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Abstract

The problem of approximating the discrete spectra of families of

self-adjoint operators that are merely strongly continuous is addressed.

It is well-known that the spectrum need not vary continuously (as a

set) under strong perturbations. However, it is shown that under an

additional compactness assumption the spectrum does vary continu-

ously, and a family of symmetric finite-dimensional approximations is

constructed. An important feature of these approximations is that

they are valid for the entire family simultaneously. An application of

this result to the study of plasma instabilities is illustrated.
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1 Introduction

1.1 Overview

We present a method for obtaining finite-dimensional approximations of the

discrete spectrum of families of self-adjoint operators. We are interested in

operators that decompose into a system of two coupled Schrödinger opera-

tors with opposite signs (see (1.1) below). However our results are applicable

to “standard” Schrödinger operators, and in fact we prove our main result,

Theorem 2, for Schrödinger operators first, see Theorem 2′. We are inter-

ested in the following problem:

Problem 1. Consider the family of self-adjoint unbounded operators

Mλ = A+Kλ =

[
−∆ + 1 0

0 ∆− 1

]
+

[
Kλ++ Kλ+−
Kλ−+ Kλ−−

]
, λ ∈ [0, 1] (1.1)

acting in an appropriate subspace of L2(Rd) ⊕ L2(Rd), where {Kλ}λ∈[0,1]
is a bounded, symmetric and strongly continuous family. Is it possible to

construct explicit finite-dimensional symmetric approximations ofMλ whose

spectrum in (−1, 1) converges to that of Mλ for all λ simultaneously?

This problem is motivated by Maxwell’s equations, which in the Lorentz

gauge may be written as the following elliptic system for the electromagnetic

potentials φ and A (after taking a Laplace transform in time):{
(−∆ + λ2)A + j = 0

(∆− λ2)φ+ ρ = 0
(1.2)
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where ρ and j are the charge and current densities, respectively. The specific

problem we have in mind, treated separately in [2], is that of instabilities of

the relativistic Vlasov-Maxwell system describing the evolution of collision-

less plasmas; it is outlined in section 6 below. The Vlasov equation provides

the coupling of the two equations in (1.2), making the system self-adjoint

(see, for instance, the expressions (6.5) and (6.6)).

1.2 The main result

Let H = H+ ⊕ H− be a (separable) Hilbert space with inner product 〈·, ·〉
and norm ‖·‖ and let

Aλ =

[
Aλ+ 0

0 −Aλ−

]
and Kλ =

[
Kλ++ Kλ+−
Kλ−+ Kλ−−

]
, λ ∈ [0, 1]

be two families of operators on H depending upon the parameter λ ∈ [0, 1],

where the family Aλ is also assumed to be defined for λ in an open neigh-

bourhood D0 of [0, 1] in the complex plane. They satisfy:

i) Sectoriality: The sesquilinear forms aλ± corresponding to Aλ± are

sectorial for λ ∈ D0, symmetric for real λ, have dense domains D(aλ±) in-

dependent of λ ∈ D0,
1 and D0 3 λ 7→ aλ±[u, v] are holomorphic for any

u, v ∈ D(aλ±). [In the terminology of Kato [5], aλ± are holomorphic families

of type (a) and Aλ are holomorphic families of type (B).]

ii) Gap: Aλ± > 1 for every λ ∈ [0, 1].

iii) Bounded perturbation: {Kλ}λ∈[0,1] ⊂ B (H) is a symmetric

strongly continuous family.

iv) Compactness: There exist symmetric operators P± ∈ B (H±)

which are relatively compact with respect to the forms aλ±, satisfying Kλ =

KλP for all λ ∈ [0, 1] where

P =

[
P+ 0

0 P−

]
.

1Hence we shall henceforth remove the λ superscript when discussing the domains of

aλ and aλ±.
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Finally, if the family Aλ does not have a compact resolvent we assume:

v) Compactification of the resolvent: There exist holomorphic

forms {wλ
±}λ∈D0 of type (a) and associated operators {Wλ

±}λ∈D0 of type

(B) such that for λ ∈ [0, 1], Wλ
± are self-adjoint and non-negative, and if wλ

is the form associated with

Wλ =

[
Wλ

+ 0

0 −Wλ
−

]
, λ ∈ D0,

then D(wλ) ∩ D(a±) are dense for all λ ∈ D0 and the inclusion (D(wλ) ∩
D(a), ‖·‖aλε )→ (H, ‖·‖) is compact for some λ ∈ D0 and all ε > 0, where aλε
is the form associated with

Aλε := Aλ + εWλ, λ ∈ D0, ε ≥ 0. (1.3)

We can now define the family of (unbounded) operators {Mλ}λ∈[0,1],
acting in H, as

Mλ = Aλ +Kλ, λ ∈ [0, 1]. (1.4)

Our main result is formulated with the general case of continuous spec-

trum in mind:

Theorem 2. Let Aλε be as in (1.3), and define

Mλ
ε = Aλε +Kλ, λ ∈ [0, 1]. (1.5)

Let {eλε,k}k∈N ⊂ H be a complete orthonormal set of eigenfunctions of Aλε , let

Gλε,n : H→ H be the orthogonal projection operators onto span(eλε,1, . . . , e
λ
ε,n)

and let M̃λ
ε,n be the n-dimensional operator defined as the restriction of Mλ

ε

to Gλε,n(H). Fix ε∗ > 0, and define the function

Σ : [0, 1]× [0, ε∗]→ (subsets of (−1, 1), dH)

Σ(λ, ε) = (−1, 1) ∩ sp(Mλ
ε )

and for fixed ε > 0 the function

Σε : [0, 1]× N→ (subsets of (−1, 1), dH)

Σε(λ, n) = (−1, 1) ∩ sp(M̃λ
ε,n)

where dH is the Hausdorff distance (defined below), N = N ∪ {∞}, sp(M)

is the spectrum of M, and where we use the convention that M̃λ
ε,∞ :=Mλ

ε .

Then Σ and Σε are continuous functions of their arguments in the standard

topologies on R (and its subsets) and N.
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We recall the definition of the Hausdorff distance between two bounded

sets X,Y ⊂ C:

dH(X,Y ) = max

(
sup
y∈Y

inf
x∈X
|x− y|, sup

x∈X
inf
y∈Y
|x− y|

)
.

Theorem 2 provides the following answer to Problem 1: it is indeed possible

to approximate the family of operators simultaneously. This is achieved

by two levels of approximations: first ε-approximations that discretise the

spectrum, then n-approximations that truncate the problem.

As the notation becomes quite cumbersome due to the decomposition

H = H+⊕H−, we shall first treat the simpler case of semi-bounded operators.

So as to avoid repetitions in presentation, we think of the semi-bounded case

as the same as before, with H = H+ and the subspace H− being trivial. For

brevity we drop the + subscript. The proof of Theorem 2 is presented in

section 5, after the following theorem is proved:

Theorem 2′. In the case H = H+ the same conclusion of Theorem 2 holds

with Ran(Σ) = Ran(Σε) = (bounded subsets of (−∞, 1), dH) defined as

Σ(λ, ε) = (−∞, 1) ∩ sp(Mλ
ε )

and

Σε(λ, n) = (−∞, 1) ∩ sp(M̃λ
ε,n).

Remark 3. We note that in both theorems, by the Heine-Cantor theorem,

the two maps Σ and Σε are in fact uniformly continuous.

1.3 Discussion

One of the main driving forces behind the study of linear operators in the

20th century was the development of quantum mechanics. Particular atten-

tion had been given to the characterisation of the spectra of such operators,

as it encodes many important physical properties (such as energy levels, for

instance). When operators become too complex, a typical approach is to

view them as perturbations of simpler operators whose spectrum is well un-

derstood. Two of the classic texts on this topic are those written by Kato

[5] and Reed and Simon [9]. Both are still widely cited to this day. We also

refer to Simon’s review paper [10] and the references therein.

Recently, Hansen [4] presented new techniques for approximating spec-

tra of linear operators (self-adjoint and non-self-adjoint) from a more com-

putational point of view. In [11], Strauss presents a new method for ap-

proximating eigenvalues and eigenvectors of self-adjoint operators via an
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algorithm that is itself self-adjoint, and which does not produce spectral

pollution. Both papers provide extensive references to additional literature

in the field. We also mention [6], where analysis similar to ours is performed

for bounded operators. We note that spectral pollution (the appearance of

spurious eigenvalues within gaps in the essential spectrum when approxi-

mating) has attracted significant attention [3, 7, 8]. The gap that we have

in the spectrum is of a different nature (it is due to the way the problem

decomposes), and therefore pollution is less of a concern.

The question that we are motivated by is somewhat different. We are in-

terested in the simultaneous approximation of families of operators, rather

than approximating a single fixed linear operator. This may be viewed

as perturbation theory with two parameters: the continuous parameter λ

representing small continuous perturbations generating the family of opera-

tors, and the discrete parameter n representing the dimension of the finite-

dimensional approximation. One of the important aspects of this theory

is that the finite-dimensional approximations apply to the entire family of

operators simultaneously. Previously, in [1, Proposition 2.5] a much weaker

result of this type was obtained, where the resolvent set of Schrödinger

operators with a compact resolvent was shown to be stable under similar

perturbations.

There are two substantial difficulties in proving these theorems. If the

spectrum of Aλ were discrete for some λ (and therefore for all λ) we would

have a natural way to construct approximations by projecting onto increas-

ing subspaces associated to the eigenvalues of Mλ. However we do not

require the spectrum to be discrete, and, indeed, in the type of problems

we have in mind it is not. This necessitates the introduction of yet another

perturbation parameter, ε, related to the compactification of the resolvent.

The other difficulty is in ensuring that the finite-dimensional approximations

approximate the whole family of operators simultaneously. To this end, the

compactness assumption (iv) plays a crucial role (see Remark 9 below).

We make several remarks on Theorem 2 and Theorem 2′ and the as-

sumptions (i)-(v):

Remark 4. The compactness requirements (iv) on P are motivated by (1.1).

If A has a compact resolvent (e.g. when acting in L2(Td) ⊕ L2(Td) where

Td is the d-dimensional torus) we may take P to be the identity. Otherwise

(e.g. for L2(Rd)⊕L2(Rd)) if the perturbations Kλ are compactly supported

in the sense that ⋃
λ∈[0,1],u∈H

supp(Kλu) ⊂ K (1.6)
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where K = K+ × K− ⊂ Rd × Rd is compact, then we may take P± as

multiplications by the indicator functions of the sets K±. Indeed, we first

note that (1.6) implies that for all λ, Kλ = PKλ. Then as Kλ and P are

symmetric, we deduce that Kλ = (Kλ)∗ = (Kλ)∗P∗ = KλP as required.

That P is relatively compact with respect to −∆ follows from Rellich’s

theorem. We also remark that this choice of P is in fact the natural inclusion

map from L2 to L2(K).

Remark 5. Care must be taken regarding the spaces we view operators as

acting on. If we view Mλ
ε,n = Gλε,nMλ

εGλε,n : H → H then 0 will always be

a spurious eigenvalue with infinite multiplicity. To remove this unwanted

eigenvalue we must instead consider M̃λ
ε,n : Hλε,n → Hλε,n where Hλε,n =

Gλε,n(H) is the n-dimensional space corresponding to the eigenprojection Gλε,n.

Remark 6. Property (ii) implies that there exists α(λ) > 0 such that (−α(λ)−
1, 1 + α(λ)) is in the resolvent set of Aλ. Since the spectrum is continuous

in λ ∈ [0, 1] this implies that there is a uniform constant α > 0 such that

(−α− 1, 1 + α) is in the resolvent set of Aλ for all λ ∈ [0, 1].

Let us summarise some of the notation we use throughout this article.

For operators we use upper case calligraphic letter, such as T . As already

exhibited above, the spectrum of T is denoted sp(T ). For the sesquilinear

form associated to an operator we use the same letter in lower case Fraktur

font. Hence the operator T has the associated form t. The space of bounded

linear operators on a Hilbert space H is denoted B(H). Domains of operators

or forms are denoted by D. The graph norms of an operator T and a form t

are denoted ‖·‖T and ‖·‖t, respectively. Strong, strong resolvent and norm

resolvent convergence are denoted by
s−→,

s.r.−−→ and
n.r.−−→, respectively. For

brevity, we denote N = N ∪ {∞}.
This paper is organised as follows. In section 2 we present some re-

sults related to general properties (such as self-adjointness, equivalence of

norms, etc.) of the various operators. In section 3 we construct the finite-

dimensional approximations to our family of operators, which are used in

section 4 to prove Theorem 2′. In section 5 these results are extended to

families of operators which are not positive, proving Theorem 2. Finally,

in section 6 we give a brief description of an application of these results,

related to plasma instabilities.

2 Preliminary results

We remind the reader that in this section, as well as in section 3 and sec-

tion 4 we treat the semi-bounded case where H = H+ and we drop the +
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subscript.

Considering the definition (1.4) and the subsequent specifications of the

properties of the various operators and associated forms, we have the fol-

lowing results.

Lemma 7. For any λ ∈ [0, 1],Mλ is self-adjoint and has the same essential

spectrum and domain as Aλ. In particular its spectrum inside (−∞, 1] is

discrete. Furthermore, the associated form mλ has the same domain as aλ,

which is independent of λ.

Proof. Self-adjointness follows from the Kato-Rellich theorem, due to Aλ

being self-adjoint for λ ∈ [0, 1] and the symmetry assumption (iii) on Kλ.

The essential spectrum result follows from Weyl’s theorem as Kλ = KλP
is relatively compact with respect to Aλ (for any λ) because P is. The

equality D(mλ) = D(aλ) holds since Kλ is bounded for each λ. The fact

that the domains are independent of λ was assumed above in the Sectoriality

assumption (i).

Next, we turn our attention to the map λ 7→ Mλ. Intuitively, one

would expect Mλ to have continuity properties similar to those of Kλ and

therefore be merely continuous in the strong resolvent sense. In fact, due to

the relative compactness assumption on P we have more:

Proposition 8. The family {Mλ}λ∈[0,1] is norm resolvent continuous.

Proof. Fix some λ ∈ [0, 1] and let [0, 1] 3 λn → λ as n→∞. It is sufficient

to prove ∥∥∥(Mλn + i)−1 − (Mλ + i)−1
∥∥∥
B(H)

→ 0 as n→∞.

Using the triangle inequality we have∥∥∥(Mλn + i)−1 − (Mλ + i)−1
∥∥∥
B(H)

≤
∥∥∥(Mλn + i)−1 − (Aλn +Kλ + i)−1

∥∥∥
B(H)

+
∥∥∥(Aλn +Kλ + i)−1 − (Mλ + i)−1

∥∥∥
B(H)

.

By observing that {Aσ + Kλ}σ∈D0 is also a holomorphic family we deduce

that the second term tends to zero as n→∞. For the first term we follow

the method used to deduce the second Neumman series (see [5, II-(1.13)])

(Aλn +Kλn + i)−1 = (Aλn +Kλ + i)−1(1 + (Kλn −Kλ)(Aλn +Kλ + i)−1)−1

which is valid whenever
∥∥(Kλn −Kλ)(Aλn +Kλ + i)−1

∥∥
B(H)

< 1. By the

norm resolvent continuity of operator inversion and again using the norm
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resolvent continuity of the family {Aσ + Kλ}σ∈[0,1], it is sufficient to show

that ∥∥∥(Kλn −Kλ)(Aλ +Kλ + i)−1
∥∥∥
B(H)

→ 0 as n→∞. (2.1)

We observe that Aλ + Kλ is self-adjoint with the same domain as Aλ by

the Kato-Rellich theorem, so P is also relatively compact with respect to

Aλ +Kλ. By assumption iv) we have

(Kλn −Kλ)(Aλ +Kλ + i)−1 = (Kλn −Kλ)P(Aλ +Kλ + i)−1.

This is a composition of a strongly convergent sequence of operators and the

compact operator P(Aλ +Kλ + i)−1. The compactness converts the strong

convergence to norm convergence and proves (2.1).

Remark 9. The operator P was key to the proof: it is required to obtain

convergence vn → v rather than simply Kλnvn → w. In general, it is

not true that if Tn
s−→ T∞ and if for any u ∈ H the closure of the set

{Tnu}n∈N is compact then Tn → T∞. Consider for example Tnu = 〈en, u〉 e1
where {en}n∈N is an orthonormal basis of H. Then Tn

s−→ 0 = T∞ and

the set {Tnu}n∈N is compact. However, consider for instance the sequence

‖Tnen‖ = 1. Since {en}n∈N form an orthonormal basis, this implies that

norm convergence does not hold.

3 Constructing approximations

We first treat approximations of operators with discrete spectra, which are

naturally defined via a sequence of increasing projection operators. For

brevity, we call these approximations n-approximations (“n” refers to the

dimension of the projection). Our strategy when treating operators with a

continuous spectrum is to first “perturb” them by adding a family of un-

bounded operators (think of adding an unbounded potential to a Laplacian)

depending upon a small parameter ε. For each ε > 0 these perturbations

are assumed to eliminate any continuous spectrum, so that then we may

apply an n-approximation. We therefore call these (ε, n)-approximations.

We start with a standard result for which we could not find a good reference

and we therefore state and prove it here.

Lemma 10. Let H be a Hilbert space and let Tn
s.r.−−→ T as n→∞ with Tn, T

selfadjoint operators on H. Let Kn
s−→ K as n → ∞ with Kn,K bounded

symmetric operators on H. Then Tn + Kn and T + K are self-adjoint and

Tn +Kn
s.r.−−→ T +K.
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Proof. The self-adjointness follows from the Kato-Rellich theorem. For the

convergence it is sufficient to prove that (Tn+Kn+αi)−1
s−→ (T +K+αi)−1

for some real α 6= 0. As the Kn are strongly convergent, by the uniform

boundedness principle they are uniformly bounded in operator norm by

some M ≥ ‖K‖B(H). Letting α = 2M , and using the second Neumann

series,

(Tn +Kn + αi)−1 = (Tn + αi)−1(1 +Kn(Tn + αi)−1)−1

= (Tn + αi)−1
∞∑
k=0

(−1)k(Kn(Tn + αi)−1)k

is convergent uniformly in n as
∥∥Kn(Tn + αi)−1

∥∥
B(H)

≤M/α = 1/2 < 1. As

n→∞ each term of the series converges strongly to the corresponding term

of the series for (T +K+ αi)−1 and as the series convergences uniformly in

n we may may swap the order of summation and taking strong limits.

3.1 Operators with discrete spectra

In this paragraph we assume that Aλ has discrete spectrum and compact

resolvent for some λ (and, in fact, for all λ, as Aλ is a holomorphic family of

type (B)2). We exploit a property of self-adjoint holomorphic families [5, VII

Theorem 3.9 and VII Remark 4.22]: the eigenvalues {µλk}k∈N and associated

normalised eigenfunctions {eλk}k∈N of Aλ are holomorphic functions of λ ∈
[0, 1]. An immediate consequence is that the unitary operator defined by

Uλσ : H→ H

eσk 7→ eλk for any k ∈ N

is jointly holomorphic in λ, σ ∈ [0, 1]. We now define the n-truncation

operator by
Gλn : H→ H

eλk 7→

{
eλk if k ≤ n,
0 if k > n.

Since the eigenfunctions form a complete orthonormal set we have the con-

vergence Gλn
s−→ 1 as n → ∞ for fixed λ. Additionally by expressing

Gλn = UλσGσnUσλ for some fixed σ ∈ [0, 1] we see that Gλn is jointly strongly

continuous in n and λ.

2We remind the reader that the definition of a holomorphic family of type (B) is

provided in subsection 1.2.
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We now define the finite-dimensional approximations of Aλ and Mλ by

Aλn = GλnAλGλn and Mλ
n = GλnMλGλn , (3.1)

respectively. It is too much to hope for convergenceMλ
n

n.r.−−→Mλ as n→∞,

but we can hope for Mλ
n

s.r.−−→Mλ. Indeed:

Lemma 11. The family {Mλ
n}λ∈[0,1],n∈N is continuous in the strong resol-

vent sense, where we use the convention that Mλ
∞ :=Mλ.

Proof. We need to show that if λk → σ ∈ [0, 1] as k →∞, then

1. if mk → m ∈ N, then Mλk
mk

s.r.−−→Mσ
m, and

2. if mk →∞, then Mλk
mk

s.r.−−→Mσ.

For m ∈ N the result is obvious, so we may take m = ∞. By the stability

of strong resolvent continuity with respect to bounded strongly continuous

perturbations (see Lemma 10), it is sufficient to prove that Aλkmk
s.r.−−→ Aσ

as k → ∞ and that GλkmkK
λkGλkmk

s−→ Kσ. The latter is true as it is the

composition of strong convergences. For the former it is sufficient to show

that (Aλknk + i)−1
s−→ (Aσ + i)−1 as k →∞. Splitting this term as

(Aλknk + i)−1 = Gλknk (Aλknk + i)−1 + (1− Gλknk )(Aλknk + i)−1,

we see that since (Aλknk+i)−1 is uniformly bounded the second part converges

strongly to zero by the convergence Gλknk
s−→ 1. For the first part, since Gλknk

is a spectral projection associated with Aλk we have

Gλknk (Aλknk + i)−1 = Gλknk (Aλk + i)−1Gλknk

which converges to (Aσ+i)−1 by the composition of strong convergences.

3.2 Operators with continuous spectra

We are now ready to turn to the general case of families {Aλ}λ∈[0,1] that

may have continuous spectra. Such operators require (ε, n)-approximations.

The ε-approximations Aλε of Aλ were defined in (1.3) and the corresponding

approximations Mλ
ε were defined in (1.5).

Lemma 12. 1. For any ε > 0, {Aλε}λ∈D0 is a holomorphic family of type

(B) with compact resolvent.

2. For any λ ∈ [0, 1], ε ≥ 0, Aλε is self-adjoint and we have Aλε ≥ Aλ ≥
1 + α.
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Proof. The second claim is obvious sinceWλ ≥ 0. For the first we must show

aλε is sectorial and that its domain D(aλε ) is independent of λ and dense in

H, and that for any fixed u ∈ D(aλε ) the function aλε [u] is holomorphic in

λ ∈ D0. For any λ ∈ D0, a
λ
ε is the sum of sectorial forms aλ and εwλ so by [5,

VI§1.6-Theorem 1.33] it is closed and sectorial with domain D(a) ∩D(wλ),

which is independent of λ since Aλ,Wλ are holomorphic families of type (B).

Furthermore, we assumed that D(a) ∩ D(wλ) is dense in H. For any fixed

u ∈ D(aλε ), aλε [u] = aλ[u] + εwλ[u] is the sum of two holomorphic functions

of λ ∈ D0, so aλε [u] is also holomorphic in D0. Finally by the assumption

that the inclusion from (D(aλε ), ‖·‖aλε ) into H is compact we deduce that the

resolvent of Aλε is compact.

For each ε > 0 the operator Aλε has a discrete spectrum, and therefore

the n-approximations of Aλε and Mλ
ε may be defined analogously to (3.1)

via the projection operators

Gλε,n : H→ H

eλε,k 7→

{
eλε,k if k ≤ n,
0 if k > n,

(where {eλε,k}k∈N are normalised eigenfunctions of Aλε ) as

Aλε,n = Gλε,nAλεGλε,n and Mλ
ε,n = Gλε,nMλ

εGλε,n.

We know by Lemma 11 that the family {Aλε,n}λ∈[0,1],n∈N is continuous in the

strong resolvent sense. In addition, we have:

Lemma 13. The family {Aλε}λ∈[0,1],ε∈[0,∞) is continuous in the strong re-

solvent sense.

Proof. By the equivalence of strong and weak convergence of the resolvent

for self-adjoint operators it is sufficient to prove that (Aλε + 1)−1 is weakly

continuous jointly in λ and ε (note that we evaluate the resolvent at −1

rather than at i due to the sectoriality of the operators away from the real

line). Let U ⊆ D0 be an open set containing the interval [0, 1] such that for

λ ∈ U , Re aλ ≥ 1 and Rewλ ≥ −1. Such a set exists by the holomorphicity

of the two families. Writing aλε [f ] + σ ‖f‖2 = 〈f, u〉 where f = (Aλε + σ)−1u

and taking the real part, we use the aforementioned bounds to obtain

sup
ε∈[0,1],λ∈U

∥∥∥(Aλε + 1)−1
∥∥∥
B(H)

≤ 1. (3.2)
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Now fix u, v ∈ H, let εn → ε∞ ∈ [0,∞) and define the sequence of holomor-

phic functions fn(λ) : U → C by

fn(λ) =
〈

(Aλεn + 1)−1u− (Aλε∞ + 1)−1u, v
〉

with f∞ = 0. To prove the joint weak continuity of the resolvent it is

clearly sufficient to show that fn → 0 uniformly over λ ∈ [0, 1]. The case

ε∞ > 0 is straightforward so we assume that ε∞ = 0. Without loss of

generality we may assume that εn 6= 0 for all n. We will use a simple

corollary of Montel’s theorem that states that a sequence of holomorphic

functions that is uniformly bounded on an open set U ⊆ C and converges

pointwise in U converges uniformly on any compact set K ⊂ U . The uniform

boundedness of fn follows from (3.2) above. Thus it is suffices to show that

fn → 0 pointwise. To this end we will establish pointwise convergence of

the corresponding forms aλεn . Indeed,

∀λ ∈ D0, w ∈ D(aλεn), aλεn [w]− aλ[w] = εnw
λ[w]→ 0 as n→∞.

For n ∈ N the forms have common form domain D(a) ∩ D(w), which is a

form core for aλ, and the sequence of form differences aλεn − aλ is uniformly

sectorial. Thus [5, VIII.§3.2-Theorem 3.6] applies, giving Aλεn
s.r.−−→ Aλ as

n→∞, which implies the pointwise convergence fn → 0 and completes the

proof.

Corollary 14. The family {Mλ
ε}λ∈[0,1],ε∈[0,∞) is continuous in the strong

resolvent sense.

Proof. This follows from the stability of strong resolvent continuity with

respect to bounded strongly continuous perturbations.

4 Proof of Theorem 2′

4.1 Compactness results

Let Mλ be a family of operators as defined (1.4) and let Mλ
ε and Mλ

ε,n

be the corresponding ε and (ε, n)-approximations as defined in section 3.

We now show that these approximations are well-behaved, in the following

sense:

Proposition 15. Define the set ∆ = D(Mλ
ε )× (−∞, 1]× [0, 1]. Fix ε∗ > 0.

Then the set of eigenfunctions

A = {(u, σ, λ, ε) ∈ ∆× [0, ε∗] : ‖u‖ = 1,Mλ
εu = σu}

13



is compact. In addition, for any fixed ε > 0 the set of approximated eigen-

functions

Aε = {(u, σ, λ, n) ∈ ∆× N : ‖u‖ = 1, u = Gλε,nu,Mλ
ε,nu = σu}

is relatively compact.

We will first prove a slightly more general result:

Lemma 16. Fix ε∗ > 0 and define the set

A′ = {(u, σ, λ, ε, n) ∈ ∆× [0, ε∗]× N : ‖u‖ = 1, u = Gλε,nu,Mλ
ε,nu = σu}.

Let {(uk, σk, λk, εk, nk)}∞k=1 be a sequence in A′ with λk → λ, σk → σ, εk →
ε, nk → n as k → ∞. Then the sequence has a convergent subsequence if

Gλkεk,nk has a strong limit as k →∞.

Proof. Each uk solves the equation

Gλkεk,nkA
λk
εk
Gλkεk,nkuk − σkuk + Gλkεk,nkK

λkGλkεk,nkuk = 0.

The requirement that uk = Gλkεk,nkuk and the fact that Gλkεk,nk commutes with

Aλkεk means that this is equivalent to

Aλkεk uk − σkuk + Gλkεk,nkK
λkuk = 0. (4.1)

Taking the inner product with uk we estimate,

a0[uk] ≤ Caλk [uk] ≤ Caλkεk [uk] ≤ Cσk ‖uk‖2 + C sup
λ∈[0,1]

∥∥∥Kλ∥∥∥
B(H)
‖uk‖2 ≤ C ′

(4.2)

where C is independent of k comes from the relative form boundedness

of the holomorphic family {Aλ}λ∈D0 (see [5, VII-§4.2]) and the supremum

is finite by the uniform boundedness principle as {Kλ}λ∈[0,1] is strongly

continuous. Hence by the relative form compactness of P to a0 we may pass

to a subsequence (though we retain the subscript k) for which

Puk → v ∈ H.

Then by rewriting (4.1) and using Kλ = KλP for all λ ∈ [0, 1] we have

uk = −(Aλkεk − σk)
−1Gλkεk,nkK

λkPuk (4.3)

where the resolvent exists by the assumption that Aλ ≥ 1 + α for all λ ∈
[0, 1]. Under the assumption that Gλkεk,nk converges strongly to some bounded

operator G as k →∞ we then have

uk → −(Aλε − σ)−1GKλv

so that uk is a convergent subsequence.

14



Lemma 17. The spectrum of the operator Mλ
ε is bounded below uniformly

in λ ∈ [0, 1] and ε ∈ [0,∞).

Proof. It suffices to bound the numerical range. Let u ∈ D(Mλ
ε ) with

‖u‖ = 1 then

mλ
ε [u] = aλε [u]+

〈
Kλu, u

〉
≥ aλ[u]− sup

λ∈[0,1]

∥∥∥Kλ∥∥∥
B(H)

≥ 1+α− sup
λ∈[0,1]

∥∥∥Kλ∥∥∥
B(H)

where the supremum is finite by the uniform boundedness principle.

Now we are ready to prove Proposition 15:

Proof of Proposition 15. We first note that we can interpret A and Aε as

subsets of A′ by

A 3 (u, σ, λ, ε) 7→ (u, σ, λ, ε,∞) ∈ A′

Aε 3 (u, σ, λ, n) 7→ (u, σ, λ, ε, n) ∈ A′

Let {(uk, σk, λk, εk, nk)}∞k=1 be a sequence in A′. By Lemma 17 the σk
are relatively compact and similarly λk ∈ [0, 1], nk ∈ N and εk ∈ [0, ε∗] are

relatively compact and we may pass to a subsequence (maintaining the index

k) for which λk → λ, σk → σ, εk → ε, nk → n as k →∞. Hence Lemma 16 is

applicable, and to show a convergent subsequence we must show that Gλkεk,nk
has a strong limit as k → ∞. On the one hand if the original sequence

was inside A ⊂ A′ then we have nk = ∞ for all k. Hence Gλkεk,nk = 1 by

definition. On the other hand if the original sequence was inside Aε ⊂ A′

then εk = ε > 0 for all k, so that as remarked before Gλε,n is jointly strongly

continuous in λ, n so that Gλkε,nk
s−→ Gλε,n as k →∞.

4.2 Convergence of spectra

We can now use the above compactness results together with the continuity

results to prove Theorem 2′.

Proof of Theorem 2′. We will prove that each of Σ and Σε are both upper

semi-continuous and lower semi-continuous. The lower semi-continuity of

spectra under strong resolvent convergence of self-adjoint operators is stan-

dard (e.g. [5, VIII.§1.2-Theorem 1.14.]). As we have thatMλ
ε is continuous

in the strong resolvent sense (Lemma 13) we have that Σ is lower semi-

continuous. For Σε we must be slightly more careful due to the spurious

eigenvalue of Mλ
ε,n at 0 for n 6= ∞ (see Remark 5 for further discussion of

this eigenvalue, as well as the definition of M̃λ
ε,n which shall appear below).
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We instead consider the operator M̂λ
ε,n := Mλ

ε,n + M(1 − Gλε,n) : H → H

where M > 1 is arbitrary (note that M̂λ
ε,∞ =Mλ

ε,∞). This moves the spuri-

ous eigenvalue to M 6∈ (−∞, 1]. By Lemma 11 the family {Mλ
ε,n}λ∈[0,1],n∈N

is continuous in the strong resolvent sense, and using the stability of strong

resolvent convergence with respect to strongly continuous bounded pertur-

bations {M̂λ
ε,n}λ∈[0,1],n∈N is also continuous in the strong resolvent sense.

Moreover, the spectra of M̂λ
ε,n and M̃λ

ε,n agree in (−∞, 1] as M > 1, which

establishes the lower semi-continuity of Σε.

For the upper semi-continuity we shall use the compactness result Propo-

sition 15. As the proof for Σ is slightly simpler than that for Σε and otherwise

the same we shall leave it to the reader. Let λk → λ ∈ [0, 1], nk → n ∈ N
and σk → σ ∈ (−∞, 1) as k →∞ with σk an eigenvalue of M̃λk

ε,nk
. Then it is

sufficient to prove that σ is an eigenvalue of M̃λ
ε,n. Let uk be the normalised

eigenfunctions. Then {(uk, σk, nk, λk)}∞k=1 ⊂ Aε is a compact set. Hence we

may pass to a subsequence (still indexed with k) for which uk → u. Then by

M̃λk
ε,nk
− σk

s.r.−−→ M̃λ
ε,n− σ as k →∞ we see that u is an eigenfunction asso-

ciated with the eigenvalue σ. Indeed, if we have some self-adjoint operators

Tk
s.r.−−→ T and elements zk → z with Tkzk = 0 then

Tkzk = 0 ⇐⇒
(Tk + i)zk = izk ⇐⇒

zk = i(Tk + i)−1zk

↓ as k →∞ by Tk
s.r.−−→ T

z = i(T + i)−1z ⇐⇒
T z = 0.

5 Non-positive operators: proof of Theorem 2

We define the ε-approximations of Aλ± as before in terms of a pair of holo-

morphic families Wλ
± with the same assumptions. The eigenprojections of

Aλε are then denoted by Gλ±,ε,n and we define

Gλε,n =

[
Gλ+,ε,n 0

0 Gλ−,ε,n

]

and
Aλε,n = Gλε,nAλεGλε,n
Mλ

ε,n = Gλε,nMλ
εGλε,n.
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All the preceding proofs of continuity can be adapted to this case. Indeed,

Proposition 8 holds without modification, while Lemma 11 and Lemma 13

can be extended by using the identity([
T+ 0

0 T−

]
+ i

)−1
=

[
(T+ + i)−1 0

0 (T− + i)−1

]

and the stability of norm (resp. strong) continuity to symmetric bounded

norm (reps. strongly) continuous perturbations. The compactness and spec-

tral continuity results need more modification. Recall that the discrete re-

gion of the spectrum is the gap (−α − 1, 1 + α) rather than the half-line

(−∞, 1 + α). We restate this below:

Proposition 18. Fix ε∗ > 0 and let ∆ = D(Mλ
ε ) × [−1, 1] × [0, 1]. Then

the set of eigenfunctions

A = {(u, σ, λ, ε) ∈ ∆× [0, ε∗] : ‖u‖ = 1,Mλ
εu = σu}

is compact. Let ε > 0 be fixed then set of approximated eigenfunctions

Aε = {(u, σ, λ, n) ∈ ∆× N : ‖u‖ = 1, u = Gλε,nu,Mλ
ε,nu = σu}

is relatively compact.

Proof (sketched). To prove the compactness results we use a version of Lemma 16

with σ ∈ (−∞, 1] replaced with σ ∈ [−1, 1] in the definition of A′. Once we

have this the proof is identical to Proposition 15. In the proof of Lemma 16

we need only change (4.2) to the two estimates

a0±[u±k ] ≤ C±aλk± [u±k ] ≤ C±aλk±,εk [u±k ]

≤ C±|σk|
∥∥u±k ∥∥2 + C± sup

λ∈[0,1]

∥∥∥Kλ∥∥∥
B(H)
‖uk‖2 ≤ C ′

obtained by taking the inner product of (4.1) with u±k where uk = (u+k , u
−
k ) ∈

H+ × H−, from which the relative compactness of Puk follows, and lastly

note that Aλ± ≥ 1 + α implies that the resolvent (Aλkεk − σk)
−1 exists in

(4.3).

With this result the continuity of spectra carries over identically as be-

fore, except for the different region of the spectrum considered (previously

(−∞, 1), now (−1, 1)). This proves Theorem 2.
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6 An application: plasma instabilities

The discussion in this section is informal. As stability analysis typically

relies on a detailed understanding of the spectrum of the linearised problem,

most results in this direction require delicate spectral analysis. However, an

outstanding open problem has been stability analysis of plasmas that do not

possess special symmetries (such as periodicity or monotonicity3) due to the

more complicated structure of the spectrum. A significant obstacle has been

the existence of an essential spectrum extending to both ±∞. Let us briefly

outline the problem, which is treated in detail in [2].

Plasmas are typically modelled by the relativistic Vlasov-Maxwell sys-

tem: Letting f = f(t, x, v) be a function measuring the density of electrons

that at time t ≥ 0 are located at the point x ∈ Rd, have momentum v ∈ Rd

and velocity v̂ = v/
√

1 + |v|2, the Vlasov equation

∂f

∂t
+ v̂ · ∇xf + F · ∇vf = 0 (6.1)

is a transport equation describing their evolution due to the some force F.

Here we have taken the mass of the electrons and the speed of light to be 1

for simplicity. The forcing term F captures the physics of the problem, and

in this case it is the Lorentz force

F = −E− v̂ ×B

where E = E(t, x) and B = B(t, x) are the (self-consistent) electric and

magnetic fields, respectively. They satisfy Maxwell’s equations

∇ ·E = ρ, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B = j +

∂E

∂t
, (6.2)

where ρ = ρ(t, x) = −
∫
f dv is the charge density and j = j(t, x) =

−
∫
v̂f dv is the current density (negative signs are due to the electrons

being negatively charged). Linearising (6.1) we obtain

∂f

∂t
+ v̂ · ∇xf + F0 · ∇vf = −F · ∇vf0, (6.3)

where f0 and F0 are the equilibrium density and force field, respectively,

and f and F are their first order perturbations. Maxwell’s equations do not

require linearisation as they are already linear. We seek solutions to (6.2)-

(6.3) that grow exponentially in time. Therefore, substituting into (6.3) the

ansatz that all time-dependent quantities behave like eλt with λ > 0, we get

λf + v̂ · ∇xf + F0 · ∇vf = −F · ∇vf0.
3Monotonicity, roughly speaking, means that there are fewer particles at higher ener-

gies. For a precise definition see e.g. [1].
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An inversion of this equation leaves us with the integral expression

f = −(λ+ (v̂,F0) · ∇x,v)−1(F · ∇vf0) (6.4)

which depends upon λ as a parameter. By substituting the expression (6.4)

into Maxwell’s equations (6.2), f is eliminated as an unknown, and the only

unknowns left are the electromagnetic fields, expressed via the correspond-

ing potentials, φ and A. [Note that an immediate benefit is that the problem

now only involves the spatial variable x, and not the full phase-space vari-

ables x, v]

We are therefore left with the task of showing that Maxwell’s equations

are satisfied with the parameter λ > 0. Gauss’ equation, for instance, be-

comes

∆φ = ∇ ·E = ρ = −
∫
f dv =

∫
(λ+ (v̂,F0) · ∇x,v)−1(F · ∇vf0) dv

which is an equation of the form

∆φ+Kλ++φ+Kλ+−A = 0. (6.5)

The rest of Maxwell’s equations can be written as

−∆A +Kλ−+φ+Kλ−−A = 0. (6.6)

This system for φ and A is precisely of the form (1.1). Exhibiting linear

instability, i.e. the existence of a growing mode with rate λ > 0, is equivalent

to solving this system for some λ > 0. This is done by tracking the spectrum

of this (self-adjoint) problem as λ varies from 0 to +∞, and showing that

for some intermediate value λ0 there is a non-trivial kernel. As already

mentioned above, the fact that the spectrum extends to both ±∞ (due

to the Laplacians with opposite signs) and is continuous (except for a gap

around zero) makes this task difficult. Theorem 2 allows us to settle this

problem, and we again refer to [2] for full details.
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