z)| dz =

∫
[−1/2,1/2]d

‖ei
zd
n Pd . . . ei

z1
n P1ϕn − ϕn‖ dz.

(11.61)

The claim follows from an ε/d argument and (11.61) combined with the dominated convergence theorem
(recall that {ϕn} is bounded): we need to show that for fixed z ∈ [−1/2, 1/2]d and for any 1 < j ≤ d,

lim
n→∞

∥∥∥ei zjn Pj . . . ei z1n P1ϕn − ei
zj−1
n Pj−1 . . . ei

z1
n P1ϕn

∥∥∥ = 0, lim
n→∞

∥∥∥ei z1n P1ϕn − ϕn
∥∥∥ = 0.(11.62)

Since ei
zj
n Pjei

zk
n Pk = ei

zk
n Pkei

zj
n Pj and ‖ei

zj
n Pj · · · ei

z1
n P1‖ ≤ 1 for 1 ≤ j, k ≤ d, (11.62) will follow if we

can show that ‖(ei
zj
n Pj − I)ϕn‖ → 0 as n → ∞. Note that, by the choice of the projections En, it follows

that for 1 ≤ j ≤ d, |((ei
zj
n Pj − I)ϕn)(x)| ≤ |((ei 1

nPj − I)ϕn)(x)|, for 0 ≤ zj ≤ 1/2 and x ∈ Rd. Also,

|((ei
zj
n Pj − I)ϕn)(x)| ≤ |((e−i 1

nPj − I)ϕn)(x)|, −1/2 ≤ zj < 0.

However the bound
∑

1≤j≤d ‖Φn(Pj)ϕn‖2 ≤ C1 implies that limn→∞ ‖(e±i
1
nPj − I)ϕn)‖ = 0, which

proves the claim. �

11.2.6. Proof that neither problem lies in ΣG1 ∪ΠG
1 . Finally, we shall complete the proof of Theorem 8.5

by showing that {Ξsp,Ω∞} 6∈ ΣG1 ∪ΠG
1 and {Ξsp,ε,Ω∞} 6∈ ΣG1 ∪ΠG

1 .

Proof. Step I: {Ξsp,Ω∞} /∈ ΣG1 . Suppose for a contradiction that there exists a ΣG1 tower Γn which solves
the computational problem {Ξsp,Ω∞}. Now let V be any (real-valued) positive potential in the class Ω∞

such that the corresponding Schrödinger operator is self-adjoint and has a unique ground state (the operator
must be bounded below). Call the associated operator H0. For instance, in one dimension this could be the
quantum harmonic oscillator V (x) = x2, and examples in arbitrary dimension (the harmonic oscillator in
d > 1 dimensions does not have a unique ground state) are well known in the physics literature. In this
case, let φ0 be the normalised ground state and E be the orthogonal complement of the span of this function
intersected with the domain of H0. Assume that H0φ0 = cφ0. Denoting the standard L2(Rd) inner product
by 〈·, ·〉, it follows that there exists some η > 0 such that

〈H0φ, φ〉 ≥ (c+ η) ‖φ‖2 , ∀φ ∈ E.

There exists n such that there is a point zn ∈ Γn(V ) with |zn − c| ≤ η/20 and such that Γn(V ) guarantees
there is a point in the spectrum Ξsp(V ) of distance at most η/20 to zn. Hence Γn(V ) guarantees there is
a point in the spectrum Ξsp(V ) of of distance at most η/10 from c. There also exists a finite set S =

{x1, ..., xM(n)} such that the computation of Γn(V ) only depends on the potential V evaluated at points
in S. Let Vm be a sequence of real-valued continuous potentials such that 0 ≤ Vm(x) ≤ 1, Vm(xj) = 0

∀xj ∈ S and such that Vm converges pointwise almost everywhere to 1 as m→∞. By construction and the
definition of a general algorithm (Definition 6.3) we must have for all a ∈ R+ that Γn(V + aVm) = Γn(V ).
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In particular, this includes the guarantee of a point in the spectrum Ξsp(V + aVm) of distance at most η/10

from c. We will show that this gives rise to a contradiction for a choice of a ∈ R+ and m.
Indeed, choose m large such that 〈Vmφ0, φ0〉 ≥ 10

11 , and set a = η/2. It is well known that the minimum
of the spectrum Ξsp(V + aVm) is given by

inf
φ∈D(H0):‖φ‖=1

〈(H0 + aVm)φ, φ〉.

In particular, H0 + aVm and H0 have the same domain as Vm is bounded. Now let φ ∈ D(H0) of norm 1.
Without loss of generality by a change of phase, we can write φ = δφ0 +

√
1− δ2φ1, with φ1 ∈ E of unit

norm and δ ∈ [0, 1]. Using the fact that H0φ0 = cφ0 and H0 is self-adjoint and 〈φ0, φ1〉 = 0, we have that

〈(H0 + aVm)φ, φ〉 = δ2c+ (1− δ2)〈H0φ1, φ1〉+ δ2a〈Vmφ0, φ0〉

+ a(1− δ2)〈Vmφ1, φ1〉+ 2Re(aδ
√

1− δ2〈Vmφ0, φ1〉)

≥ c+ (1− δ2)η +
10

11
δ2a− 2aδ

√
1− δ2,

where we have used that Vm is positive to throw away the 〈Vmφ1, φ1〉 term. It follows that the minimum of
the spectrum of H0 + aVm is at least

c+ inf
δ∈[0,1]

η(1− (1− 5/11)δ2 − δ
√

1− δ2) > c+
η

10
,

the required contradiction.
Step II: {Ξsp,Ω∞} /∈ ΠG

1 . We argue as in Step I but now the proof is less involved. Suppose for a
contradiction that there exists a ΠG

1 tower Γn which solves the computational problem {Ξsp,Ω∞}. We let
H0, V , φ0 and E be as in Step I, where we also assume as before that H0φ0 = cφ0. We also assume that
c ≥ 0 and V (x) ≥ 1.

Arguing as before, there exists some n such that Γn(V ) guarantees that the spectrum is disjoint from the
interval [c − 3/2, c − 1/2]. Again, there exists a finite set S = {x1, ..., xM(n)} such that the computation
of Γn(V ) only depends on the potential V evaluated at points in S. Let Vm be a sequence of real-valued
continuous potentials such that −1 ≤ Vm(x) ≤ 0, Vm(xj) = 0 ∀xj ∈ S but now such that Vm converges
pointwise almost everywhere to −1 as m → ∞. Note that we must have V + Vm ∈ Ω∞ since we assume
the pointwise inequality V (x) ≥ 1. By construction and the definition of a general algorithm (Definition
6.3) we must have that Γn(V + Vm) = Γn(V ). In particular, this includes the guarantee that the spectrum
of H0 + Vm is disjoint from the interval [c− 3/2, c− 1/2]. But we have that

〈(H0 + Vm − (c− 1))φ0, φ0〉 = 〈Vmφ0, φ0〉+ 1→ 0,

as m → ∞. It follows for some large m that ‖R(c− 1, H0 + Vm)‖−1 ≤ 1/4 and hence that the spectrum
of H0 + Vm intersects the interval [c− 3/2, c− 1/2], since the operator is self-adjoint. But this contradicts
the ΠG

1 guarantee.
Step III: {Ξsp,ε,Ω∞} /∈ ΠG

1 ∪ΣG1 . The arguments are the same as in Steps I and II. We note that the pseu-
dospectrum is simply the ε ball neighbourhood of the spectrum in these self-adjoint cases. The arguments
work once we scale the operators by N/ε for some large N in order to gain the relevant separations. �

12. PROOFS OF THEOREM 9.3 AND THEOREM 9.4

Proof of Theorem 9.3. We have that SCI(Ξinv,Ω1)A ≥ SCI(Ξinv,Ω1)G ≥ SCI(Ξinv,Ω2)G and SCI(Ξinv,Ω3)G ≥
1. It is also clear that {Ξinv,Ω4} 6∈ ∆G

0 . Hence it is enough to prove that SCI(Ξinv,Ω2)G ≥ 2, SCI(Ξinv,Ω1)A ≤
2, SCI(Ξinv,Ω3)A ≤ 1 and {Ξinv,Ω4} ∈ ∆A

1 .
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Step I: We start by showing that SCI(Ξinv,Ω2)G ≥ 2. For n,m ∈ N \ {1} let

Bn,m :=



1/m 1

1
. . .

1

1 1/m

 ∈ Cn×n

and for a sequence {ln}n∈N ⊂ N \ {1} set

A :=

∞⊕
n=1

Bln,n+1.

Clearly, A defines an invertible operator on l2(N) with bounded inverse. Furthermore, we define b = {bj} ∈
l2(N) such that

bj =


1

n+ 2
j = 1 +

n∑
i=1

li, n ∈ N0

0 otherwise.

Let also Cm := diag{1/m, 1, 1, . . .} and note that its inverse is given by diag{m, 1, 1, . . .}. We argue by
contradiction and suppose that there is a General tower of algorithms Γn of height one such that Γn(A, b)→
Ξinv(A, b) as n → ∞ for (A, b) ∈ Ω2. For such A, b and k ∈ N let N(A, b, k) denote the smallest
integer such that the evaluations from ΛΓk(A, b) only include matrix entries Aij = 〈Aej , ei〉 with i, j ≤
N(A, b, k) and the entries bi with i ≤ N(A, b, k). To obtain a particular counterexample (A, b) we construct
sequences {ln}n∈N and {kn}n∈Z+

inductively such thatA and b are given by {ln} as above but Γkn(A, b) 9
Ξinv(A, b). As a start, set k0 = l0 := 1. The sequence {x(1)

j }j∈N := (C2)−1P1b has a 1 as its first entry
and since, by assumption, Γk → Ξinv, there is a k1 such that, for all k ≥ k1, the first entry of Γk(C2, P1b) is
closer to 1 than 1/2. Then, choose l1 > N(C2, P1b, k1)− l0. Now, for n > 1, suppose that l0, . . . , ln−1 and
k0, . . . , kn−1 are already chosen. Set sn :=

∑n−1
i=0 li. Then also Psnb is already determined and

x
(n)
sn+1 = 1, where {x(n)

j }j∈N := (Bl1,2 ⊕Bl2,3 ⊕ . . .⊕Bln−1,n ⊕ Cn+1)−1Psnb.

Since, by assumption, Γk → Ξinv, there is a kn such that for all k ≥ kn

|x(n,k)
sn+1 − 1| ≤ 1/2, where {x(n,k)

j }j∈N := Γk(Bl1,2 ⊕Bl2,3 ⊕ . . .⊕Bln−1,n ⊕ Cn+1, Psnb).

Now, choose ln > N(Bl1,2 ⊕ Bl2,3 ⊕ . . . ⊕ Bln−1,n ⊕ Cn+1, Psnb, kn) − l0 − l1 − . . . − ln−1. By this
construction we get for the resulting A and b that for every n

Γkn(A, b) = Γkn(Bl1,2 ⊕Bl2,3 ⊕ . . .⊕Bln−1,n ⊕ Cn+1, Psnb).

In particular limk→∞ Γk(A, b) does not exist in l2(N), a contradiction.
Step II: {Ξinv,Ω1} ∈ ∆A

3 . Let A be invertible and Ax = b with the unknown x. Since Pm are compact
projections converging strongly to the identity, we get that the ranks rkPm = rk(APm) = rk(PnAPm) for
every m and all n ≥ n0 with an n0 depending on m and A.

We let ζm,n be an approximation of σ1(PmA
∗PnAPm) from above, accurate to n−1 and computed using

finitely many arithmetic operations and comparisons (over Q) with ∆1-information (Proposition 10.2). We
also let Bm,n denote the corresponding rational approximation of PnAPm used in the computation, which
without loss of generality, we assume to be accurate to at least (2n)−1 in the operator norm. Let bn denote a
rational approximation of Pnb correct to n−1. We can define

Γm,n(A, b) :=

 {0}j∈N if ζm,n ≤ 1
m

(B∗m,nBm,n)−1B∗m,nbn otherwise.
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Note that for every A, b, m, n in view of Proposition 10.2 and any standard algorithm for finite dimensional
linear problems, these approximate solutions can be computed by finitely many arithmetic operations on
finitely many entries of A and b (with ∆1-information), hence Γm,n are general algorithms in the sense of
Definition 6.3 and require only a finite number of arithmetic operations.

Moreover, they converge to ym := (PmA
∗APm)−1PmA

∗b as n→∞. It is well known that ym is also a
(least squares) solution of the optimisation problem ‖APmy − b‖ → min, that is

‖APmym − b‖ ≤ ‖APmx− b‖ ≤ ‖A‖‖Pmx−A−1b‖ = ‖A‖‖Pmx− x‖ → 0

as m→∞. Therefore ‖ym − x‖ = ‖Pmym − x‖ is not greater than

‖A−1‖‖A(Pmym − x)‖ = ‖A−1‖‖APmym − b‖ ≤ ‖A−1‖‖A‖‖Pmx− x‖ → 0,

which yields the convergence ym → x and finishes the proof of Step II.
Step III: {Ξinv,Ω3} ∈ ∆A

2 . Let f be a bound on the dispersion of A. The smallest singular values of the
operatorsAPm are uniformly bounded below by ‖A−1‖−1 which, together with ‖Pf(m)APm−APm‖ → 0,
yields that the limit inferior of the smallest singular values of Pf(m)APm is positive, hence the inverses of
the operators Cm := PmA

∗APm and Dm := PmA
∗Pf(m)APm on the range of Pm exist for sufficiently

large m and have uniformly bounded norm. Moreover, ‖C−1
m −D−1

m ‖ ≤ ‖C−1
m ‖‖Dm − Cm‖‖D−1

m ‖ tend
to zero as m→∞.

This particularly implies that the norms ‖ym − (PmA
∗Pf(m)APm)−1PmA

∗b‖ with ym as above tend to
zero asm→∞, and we easily conclude that the norms ‖ym−Γm,f(m)(A, b)‖ tend to zero as well. With the
convergence ‖ym−x‖ → 0 from the previous proof, now also ‖x−Γm,f(m)(A, b)‖ → 0 holds as m→∞,
which is the assertion SCI(Ξinv,Ω3)A ≤ 1.

Step IV: We prove that {Ξinv,Ω4} ∈ ∆A
1 . To do this we take the algorithm constructed in Step III, and

note that by increasingm if necessary, we can assume that ζm,f(m) ≥ σ1(PmA
∗Pf(m)APm) > 1/m. Hence

we only need to bound the error of the approximation. We have that

‖AΓm,f(m)(A, b)− b‖ ≤ ‖Pf(m)APmΓm,f(m)(A, b)− Pmb‖

+ ‖Pmb− b‖+ ‖(I − Pf(m))APm‖‖Γm,f(m)(A, b)‖

≤ ‖Pf(m)APmΓm,f(m)(A, b)− Pmb‖+ cm(1 + ‖Γm,f(m)(A, b)‖)

and hence the bound

‖Γm,f(m)(A, b)−A−1b‖ ≤M
[
‖Pf(m)APmΓm,f(m)(A, b)− Pmb‖+ cm(1 + ‖Γm,f(m)(A, b)‖)

]
.

Note that this final bound converges to zero and it is also clear that we can approximate it to arbitrary accuracy
using finitely many arithmetic operations and comparisons. �

Remark 12.1. The technique used with uneven sections to obtain the bound SCI(Ξinv,Ω1)A ≤ 2 is also
referred to as asymptotic Moore–Penrose inversion as well as modified (or non-symmetric) finite section
method in the literature, although written in a different form, and is widely used (see e.g. [65, 66, 75, 106,
110]). Also the idea to exploit bounds on the off diagonal decay is considered e.g. in [64] or in the theory of
band-dominated operators and operators of Wiener type (cf. [89, 100, 105]).

Proof of Theorem 9.4. Clearly {Ξnorm,Ω3} 6∈ ∆G
1 and Ω2 ⊂ Ω1, so it is enough to prove {Ξnorm,Ω1} ∈

ΠA
2 , {Ξnorm,Ω3} ∈ ΠA

1 and {Ξnorm,Ω2} 6∈ ∆G
2 . We start with the latter. Let {ln}n∈N be some sequence of
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integers ln ≥ 2. Define

A :=

∞⊕
n=1

Bln − I, Bn :=



1 1

0
. . .

0

1 1

 ∈ Cn×n.

Clearly, such A are invertible and their inverses have norm one. Suppose that {Γk} is a height-one General
tower of algorithms and that ΛΓk(A) only includes matrix entries Aij = 〈Aej , ei〉 with i, j ≤ N(A, k). In
order to find a counterexample we again construct an appropriate sequence {ln} ⊂ N \ {1} by induction:
For C := diag{1, 0, 0, 0, . . .} one obviously has ‖(C − I)−1‖−1 = 0. As a start, choose k0 := 1 and
l1 > N(C − I, k0). Now, suppose that l1, . . . , ln are already chosen. Then the operator given by the matrix
Bl1 ⊕ . . .⊕Bln ⊕ C − I is not invertible, hence there exists a kn such that, for every k ≥ kn,

Γk(Bl1 ⊕ . . .⊕Bln ⊕ C − I) <
1

2
.

Now finish the construction by choosing ln+1 > N(Bl1 ⊕ . . .⊕Bln ⊕ C − I, kn)− l1 − l2 − . . .− ln.
So, we see that

Γkn(A) = Γkn(Bl1 ⊕ . . .⊕Bln ⊕ C − I) 9 ‖A−1‖−1 = 1, n→∞,

a contradiction. Thus {Ξnorm,Ω2} 6∈ ∆G
2 .

In order to prove {Ξnorm,Ω1} ∈ ΠA
2 we introduce the numbers

γ := ‖A−1‖−1 = min{σ1(A), σ1(A∗)}

γm := min{σ1(APm), σ1(A∗Pm)}

γm,n := min{σ1(PnAPm), σ1(PnA
∗Pm)}

and note that γm ↓m γ, and γm,n ↑n γm for every fixed m. We let δm,n be an approximation to γm,n from
above to accuracy n−1, computed using finitely many arithmetic operations and comparisons (over Q) with
∆1-information (Proposition 10.2). Since γm,n ≤ δm,n ≤ γm,n + 1/n, it follows that {δm,n}n converges to
γm for every m, and for ε > 0 there is an m0, and for every m ≥ m0 there is an n0 = n0(m) such that

(12.1) |γ − δm,n| ≤ |γ − γm|+ |γm − γm,n|+ |γm,n − δm,n| ≤ ε/3 + ε/3 + 1/n ≤ ε

whenever m ≥ m0 and n ≥ n0(m). Since δm,n and hence Γm,n(A) := δm,n can again be computed with
finitely many arithmetic operations by Proposition 10.2, this provides an arithmetic tower of algorithms of
height two, with the final convergence from above and hence easily completes the proof that {Ξnorm,Ω1} ∈
ΠA

2 . On Ω3 we apply (12.1) with n = f(m) and straightforwardly check that Γm(A) := δm,f(m) provides
a height 1 tower. If we wish to have ΠA

1 convergence (i.e. convergence from above) then we need to use
the sequence {cn} that bounds the dispersion to bound the difference between δm,f(m) and γm and choose
Γm(A) := δm,f(m) + cm. �

13. SMALE’S PROBLEM ON ROOTS OF POLYNOMIALS AND DOYLE-MCMULLEN TOWERS

In this section, we recall the definition of a tower of algorithms from [45]. We will name this type of tower
a Doyle–McMullen tower and demonstrate how the results in [95] and [45] can be put into the framework
of the SCI. In particular, we will demonstrate how the construction of the Doyle–McMullen tower in [45]
can be viewed as a tower of algorithms defined in Definition 6.5. Note that one can compute zeros of a
polynomial if one allows arithmetic operations and radicals and can pass to a limit. However, what if one
cannot use radicals, but rather iterations of a rational map? A natural choice of such a rational map would be
Newton’s method. The only problem is that the iteration may not converge, and that motivated the question
by Smale quoted in the introduction.
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As we now know from [95], the answer is no. However, the results in [45] show that the quartic and
the quintic can be solved with several rational maps and limits, while this is not the case for higher degree
polynomials. Below we first quote their results and then specify a particular tower of height three in the form
that it can be viewed as a tower of algorithms in the sense of this paper.

13.1. Doyle–McMullen towers. A purely iterative algorithm [113] is a rational map 3

T : Pd → Ratm, p 7→ Tp

which sends any polynomial p of degree ≤ d to a rational function Tp of a certain degree m. An important
example of a purely iterative algorithm is Newton’s method. Furthermore, Doyle and McMullen call a purely
iterative algorithm generally convergent if

lim
n→∞

Tnp (z) exists for (p, z) in an open dense subset of Pd × Ĉ.

Here Tnp (z) denotes the nth iterate Tnp (z) = Tp(T
n−1
p (z)) of Tp. For instance, Newton’s method is generally

convergent only when d = 2. However, given a cubic polynomial p ∈ P3 one can define an appropriate
rational function q ∈ Rat3 whose roots coincide with the roots of p, and for which Newton’s method is
generally convergent (see [95], Proposition 1.2). In [45] the authors provide a definition of a tower of
algorithms, which we quote verbatim:

Definition 13.1 (Doyle–McMullen tower). A tower of algorithms is a finite sequence of generally convergent
algorithms, linked together serially, so the output of one or more can be used to compute the input to the
next. The final output of the tower is a single number, computed rationally from the original input and the
outputs of the intermediate generally convergent algorithms.

Theorem 13.2 (McMullen [95]; Doyle and McMullen [45]). For Pd there exists a generally convergent
algorithm only for d ≤ 3. Towers of algorithms exist additionally for d = 4 and d = 5 but not for d ≥ 6.

Note that, as shown in [109], there are generally convergent algorithms if, in addition, one allows the
operation of complex conjugation. In the following, we present how the Doyle–McMullen towers can be
recast in the form of a general tower as defined in Definition 6.5.

13.2. A height three tower for the quartic. In the following X,Y, . . . denote variables in the polynomials
while x, y, · · · ∈ C. We build the tower following the standard reduction path, see e.g. [43]. Given

p(X) := X4 + a1X
3 + a2X

2 + a3X + a4

one first transforms the equation by change of variable Y = X + a1/4 to arrive into the polynomial

q(Y ) := Y 4 + b2Y
2 + b3Y + b4,

which one writes, with help of a parameter z, as q(Y ) = (Y 2 + z)2 − r(Y, z) where

r(Y, z) = (2z − b2)Y 2 − b3Y + z2 − b4.

Here one wants a value of z such that r(Y, z) becomes a square which requires the discriminant to vanish:
4(2z−b2)(z2−b4)−b23 = 0.Viewing this as polynomial inZ, making a change of variableW = Z+(1/6)b2

and scaling the polynomial to monic we arrive at asking for a root of

(13.1) s(W ) := W 3 + c2W + c3.

As all these are rational computations on the coefficients of p, we shall not express them explicitly.
We denote by N(f, ξ0) the function in Newton’s iteration with initial value ξ0:

ξj+1 := N(f(ξj)) where N(f(ξ)) = ξ − f(ξ)

f ′(ξ)

3I.e. it’s a rational map of the coefficients of p.
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and further byNj the mapping from initial data to the jth iterateNj : (f, ξ0) 7→ ξj .We shall apply Newton’s
iteration to the rational function [45]

t(W ) :=
s(W )

3c2W 2 + 9c3W − c22
.

Thus wj = Nj(t, w0) denotes the jth iterate wj for a zero for s(w) = 0. This iteration converges in an open
dense set of initial data. Denote w∞ := limj→∞ wj . Now we change the variable Z = W − (1/6)b2 and,
denoting by zj and z∞ the corresponding values, we obtain r(Y, z∞) as a square:

r(Y, z∞) = (2z∞ − b2)

(
Y − b3

2(2z∞ − b2)

)2

.

To find a zero of q(Y ) we shall need to have a generally convergent iteration for
√

2z − b2. Thus, we set
uj(V ) := V 2 + b2 − 2zj and apply Newton’s method for this, starting with initial guess v0 and iterating k
times and set vk,j := Nk(uj , v0). From q(Y ) = (Y 2 + z∞)2 − r(Y, z∞) = 0 we move to solve one of the
factors

Q(Y ) = Y 2 + z∞ −
√

2z∞ − b2
(
Y − b3

2(2z∞ − b2)

)
= 0.

However, we can do this only based on approximative values for the parameters, so we set

Qk,j(Y ) = Y 2 + zj − vk,j
(
Y − b3

2(2zj − b2)

)
= 0.

Now apply Newton’s iteration to this, say n times, using starting value y0 and denote the output by yn,k,j :

yn,k,j = Nn(Qk,j , y0).

Finally, we set xn,k,j = yn,k,j − a1/4 in order to get an approximation to a root of p. Suppose now
j = n1, k = n2, n = n3. If n1 → ∞ then wn1

→ w∞ and hence zn1
→ z∞, too. It is natural to denote

u(V ) := V 2 + b2 − 2z∞ and correspondingly vn2
:= Nn2

(u, v0) and

Qn2(Y ) = Y 2 + z∞ − vn2

(
Y − b3

2(2z∞ − b2)

)
= 0.

Then in an obvious manner xn3,n2
= Nn3

(Qn2
, y0)− a1/4. Then we have limn1→∞ xn3,n2,n1

= xn3,n2
. If

we denote xn3 = Nn3(Q, y0)− a1/4, then clearly limn2→∞ xn3,n2 = xn3 . Finally x∞ = limn3→∞ xn3 is
a root of p.
The link to the SCI. One special feature of these towers, which are built on generally convergent algorithms,
is the following: in addition to the polynomial p, the initial values for the iterations have to be read into the
process via evaluation functions. Denoting the initial values for the three different Newton’s iterations by
d0 = (w0, v0, y0) ∈ C3 we can now put this Doyle–McMullen tower in the form of a general tower as
defined in Definition 6.5, with the slight weakening that, for each p ∈ P4, the tower might converge only at
a dense subset of initial values. In particular, set

Γn3
: P4 × C3 → C, by (p, d0) 7→ xn3

,

Γn3,n2 : P4 × C3 → C by (p, d0) 7→ xn3,n2 ,

Γn3,n2,n1
: P4 × C3 → C by (p, d0) 7→ xn3,n2,n1

.

Thus, if we let Ω = P4 × C3 and Ξ,M be as in Example 6.1 (III), and complement Λ by the mappings that
read w0, v0, y0 from the input, then by the construction above and Theorem 13.2 we have that

SCI(Ξ,Ω)DM ∈ {2, 3}.
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13.3. A height three tower for the quintic. Let

p(X) = X5 + a1X
4 + a2X

3 + a3X
2 + a4X + a5

be the given quintic. Doyle and McMullen [45] give a generally convergent algorithm for the quintic in
Brioschi form. Thus, one needs first to bring the general quintic to Brioschi form, then apply the iteration
and finally construct at least one root for p(X). In the following, we outline a path for doing this, which
follows L. Kiepert [85] except that the Brioschi quintic is solved by Doyle–McMullen iteration rather than
by using Jacobi sextic. This path can be found in [86].

One begins applying a Tschirnhaus transformation Y = X2 − uX + v to arrive into principal form

q(Y ) = Y 5 + b3Y
2 + b4Y + b5.

Here v is obtained from a linear equation but to solve u one needs to solve a quadratic equation Q(U) =

U2 + αU + β, where the coefficients α, β are rational expressions of the coefficients of p(X), (see for
example p. 100, eq. (6.2-9) in [86]).

Here is the first application of Newton’s method. We are given an initial value u0 and iterate j times
uj = Nj(Q, u0). We may assume that v is known exactly but we only have an approximation uj to make
the transformation. So, suppose the Newton iteration converges to u∞. Thus, we make the transformation
using uj and force the coefficients b2,j = b1,j = 0 while keep the others as they appear. The transformation
being continuous yields polynomials

qj(Y ) = Y 5 + b3,jY
2 + b4,jY + b5,j ,

whose roots shall converge to those of q(Y ). The next step is to transform qj(Y ) into Brioschi form. Let the
Brioschi form corresponding to the exact polynomial q(Y ) be denoted by B(Z)

(13.2) B(Z) = Z5 − 10CZ3 + 45C2Z − C2 = 0,

while withBj(Z) we denote the exact Brioschi form corresponding to qj(Y ). The transformation from q(Y )

to B(Z) is of the form

(13.3) Y =
λ+ µZ

(Z2/C)− 3
.

Here λ satisfies a quadratic equation with coefficients being polynomials of the coefficients in the principal
form (p. 107, eq. (6.3-28) in [86]). Let us denote that quadratic by R(L) when it comes from q(Y ) and
by Rj(L) when it comes from qj(Y ) respectively. Thus here we meet our second application of Newton’s
method. So, we denote by

λk,j := Nk(Rj , λ0)

the output of iterating k times for a solution of Rj(L) = 0. And, in a natural manner, we denote also

λk = Nk(R, λ0) and λ = lim
k→∞

Nk(R, λ0).

The corresponding values of µk,j , µk and µ are then obtained by simple substitution (p. 107, eq. (6.3-30)
in [86]). The Tschirnhaus transformation with exact values (λ, µ) transforms the equation not yet to the
Brioschi form with just one parameter C but such that the constant term may be different. However, the
last step is just a simple scaling, and then one is in the Brioschi form (13.2). However, when we apply the
transformation with the approximated values (λk,j , µk,j) or with (λk, µk) we do not arrive at the Brioschi
form. So, we force the coefficients of the fourth and second powers to vanish and replace the coefficients of
the first power to match with the coefficients in the third power. Finally, after scaling the constant terms we
have the Brioschi quintics Bk,j and Bk, e.g.

(13.4) Bk,j(Z) = Z5 − 10Ck,jZ
3 + 45C2

k,jZ − C2
k,j = 0.
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Provided that the Newton iterations converge, that is, the initial values (u0, λ0) are generic, these quintics
converge to the exact one.

Here we apply the generally convergent iteration by Doyle and McMullen [45]. They specify a rational
function

TC(Z) = z − 12
gC(Z)

g′C(Z)

where g is a polynomial of degree 6 in the variable C and of degree 12 in Z. Starting from an initial guess
wo from an initial guess wn+1 = TC(TC(wn)) to convergence and applying TC still once, we obtain, after
a finite rational computation with these two numbers, two roots of the Brioschi, say zI and zII . If applied
to the approximative quintics and if the iteration is truncated after n steps, together with the corresponding
post-processing, we have obtained e.g. a pair (zI,n,k,j , zII,n,k,j).

What remains is to invert the Tschirnhaus transformations. Suppose z is a root of the exact Brioschi form
(13.2). Then the corresponding root of the principal quintic is obtained immediately from (13.3)

ty =
λ+ µz

(z2/C)− 3
.

Naturally, we can only apply this using approximated values for the parameters. Finally, one needs to
transform the (approximative roots) of the principal quintic to (approximative) roots for the original general
quintic p(X). This is done by a rational function X = r(Y ) where r(Y ) is of second order in Y and the
coefficients are polynomials of the coefficients if the original p(X) and u and v (p. 127, eq. (6.8-3) in [86]).
Again, we would be using only approximative values uj in place of the exact u. In any case, at the end we
obtain a pair of approximations to the roots of the original quintic. If we put n1 = j, n2 = k and n3 = n,
then this pair could be denoted by (xI,n3,n2,n1

, xII,n3,n2,n1
).

The link to the SCI. In the same way as with the quartic, we assume that the initial value d0 = (u0, λ0, w0) ∈
C3 is generic, so that all iterations converge for large enough values and since the transformations are con-
tinuous functions of the parameters in it, all necessary limits exist and match with each other. The functions
Γn3,n2,n1

can then be identified in a natural manner:

Γn3 : P5 × C3 → C2, by (p, d0) 7→ (xI,n3 , xII,n3),

Γn3,n2
: P5 × C3 → C2 by (p, d0) 7→ (xI,n3,n2

, xII,n3,n2
),

Γn3,n2,n1
: P5 × C3 → C2 by (p, d0) 7→ (xI,n3,n2,n1

, xII,n3,n2,n1
),

where (xI,n3,n2 , xII,n3,n2) and (xI,n3 , xII,n3) are the limits as n1 → ∞ and n2 → ∞ respectively. These
limits exist for initial values in an open dense subset of C3. Hence, we let Ω = P5 × C3, and Ξ,M,Λ be
as in case of the quartic. Then, by the construction above and Theorem 13.2 we have, again in a slightly
weakened sense, that

SCI(Ξ,Ω)DM ∈ {2, 3}.

13.4. Particular initial guesses and height one towers. The special feature of the above mentioned Doyle–
McMullen towers is that they address the question of whether one can achieve converge to the roots of a
polynomial p for (almost) arbitrary initial guesses. With a slight change of perspective, one might also ask
the question of how large the SCI gets if one applies purely iterative algorithms after a suitable clever choice
of initial values. And indeed, the answer to this question is very satisfactory: For polynomials of arbitrary
degree, one can compute the whole set of roots (more precisely: approximate it in the sense of the Hausdorff
distance) by a tower of height one which just consists of Newton’s method.

The key tool for the choice of the initial values is the main theorem of [78]:

Theorem 13.3 (Hubbard, Schleicher and Sutherland [78]). For every d ≥ 2 there is a set Sd consisting of at
most 1.11d log2 d points in C with the property that for every polynomial p of degree d and every root z of p
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there is a point s ∈ Sd such that the sequence of Newton iterates {sn}n∈N := {Nn
p (s)}n∈N converges to z.

In particular, the proof is constructive, and these sets Sd can easily be computed.

A further important property of Newton’s method is that, in the case of convergence, the speed is at least
linear: If zn := Nn

p (s) tend to a root z of p then there exists a constant c such that |zn − z| ≤ c/n. Finally
we have the following.

Proposition 13.4. Let p be a polynomial of degree d, ε > 0 and zn := Nn
p (s). If |zn− zn+1| < ε

d then there
is a root z of p with |zn − z| < ε.

Proof. We have
∣∣∣ p(zn)
p′(zn)

∣∣∣ = |zn−zn+1| < ε
d , hence |p(zn)| < ε|p′(zn)|

d . Decompose p(x) = aΠd
i=1(x−xi),

notice that p′(x) = a
∑d
j=1 Πd

i=1,i6=j(x − xi), choose j such that |Πd
i=1,i6=j(zn − xi)| is maximal, and

conclude that

|aΠd
i=1(zn − xi)| = |p(zn)| < ε|p′(zn)|

d
≤ ε|aΠd

i=1,i6=j(zn − xi)|,

thus |zn − xj | < ε. Now z = xj is a root as asserted. �

Let p be a polynomial of degree d. For each s ∈ Sd let sn denote the nth Newton iterates of s, and define

(13.5) Γn(p) :=

{
sn : s ∈ Sd, |sn − sn+1| <

1√
n

}
.

Then (Γn(p)) converges to the set Z(p) of all zeros of p in the Hausdorff metric. Indeed, let z be a zero of p.
By Theorem 13.3 there is an initial value s ∈ Sd such that sn = Nn

p (s) tend to z with at least linear speed,
i.e.

|sn − sn+1| ≤ |sn − z|+ |sn+1 − z| ≤
2c

n
<

1√
n

for all large n, hence sn ∈ Γn(p) for all large n. Conversely, each sn ∈ Γn(p) has the property that its
distance to the set Z(p) is less than ε = d√

n
by Proposition 13.4.

Therefore we define Ωd = Pd to be the set of polynomials of degree d, M the set of finite subsets of
C equipped with the Hausdorff metric, and Ξ : Ωd → M be the mapping that sends p ∈ Ωd to the set of
its zeros. Further, Λd shall consist of the evaluation functions that read the coefficients of the polynomial
p ∈ Ωd, and the constant functions with the values s ∈ Sd. Note again that these values can be effectively
constructed.

Theorem 13.5. Consider (Ξ,Ωd,M,Λd) as above. Then the algorithms (13.5) define an arithmetic tower
of height one for the computation of the roots of each input polynomial p with error control. Thus this tower
realises {Ξ,Ωd,M,Λd} ∈ ΣA1 . Moreover, this tower employs just Newton’s Method, i.e. a purely iterative
algorithm.

14. COMPUTATIONAL EXAMPLES

The purpose of this section is to demonstrate that the new towers of algorithms developed to yield the
sharp classifications in the SCI hierarchy are indeed practical and yield implementable algorithms that are
efficient. In the case of ΣA1 classifications, up to a user specified error tolerance, they will never produce
incorrect output. This fact makes the algorithms particularly suited for computer assisted proofs. Moreover,
they provide the first computations done of spectra of several types of operators (in particular Schrödinger
operators) that before were out of reach. Convergent algorithms that never make mistakes are of course
sought after in the sciences, and the reader may consult [34] to see the algorithms used in practice for large
scale problems in physics.
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FIGURE 3. The figure shows a Γn(A) ∩ K (black) for a compact set K ⊂ C on top of
a part of sp(A) (blue) for different increasing values of n corresponding to the chosen ε,
where A is the shift operator on l2(Z).

14.1. Toeplitz operators. Toeplitz and Laurent operators are familiar test objects given that their spectra
are very well understood [26, 27]. In this first example, we are concerned with operators that are banded
with known growth on their resolvents. In particular, the problem of computing the spectrum lies in ΣA1 and
has SCI = 1. Since the problem does not lie in ΠG

1 , we monitor the changes of Γn(A) as n → ∞. This is
common practice in computations when error control is not available. In particular, we choose an ε > 0 and
K ∈ N and stop the iteration when

(14.1) max{En(A), d(Γn(A),Γn+k(A))} ≤ ε for all k ≤ K.

Here En(A) refers to the error guarantee Γn(A) ⊂ sp(A) + BEn(A)(0) provided by the algorithm. To
visualise the convergence, we tested the tower of height one on the shift operator in Figure 3. Note that it is
crucial to know the SCI of the problem so that one can apply the tower of algorithms with the correct height.
In particular, trying to solve this problem with a tower of height two would make the computation incredibly
more complex. Compare, for example, with the experiment in §14.5.

14.2. Spectra and approximate eigenvectors of operators on aperiodic tilings. Quasicrystals,4 and more
generally aperiodic systems, have generated considerable interest due to their often exotic physical/spectral
properties [108,116]. However, the lack of reliable algorithms have limited the insight obtained from compu-
tations. We present the first rigorous spectral computational study with error bounds on an Ammann–Beenker
tiling, a standard 2D model of a quasicrystal [1, 117]. Such models are difficult to deal with due to the lack
of translational symmetry. The tiling has eight-fold rotational symmetry, shown in Figure 5 (left), which has
been found to occur in real quasicrystals, e.g. in [125]. We consider a magnetic Hamiltonian

(14.2) (Hψ)a = −
∑
a∼b

eiαb,aψb,

4Discovered in 1982 by D. Shechtman who was awarded the Nobel prize in 2011 for his discovery.
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FIGURE 4. Top: Output of the algorithm providing ΣA1 classification computing spectra
of the Hamiltonian in (14.2) with error tolerance parameter 10−2 and different strengths of
the magnetic field. The algorithm correctly leaves out the gaps and shows the fractal nature
of the spectrum. Bottom: Output of the finite section method (4000 basis sites) showing
severe spectral pollution.

where the a ∼ bmeans vertices a and b are connected by an edge, and hence the summation is over connected
sites. A constant perpendicular magnetic field with potential A(x, y, z) = (0, xB, 0) with B ∈ R is applied,
leading to the Peierls phase factor between sites a and b:

αb,a =

∫ a

b

A · dl,
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FIGURE 5. Left: Finite portion of the Ammann–Beenker tiling. The vertices correspond
to the sites. Middle and Right: Approximate states (eigenvectors) ψ corresponding to the
value λ = 0 for B = π, 2π (logarithm of absolute value shown). These have bounds of
‖(H − λ)ψ‖ by 3.3 × 10−7 and 1.5 × 10−6 respectively and were computed using 105

basis sites.

where l is the arclength. Figure 4 shows the output of the algorithm providing ΣA1 classification computing
spectra of the Hamiltonian in (14.2) for different values ofB ∈ [0, 2π] using the stopping criterion (14.1) and
an error tolerance of 10−2 . The algorithm correctly leaves out the gaps in the spectrum, avoiding spectral
pollution. We also show the output of the finite section method which suffers from severe spectral pollution.
One can study quasiperiodic tilings via periodic approximates [46]. However, it is not clear how these
approximations affect the spectrum [94] and in the case of magnetic field, this imposes severe restrictions
on the values of B allowed [121]. In contrast, there is no such limitation for the new algorithm, which also
provides rigorous error bounds and is guaranteed to converge. The new algorithm can also be used for non-
constant magnetic fields. Finally, in Figure 5, we have also shown approximate eigenvectors for different
values of B.

14.3. Non-Hermitian Hamiltonians. Non-Hermitian Hamiltonians have been standard in open systems,
however, they have also found their way to quantum mechanics of closed systems [17, 18]. The non-self-
adjointness make spectral computations incredibly difficult, and algorithms have typically not been available
for rigorous computations. As an example of computing pseudospectra and to demonstrate generality, we
consider a non-normal operator A on l2(N) given by

(14.3) (Ax)n =

xn−1 + i sin(n)xn − xn+1, if n+ 1 is prime

xn−1 + i sin(n)xn + xn+1, otherwise,
,

with the convention that x0 = 0. Figure 6 shows pseudospectra computed using the new algorithm provid-
ing ΣA1 classification and attempts of computing pseudospectra using square finite section truncations for
2000 basis vectors. We see that taking square truncations gives rise to over estimates of the resolvent norm
resulting in incorrect spectral information.

14.4. Schrödinger operator on R. We now test the algorithm that computes spectra of Schrödinger opera-
tors

H = −∆ + V, V : Rd → R,

acting on W2,2(R) (i.e. a continuum model) with bounded potential. This example demonstrates the power
of the ΣA1 classification of Theorem 8.3. Recall that our algorithm uses only evaluations of the potential
itself. As the class of problems considered are ∈ ΣA1 and have SCI = 1, we shall use the stopping criterion
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FIGURE 6. Left: Pseudospectra for the operator given by (14.3) computed by the algo-
rithm providing ΣA1 of the problem of computing pseudospectra. The colourbars corre-
spond to the logarithm (base 10) of the resolvent norm (truncated at 4 for visibility). Right:
failed attempt of computing pseudospectra with classical square truncation of the operator.

FIGURE 7. A portion of the computed spectrum of the one dimensional Schrödinger op-
erator with potential Vλ from (14.4) computed with an algorithm, providing the ΣA1 clas-
sification, with error bound ε = 0.01.

in (14.1) with ε = 0.01. We chose the slowly decaying potentials

(14.4) Vλ(x) = cos(x) + λ
sin(x)

x
.

When λ = 0, the operator is periodic, and computation of the spectrum reduces to computing spectra of
two differential operators on a compact interval (with periodic and anti-periodic boundary conditions) which
have compact resolvent. However, when λ 6= 0, eigenvalues appear in the gaps of the essential spectrum
(and below), and methods based on finite section produce spectral pollution. Additionally to this, the slow
decay of the potential makes this extremely difficult to detect via other means. In Figure 7 we display the
computation of a portion of the spectrum in [−1, 2] for various choice of λ and the error bound ε = 0.01.
The algorithm allows us to track eigenvalues in the gaps with error control guaranteeing the error bound.

14.5. The operator f(Q). If we consider the multiplication operator (Qg)(x) = xg(x) on L2(R), then,
for a bounded continuous function f : R → R, the spectrum of f(Q) is the range of the function f . In
this example we use f(x) = i(exp(−2πix)−1)

2πx . To create an infinite matrix representation of f(Q) we first
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FIGURE 8. The left figure is a zoomed in part of sp(f(Q)). The two following figures
are Γn,m(A) and Γn+p,m+s(A) (restricted to the zoomed in part) to visualise the stopping
criterion in (14.5). To get a better approximation a smaller ε must be chosen. A is the
matrix representation of f(Q). The right figure is the result of the finite section method
trying to compute sp(f(Q)).

consider the following Gabor basis for L2(R):

e2πimxχ[0,1](x− n), m, n ∈ Z,

(where χ is the characteristic function) and then chose some enumeration of Z × Z into N to obtain a basis
{ψj} that is just indexed over N. To get our basis we let ϕj = Fψj , where F is the Fourier Transform.
Finally we obtain the infinite matrix representation Aij = 〈f(Q)ϕj , ϕi〉. Note that this becomes a full
infinite matrix, however, we know the growth of the resolvent of the operator, thus, this is a problem in the
class ΣA2 with SCI = 2. As there are now two limits, our algorithm depends on two parameters, namely m
and n, and we compute Γn,m(A). This means that the stopping criterion from (14.1) becomes as follows.
Choose ε > 0 and K ∈ N. Define, for any n, l ∈ N,

Γ̃n(A) := Γn,m(A), m = min{p : d(Γn,p(A),Γn,p+k(A) ≤ ε for all k ≤ K}

Γ̃(A) := Γ̃l(A), l = min{p : d(Γ̃p(A), Γ̃p+k(A) ≤ ε for all k ≤ K},
(14.5)

and let the output be Γ̃(A). This stopping criterion is obviously a generalisation of (14.1) and extends in
an obvious way to several limits. Note however how incredibly more complex it gets by adding one more
limit. In Figure 8 we have plotted Γn,m(A) and Γn+p,m+s(A) visualizing an output based on the two limit
stopping criterion in (14.5). We also plotted the result of the finite section method. As we are computing
within the class of problems with SCI = 2, there is of course no way that the finite section method could
work.
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APPENDIX A. PROOF OF PROPOSITION 6.15 AND GENERALISATIONS

A.1. Proof of Proposition 6.15 parts (i) and (ii). Let (M, d) be a metric space with the Attouch–Wets or
Hausdorff topology induced by another metric space (M′, dM′). For the Attouch–Wets topology and any
fixed x0 ∈M′ we set

dAW(C1, C2) =

∞∑
n=1

2−n min{1, supdM′ (x0,x)≤n |dist(x,C1)− dist(x,C2)|},

for C1, C2 ∈ Cl(M′), where Cl(M′) denotes the set of non-empty closed subsets ofM′. In the case that
M′ = C with the usual metric we take x0 = 0. Using the notation of §6, we have the following ‘sandwich’
lemma.

Lemma A.1. Suppose that (M, d) is the Hausdorff or Attouch–Wets topology induced by a metric space
(M′, dM′). Let ε > 0. Suppose also that A,A′, B,B′, C ∈ M with A⊂M′ A′, C ⊂M′ B′, d(C,A′) ≤ ε

and d(B,B′) ≤ ε. Then d(A,C) ≤ d(A,B) + 2ε.

Proof. Suppose first that (M, d) is the Hausdorff topology. If x ∈ C then x ∈ B′ and dist(x,A) ≤
d(B′, A) ≤ d(A,B) + ε. On the other hand, if x ∈ A then x ∈ A′ and dist(x,C) ≤ d(A′, C) ≤ ε. The
result now follows.

Suppose now that (M, d) is the Attouch–Wets topology and let x ∈M′. Since C ⊂M′ B′ we must have

dist(x,A)−dist(x,C) ≤ dist(x,A)−dist(x,B′) ≤ |dist(x,A)− dist(x,B)|+|dist(x,B)− dist(x,B′)| .

Similarly, since A⊂M′ A′ we must have

dist(x,C)− dist(x,A) ≤ dist(x,C)− dist(x,A′) ≤ |dist(x,C)− dist(x,A′)| .

It follows that

|dist(x,A)− dist(x,C)| ≤ |dist(x,A)− dist(x,B)|+|dist(x,B)− dist(x,B′)|+|dist(x,C)− dist(x,A′)| .

The result now follows. �

Proposition A.2. Let (M, d) be either a metric space with the Attouch–Wets or Hausdorff topology induced
by another metric space (M′, dM′) or a totally ordered metric space with order respecting metric. Suppose
we have a computational problem

Ξ : Ω→M,

with a corresponding convergent Σαk tower Γ1
nk,...,n1

and a corresponding convergent Πα
k tower Γ2

nk,...,n1

(either both arithmetic or both general). Suppose also that 1 ≤ k ≤ 3 and that, in the case of arithmetic
towers, we can compute for every A ∈ Ω the distance d(Γ1

nk,...,n1
(A),Γ2

nk,...,n1
(A)) to arbitrary precision

using finitely many arithmetic operations and comparisons. Then {Ξ,Ω} ∈ ∆α
k .

Remark A.3. This proposition essentially says that we can combine the two notions of error control Πk and
Σk to reduce the number of limits needed by one.

Proof of Proposition A.2. Step I: For k = 1 and the case that (M, d) is either a metric space with the
Attouch–Wets or Hausdorff topology, this is a trivial consequence of Lemma A.1. Let δn1

be an approxima-
tion of

d(Γ1
n1

(A),Γ2
n1

(A)) + 2 · 2−n1

from above to accuracy 1/n1. Note that suitable approximations can easily be generated using approxima-
tions of d(Γ1

n1
(A),Γ2

n1
(A)). Let ε > 0, then simply choose n1 ∈ N minimal such that δn1 ≤ ε. In the case

that (M, d) is totally ordered with order respecting metric

d(Γ1
n1

(A),Ξ(A)) ≤ d(Γ1
n1

(A),Γ2
n1

(A)),
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and we can take n1 large such that the right-hand side is less than the given ε (recall we can compute the
right-hand side to arbitrary precision). Set Γ(A) = Γ1(A), then we have

d(Γ(A),Ξ(A)) ≤ ε.

Step II: For larger k we use the same idea, but we must be careful to ensure the first k − 1 limits exist.
For the rest of the proof, d̃ will denote an approximation of d to accuracy 1/n1 (which by assumption can
always be computed).

We first deal with the case k = 2. Let ε > 0 and consider the intervals J1
ε = [0, ε] and J2

ε = [2ε,∞). Let
δn2,n1

(A) be an approximation of

d(Γ1
n2,n1

(A),Γ2
n2,n1

(A)) + 2 · 2−n2

from above to accuracy 1/n1. Again note that we can easily construct such approximations. It is clear that
limn1→∞ δn2,n1(A) = d(Γ1

n2
(A),Γ2

n2
(A)) + 2 · 2−n2 =: δn2(A) and that d(Γ1

n2
(A),Ξ(A)) ≤ δn2(A)

(again appealing to Lemma A.1 if we are in the case of the Attouch–Wets or Hausdorff topologies). Given
n1, n2, let l(n2, n1) ≤ n1 be maximal such that δn2,l(A) ∈ J1

ε ∪ J2
ε . If no such l exists or δn2,l(A) ∈ J1

ε

then define Osc(ε;n1, n2, A) = 1 otherwise define Osc(ε;n1, n2, A) = 0. Since δn2,n1
(A) cannot oscillate

infinitely often between the two intervals J1
ε and J2

ε , it follows that

Osc(ε;n2, A) := lim
n1→∞

Osc(ε;n1, n2, A)

exists. Define Γεn1
(A) as follows. Choose j ≤ n1 minimal such that Osc(ε;n1, j, A) = 1 if such a j exists,

and define Γεn1
(A) = Γj,n1

(A). If no such j exists then define Γεn1
(A) = C0 where C0 is any fixed member

of (M, d). In particular, Γεn1
is a type α algorithm. Now for large n2, we must have δn2

(A) < ε and hence
Osc(ε;n2, A) = 1. It follows that Γε(A) = limn1→∞ Γεn1

(A) exists and is equal to Γ1
N (A) where N ∈ N is

minimal with Osc(ε;N,A) = 1. It follows that d(Γε(A),Ξ(A)) ≤ 2ε.
We will use the Γεn1

(A) to construct a height one tower. Observe first of all that by our assumptions we
can compute d̃(Γε1m(A),Γε2n (A)) for m,n ∈ N and ε1, ε2 > 0. Given n1, choose j = j(n1) ≤ n1 maximal
such that for all 1 ≤ l ≤ j we have

(A.1) d̃(Γ2−j

n1
(A),Γ2−l

n1
(A)) ≤ 4(2−j + 2−l).

If no such j exists then set Γn1
= C0, otherwise set Γn1

(A) = Γ2−j(n1)

n1
(A). Again, this is easily seen to

be a type α algorithm. Pick any N ∈ N, then by the convergence of the Γεn1
(A) and d(Γε(A),Ξ(A)) ≤ 2ε,

(A.1) must hold for j = N and 1 ≤ l ≤ N if n1 is large enough. Hence by definition of j(n1),

lim sup
n1→∞

d(Γn1
(A),Ξ(A)) ≤ lim sup

n1→∞
d(Γ2−N

n1
(A),Ξ(A)) + 23−N ≤ 24−N .

Since N was arbitrary we must have convergence to Ξ(A).
Step III: We now deal with k = 3. The strategy will be similar to the k = 2 case but now we construct

Γεn2,n1
(A) such that Γεn2

(A) := limn1→∞ Γεn2,n1
(A) exists and is 3ε close to Ξ(A) for large n2, but may

not converge in (M, d). Using this, we will construct a height two type α tower.
As in Step II, let ε > 0 and consider the intervals J1

ε = [0, ε] and J2
ε = [2ε,∞). Let δn3,n2,n1

(A) be an
approximation of

d(Γ1
n3,n2,n1

(A),Γ2
n3,n2,n1

(A)) + 2 · 2−n3 ,

from above to accuracy 1/n1. Again, we have

lim
n2→∞

lim
n1→∞

δn3,n2,n1(A) = d(Γ1
n3

(A),Γ2
n3

(A)) + 2 · 2−n3 =: δn3(A)

exists with d(Γ1
n3

(A),Ξ(A)) ≤ δn3(A). Given n1, n2 and j, let l(j, n2, n1) ≤ n1 be maximal such that
δj,n2,l(A) ∈ J1

ε ∪ J2
ε . If no such l exists or δj,n2,l(A) ∈ J1

ε then define Osc(ε;n1, n2, j, A) = 1 otherwise
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define Osc(ε;n1, n2, j, A) = 0. Arguing as in Step I we have

Osc(ε;n2, j, A) := lim
n1→∞

Osc(ε;n1, n2, j, A)

exists. Now consider Osc(ε;n1, n2, j, A) for j ≤ n2. If such a j exists with Osc(ε;n1, n2, j, A) = 1 then let
j(n1, n2) be the minimal such j and set Γεn2,n1

(A) = Γ1
j(n1,n2),n2,n1

(A). Otherwise set Γεn2,n1
(A) = C0,

where again C0 is some fixed member of (M, d). Since we only deal with finitely many j ≤ n2, it is clear
that Γεn2,n1

is a type α algorithm. Furthermore, we must have that Γεn2
(A) := limn1→∞ Γεn2,n1

(A) exists
and is defined as follows. Let j(n2) ≤ n2 be minimal with Osc(ε;n2, j, A) = 1 (if such a j exists). If such
a j exists then Γεn2

(A) = Γ1
j(n2),n2

(A), otherwise Γεn2
(A) = C0.

Now there exists N ∈ N such that δN (A) < ε/2 and hence δN,n2(A) < ε for large n2. But this implies
that Osc(ε;n2, N,A) = 1. Hence for n2 large we must have j(n2) ≤ N . If δl(A) > 2ε then for large n2

we must have δl,n2
(A) > 2ε and hence Osc(ε;n2, l, A) = 0. As n2 increases, j(n2) may not converge.

However, the above arguments show that for large n2 it can take only finitely many values, say in the set
S = {s1, ..., sm}, all of which must have δsi(A) ≤ 2ε. It follows that for large n2 we must have

(A.2) d(Γεn2
(A),Ξ(A)) ≤ 3ε.

Now we get to work using these ‘towers’ (which don’t necessarily converge in the last limit) and the trick
to avoid oscillations. Define

F (n1, n2, j, l, A) := d̃(Γ2−j

n2,n1
(A),Γ2−l

n2,n1
(A)),

F (n2, j, l, A) := lim
n1→∞

F (n1, n2, j, l, A) = d(Γ2−j

n2
(A),Γ2−l

n2
(A))

and the intervals J1
j,l = [0, 4(2−j+2−l)], J2

j,l = [8(2−j+2−l),∞). Given j, l, n1 and n2, let i(j, l, n2, n1) ≤
n1 be maximal such that F (i, n2, j, l, A) ∈ J1

j,l ∪ J2
j,l. If no such i exists or if it does and F (i, n2, j, l, A) ∈

J1
j,l then define Ôsc(n1, n2, j, l, A) = 1 otherwise define Ôsc(n1, n2, j, l, A) = 0. Choose j = j(n1, n2) ≤
n2 maximal such that for all 1 ≤ l ≤ j we have Ôsc(n1, n2, j, l, A) = 1. If no such j exists then set
Γn2,n1

= C0, otherwise set Γn2,n1
(A) = Γ2−j(n1,n2)

n2,n1
(A). Again, this is easily seen to be a type α algorithm.

Arguing as before, we have the existence of

Ôsc(n2, j, l, A) := lim
n1→∞

Ôsc(n1, n2, j, l, A).

Now define h = h(n2) ≤ n2 maximal such that for all 1 ≤ l ≤ h we have Ôsc(n2, h, l, A) = 1. If no such
h exists then we must have

Γn2
(A) := lim

n1→∞
Γn2,n1

(A) = C0,

otherwise we must have
Γn2

(A) := lim
n1→∞

Γn2,n1
(A) = Γ2−h(n2)

n2
(A).

By (A.2), for any fixed j, l we have Ôsc(n2, j, l, A) = 1 for large n2 and hence h(n2) exists for large n2 and
diverges to∞. Now let N ∈ N then it follows that

lim sup
n2→∞

d(Γ2−h(n2)

n2
(A),Ξ(A)) ≤ lim sup

n2→∞
d(Γ2−N

n2
(A),Ξ(A)) + d(Γ2−h(n2)

n2
(A),Γ2−N

n2
(A))

≤ 3 · 2−N + lim sup
n2→∞

8(2−h(n2) + 2−N ) ≤ 11 · 2−N .

Since N was arbitrary we must have convergence to Ξ(A). �

Proof of Proposition 6.15 parts (i) and (ii). The statement regarding intersections follows directly from Propo-
sition A.2 and the following remark - no assumptions on being able to compute distances between output of
algorithms is necessary when considering general towers. For the sharpness result in (i), we deal withX = Σ

and the X = Π follows from an identical argument. Suppose that ∆G
k 63 {Ξ,Ω} ∈ Σαk . If {Ξ,Ω} ∈ Πα

k , we
would have {Ξ,Ω} ∈ Σαk ∩Πα

k ⊂ ΣGk ∩ΠG
k = ∆G

k , a contradiction. �
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A.2. Proof of Proposition 6.15 part (iii). To prove this part, we consider the following alternative definition
in the case thatM = {0, 1}. Note that if we restricted to recursivity in the Turing sense with Ξ describing
subsets of N, this would correspond to the classical arithmetical hierarchy. However, it is much more general
and also encompasses the work of F. Cucker [36] in the BSS model.

Definition A.4 (SCI hierarchy,M = {0, 1} (alternative definition)). Suppose thatM = {0, 1}. We define
the following

(i) We say that Ξ : Ω→M permits a representation by an alternating quantifier form of length m if

Ξ = (Qmnm) · · · (Q1n1)Γnm,...,n1
,

where (Qi) is a list of alternating quantifiers (∀) and (∃), and all Γnm,...,n1
: Ω → M are general

algorithms in the sense of Definition 6.3.
(ii) We say that {Ξ,Ω} is Σm if an alternating quantifier form of length m exists with Qm being (∃),

and that {Ξ,Ω} is Πm if an alternating quantifier form of length m exists with Qm being (∀).
(iii) We say that {Ξ,Ω} is ∆m if {Ξ,Ω} is Σm and Πm.

It is not clear from the wordings of Definition 6.11 and Definition A.4 that they are equivalent. However,
the next proposition provides the link.

Proposition A.5 (The SCI hierarchy encompasses the arithmetical hierarchy). WhenM = {0, 1}, Definition
6.11 and Definition A.4 are equivalent and hence the SCI encompasses generalisations of the arithmetical
hierarchy. This also holds for arithmetic towers which extends the arithmetical hierarchy to arbitrary do-
mains.

This immediately implies part (iii) or Proposition 6.15 and hence the rest of this subsection is devoted to
proving Proposition A.5.

Remark A.6. In classical hierarchies the ∆k class is defined by ∆k = Σk ∩ Πk. This is not the case in the
SCI hierarchy. The ∆α

k classes form the core of the hierarchy, and only when there is extra structure on the
metric space does it makes sense to define the Σαk and the Πα

k . Moreover, in the general SCI hierarchy, we
may have that

∆α
k 6= Σαk ∩Πα

k .

Of course, in the special cases of the SCI hierarchy such as the arithmetical hierarchy, then ∆k = Σk ∩ Πk.
Also, we show that ∆α

k = Σαk ∩ Πα
k for k = 1, 2, 3 and α = G,A in the computational spectral problem

case, however, there is no reason that this should hold for k > 3 in general. Moreover, classical hierarchies
have that Σk \∆k−1 6= ∅ and Πk \∆k−1 6= ∅. This does not have to be the case in general SCI hierarchies.
Indeed, one may have that

Σαk \∆α
k−1 = ∅ or Πα

k \∆α
k−1 = ∅.

This happens, for example, in the SCI hierarchy for the computational spectral problem.

To prove Proposition A.5 we make the following definition, which corresponds to the SCI hierarchy in
the main text.

Definition A.7 (Limit forms). IfM = {0, 1}, we define the following with respect to a given type of tower
of algorithms (arithmetical, radical general etc.):

(i) We say that {Ξ,Ω} is Σ̃m if there exists a height m tower solving the computational problem such
that the final limit is monotonic from below. We say that {Ξ,Ω} is Π̃m if there exists a height m
tower solving the computational problem such that the final limit is monotonic from above.

(ii) We say that {Ξ,Ω} is ∆̃m+1 if there exists a height m tower solving the computational problem.
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The following theorem demonstrates how the SCI framework can be viewed, in the special case ofM =

{0, 1}, as a generalisation of the Arithmetical Hierarchy to arbitrary computational problems. In particular,
one can define a hierarchy for any kind of tower. Here we do this for a general tower, and obviously, this can
be done for any tower. We will call the hierarchy described below a General Hierarchy.

Proposition A.8 (General Hierarchy). Suppose that M = {0, 1}. Following Definitions A.4 and A.7, for
any m ≥ 1 we have that

Σ̃m = Σm, Π̃m = Πm and ∆̃m = ∆m.

Proof of Proposition A.8. Step I: We show that if SCI(Ξ,Ω)G ≤ m then Ξ is ∆m+1. Let p = limi pi. Then

p = true ⇔ ∀n∃k(k ≥ n ∧ pk) ⇔ ∃n∀k(k ≤ n ∨ pk).

Further, let ϕ : N → N × N, k 7→ (ϕ1(k), ϕ2(k)) be a bijection which enumerates all pairs of natural
numbers, and note that

∃n∃m(pn,m)⇔ ∃k(p(ϕ1(k), ϕ2(k))), ∀n∀m(pn,m)⇔ ∀k(p(ϕ1(k), ϕ2(k))),

for any family (pn,m)n,m∈N ⊂M. Thus, every limit in a tower of heightm can be converted alternately into
an expression with two quantifiers (∀∃ or ∃∀), and then m − 1 doubles ∃∃ or ∀∀ can be replaced by single
quantifiers. This easily gives the claim.

Step II: We show that if Ξ is Σm or Πm then SCI(Ξ,Ω)G ≤ m. In fact we show that Σm ⊂ Σ̃m and
Πm ⊂ Π̃m. As a start let (pi) ⊂M be a sequence. Then

(∀i(pi)) = true ⇔

(
lim
n→∞

n∧
i=1

pi

)
= true, (∃i(pi)) = true ⇔

(
lim
n→∞

n∨
i=1

pi

)
= true.

Furthermore, the conjunction (disjunction) of limits coincides with the limit of the elementwise conjunction
(disjunction), hence

∀nm∃nm−1 · · · ∀n1Γnm,··· ,n1 = lim
km

lim
km−1

· · · lim
k1

km∧
im=1

km−1∨
im−1=1

· · ·
k1∧
i1=1

Γim,im−1,··· ,i1

and similarly for any other possible alternating quantifier form. Since the Γnm,··· ,n1
in the alternating quan-

tifier form at the left-hand side are General algorithms, the right-hand side obviously yields a tower of
algorithms of height m. Moreover, we obtain the required monotonic final limits.

Step III: We show that ∆̃m = ∆m. Let m ∈ N be the smallest number with Ξ being ∆m+1. In the above
steps we have already seen that m ≤ SCI(Ξ,Ω)G ≤ m+ 1, and we next prove the following: If

Ξ(y) = ∃i∀j(g0(i, j, y)) = ∀n∃m(g1(n,m, y))

then Ξ(y) = limk→∞ g(k, y) with a function g being easily derivable from g0, g1. The following construc-
tion is adopted from [62, Proofs of Theorems 1 and 3]. Fix y and define a function h0 : N→M recursively
as follows:
i(1) := 1, j(1) := 1, h0(1) := g0(i(1), j(1), y).

If h0(l) = true

then: i(l + 1) := i(l), j(l + 1) := j(l) + 1

else: i(l + 1) := i(l) + 1, j(l + 1) := 1.

l := l + 1.

h0(l) := g0(i(l), j(l), y).

We observe that, if Ξ(y) = true then h0(l) converges as l → ∞ with limit true. Otherwise, the limit does
not exist or is false. The same construction applies to ¬(∀n∃m(g1(n,m, y))) = ∃n∀m¬(g1(n,m, y)) and
yields a function h1 which converges to true if and only if Ξ(y) = false. Clearly, exactly one of the functions
h0, h1 converges to true. Now we derive the desired g from h0 and h1 as follows:
α(1) = 0.
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If hα(k)(k) = true

then: α(k + 1) := α(k)

else: α(k + 1) := 1− α(k).

k := k + 1.

If α(k) = 0

then: g(k, y) := true

else: g(k, y) := false.

This provides Ξ(y) = limk→∞ g(k, y).
Next, let g0 and g1 be of the form gs(i, j, y) = limr f

s
i,j,r(y), s ∈ {0, 1}. Fix y. Then for every pair (i, j)

there is an r(i, j) such that fsu,v,r(y) = gs(u, v, y) for all u ≤ i, v ≤ j, s ∈ {0, 1} and r ≥ r(i, j). Thus,
g is also of the form g(k, y) = limr fk,r(y) with fk,r being defined by the above procedure applied to the
functions (i, j, y) 7→ fsi,j,k(y) instead of gs(i, j, y) (s ∈ {0, 1}).

Now we are left with iterating this argument: If both functions gs (s ∈ {0, 1}) are of the form gs(i, j, y) =

limkm−1 limkm−2 · · · limk1 f
s
i,j,km−1,··· ,k1

(y) with certain General algorithms fsi,j,km−1,··· ,k1
, then also g is

of the form

g(k, y) = lim
km−1

lim
km−2

· · · lim
k1

fk,km−1,··· ,k1
(y)

with fk,km−1,··· ,k1
being defined by the same procedure as before applied to the functions (i, j, y) 7→

fsi,j,km−1,··· ,k1
(y) instead of gs(i, j, y) (s ∈ {0, 1}). The resulting functions y 7→ fk,km−1,··· ,k1

(y) are
General algorithms for every k, since their evaluation requires only finitely many evaluations of the General
algorithms fsi,j,km−1,··· ,k1

.
Step IV: It remains to show that Σ̃m ⊂ Σm and Π̃m ⊂ Πm. Suppose that Ξ ∈ Σ̃m(∈ Π̃m) then by

considering the first m−1 limits there exists a family Ξnm ∈ ∆̃m = ∆m (this is also trivially true if m = 1)
such that

Ξ(y) = lim
nm→∞

Ξnm(y)

with the final limit monotonic from below (above). But then we must have Ξ(y) = ∃nmΞnm(y) (Ξ(y) =

∀nmΞnm(y)). But Ξnm ∈ Σm(∈ Πm) and we can collapse the double quantifier ∃∃ (∀∀) to a single
∃(∀). �

A.3. The Baire hierarchy. To end this appendix, we also make some remarks on the Baire hierarchy. The
Baire hierarchy [84], which is closely related to the Borel hierarchy [84], in descriptive set theory, has
similarities to the SCI hierarchy, however, is fundamentally different. However, it is worth mentioning, as
the Baire hierarchy does include classes of functions that are obtained as limits of functions from lower levels
in the hierarchy, hence the two hierarchies share some similarities.

Recall that given metrisable spaces X,Y and a continuous function f : X → Y we say that f is of Baire
class 0. We define a function g : X → Y to be in Baire class 1 if there is a sequence of functions {gn}, all
of Baire class 0, such that g(x) = limn→∞ gn(x) for all x ∈ X . In general, for 1 < ρ < ω1 we define a
function f : X → Y to be of Baire class ρ if it is the pointwise limit of a sequence of functions fn : X → Y ,
where fn is of Baire class ρn < ρ. In order to understand the similarities and differences between the two
hierarchies, we provide a short discussion below.

Similarities between the SCI and Baire hierarchies. The main similarity between the hierarchies is the
concept of pointwise limits. Indeed, for the integer values of the Baire classes, this number indeed resembles
the SCI.

Differences between the SCI and Baire hierarchies. The differences between the hierarchy are due to the
fact that they describe very different problems. This can be summed up as follows.
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(i) (Generality). The SCI hierarchy is designed to be able to handle all types of computational problems
such as Smale’s problem on iterative algorithms for polynomial root-finding, Doyle–McMullen tow-
ers, the insolvability of the quintic etc. This is obviously not within the scope of the Baire hierarchy,
however, this was never the intention for this hierarchy.

(ii) (Refinements). An important difference between the hierarchies is that the SCI hierarchy, when extra
structure onM is available, allows for the refinements in terms of the Σαk and Πα

k classes. This type
of refinement is not captured by the Baire hierarchy, however, that has never been the motivation.

(iii) (Topology vs information). A striking difference is that the Baire hierarchy is based on metrisable
topologies, whereas the SCI hierarchy is based on the information Λ (see Definition 6.2) available
to the algorithm. The computational spectral problem is a good example to illustrate the issue. Let
Ξ : Ω 3 A 7→ sp(A) ∈ M where Ω is the set of self-adjoint operators in B(l2(N)) andM is the
collection of non-empty compact subsets of C with the Hausdorff metric. If we equip Ω with the
operator norm topology, then Ξ is Baire class 0. Yet, the SCI = 2 for Ξ. If one changes the metric on
Ω, the Baire class will change, yet the SCI remains unchanged. Also, as a side note, the algorithms
used in this paper to show that the SCI = 2 are not continuous in any metrisable topology. Thus,
there is no metric on Ω such that these become Baire class 0.

Finally, if we consider self-adjoint Schrödinger operators on L2(Rd) with bounded potential V
such that V ∈ BVloc(Rd), then the SCI of the spectral map is 1 if we can access point samples of V .
Also, if we equip this set of operators with the natural graph metric (equivalent to norm convergence
in the bounded case) the spectral map is Baire class 0. However, if one changes Λ, such that we
are given matrix elements of the operator with respect to some orthonormal basis of the domain, we
may get that the SCI = ∞, as the matrix representation may not uniquely determine the spectrum.
Thus, the SCI changes with Λ (see Definition 6.2) that determines which information is available
whereas the Baire class changes with the metric.
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[65] K. Gröchenig, Z. Rzeszotnik, and T. Strohmer. Convergence analysis of the finite section method and Banach algebras of matrices.

Integral Equations and Operator Theory, 67(2):183–202, 2010.
[66] R. Hagen, S. Roch, and B. Silbermann. C∗-algebras and numerical analysis, volume 236 of Monographs and Textbooks in Pure

and Applied Mathematics. Marcel Dekker Inc., New York, 2001.
[67] T. Hales. A proof of the Kepler Conjecture. Annals of Mathematics, 162(3):1065–1185, 2005.
[68] T. Hales and et al. A formal proof of the Kepler conjecture. Forum of Mathematics, Pi, 5:e2, 2017.
[69] A. C. Hansen. On the approximation of spectra of linear operators on Hilbert spaces. Journal of Functional Analysis,

254(8):2092–2126, 2008.
[70] A. C. Hansen. Infinite-dimensional numerical linear algebra: theory and applications. Proceedings of The Royal Society of

London. Series A. Mathematical, Physical and Engineering Sciences, 466(2124):3539–3559, 2010.
[71] A. C. Hansen. On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. Journal

of the American Mathematical Society, 24(1):81–124, 2011.
[72] J. Hass and R. Schlafly. Double bubbles minimize. Annals of Mathematics, 151(2):459–515, 2000.
[73] N. Hatano and D. R. Nelson. Localization transitions in non-Hermitian quantum mechanics. Physical Review Letters, 77(3):570–

573, Jul 1996.
[74] N. Hatano and D. R. Nelson. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B, 56(14):8651–8673, Oct 1997.
[75] G. Heinig and F. Hellinger. The finite section method for Moore-Penrose inversion of Toeplitz operators. Integral Equations and

Operator Theory, 19(4):419–446, 1994.
[76] H. Helfgott. The ternary Goldbach conjecture is true. arXiv:1312.7748, 2013.
[77] M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean triples problem via cube-and-

conquer. In N. Creignou and D. Le Berre, editors, Theory and Applications of Satisfiability Testing – SAT 2016, pages 228–245,
2016.

[78] J. Hubbard, D. Schleicher, and S. Sutherland. How to find all roots of complex polynomials by Newton’s method. Invent. math.,
146:1–33, 2000.

[79] S. Y. Jitomirskaya. Metal-insulator transition for the almost Mathieu operator. Annals of Mathematics, 150(3):1159–1175, 1999.
[80] P. Junghanns, G. Mastroianni, and M. Seidel. On the stability of collocation methods for Cauchy singular integral equations in

weighted Lp spaces. Mathematische Nachrichten, 283(1):58–84, 2010.
[81] M. Kaluba, P. Nowak, and N. Ozawa. Aut(F5) has property (T ). arXiv:1712.07167, 2017.
[82] T. Kato. On the upper and lower bounds of eigenvalues. Journal of the Physical Society of Japan, 4(4-6):334–339, 1949.



92 J. BEN-ARTZI, M. J. COLBROOK, A. C. HANSEN, O. NEVANLINNA, AND M. SEIDEL

[83] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980
edition.

[84] A. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer-Verlag, 1995.
[85] L. Kiepert. Auflösung der gleichungen fünften grades. Journal für die reine und angewandte Mathematik, (v. 87), 1879.
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