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1. Introduction

The original article [BAH16] dealt with finite-dimensional symmetric approximations of

families of self-adjoint operators of the form

Mλ = Aλ +Kλ =

[
−∆ + α(λ) 0

0 ∆− α(λ)

]
+

[
Kλ++ Kλ+−
Kλ−+ Kλ−−

]
, λ ∈ [0, 1] (1.1)

acting in an appropriate subspace of L2(Rd) ⊕ L2(Rd), where {Kλ}λ∈[0,1] is a bounded,

symmetric and strongly continuous family and α(λ) > α > 1 is continuous. The spectrum

of Mλ was discretised by adding a potential, leading us to define

Mλ
ε = Aλ +Kλ + εWλ (1.2)

which is assumed to have a compact resolvent for all ε > 0 (the precise details are omitted

in this note). Finally, an n × n matrix M̃λ
ε,n was defined by restricting Mλ

ε to a subspace

spanned by n eigenfunctions of Aλ + εWλ (chosen in an appropriate way). The main result

– Theorem 3 – asserted that M̃λ
ε,n recovers the spectrum of Mλ in (−1, 1) and moreover

that the spectrum of M̃λ
ε,n converge uniformly in λ to the spectrum of Mλ on compact

subsets of (−1, 1) as ε→ 0 and n→∞.

The purpose of this erratum is to correct this statement by taking into consideration the

possible appearance of eigenvalues entering (−1, 1) at the boundary as λ varies (in other

words, we lack upper-semicontinuity).

The possible discrepancy in the original statement stems from a gap in the proof: while

the theorem treats the convergence of spectra in the open interval (−1, 1), the crucial com-

pactness result meant to show upper-semicontinuity (Proposition 18) deals with the closed

interval [−1, 1]. We settle this discrepancy by considering a different topology. The approach

of the original article was to think of the spectrum as a subset of the real line and measure

distance according to the Hausdorff distance

dH(X,Y ) := max

(
sup
y∈Y

inf
x∈X
|x− y|, sup

x∈X
inf
y∈Y
|x− y|

)
, X, Y ⊂ R.

Instead, we think of the spectrum as a measure (counting multiplicities) and we assess

convergence in terms of weak convergence of measures. While eigenvalues are detected in
1
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both topologies, this new topology allows us to control eigenvalues entering at the boundary

by introducing a smooth cutoff function (see (2.1) below). We recall that a sequence of

finite Borel measures (on some Polish space X ) {µn}n∈N is said to converge to a measure µ

weakly (µn ⇀ µ) if
∫
X f dµn →

∫
X f dµ for any f that is bounded and continuous.

It is a general fact that for a separable topological vector space X, the closed unit ball of

X∗ is a separable metric space in the weak-* topology [Rud73, Theorem 3.16]. Therefore,

there exists a metric on the space of measures with total mass ≤ 1, which is compatible with

the weak topology of measures defined above (the conflict between functional analysts and

probabilists in what is called the weak topology and what is called the weak-* topology is

well-known). We denote this metric dmeas, and note that it applies to any compact (in the

weak-* topology) set of measures. In conclusion, we have that for any sequence {µn}n∈N of

uniformly bounded measures, and any finite measure µ,

dmeas(µn, µ)→ 0 ⇐⇒ µn ⇀ µ.

2. Reformulating the main theorem

In the original article we studied continuity properties (in the sense of the Hausdorff

distance) of the two set-valued maps

Σ : [0, 1]× [0, ε∗]→ (closed subsets of (−1, 1), dH)

Σ(λ, ε) = (−1, 1) ∩ sp(Mλ
ε )

and

Σε : [0, 1]× N→ (closed subsets of (−1, 1), dH)

Σε(λ, n) = (−1, 1) ∩ sp(M̃λ
ε,n).

The main theorem in the paper was:

Original (flawed) theorem. The mappings Σ(·, ·) and Σε(·, n) are continuous in their

arguments, and as n→∞, Σε(λ, n)→ Σ(λ, ε) uniformly in λ ∈ [0, 1].

Instead, for λ ∈ [0, 1], ε ≥ 0 we define the spectral measures

νλ,ε =
∑

x∈sppp(Mλ
ε )\spess(Mλ

ε )

δx, (counting multiplicities)

(note that the essential spectrum is trivial whenever ε > 0) and for any ε > 0, λ ∈ [0, 1]

and n ∈ N the spectral measures

ν̃λ,ε,n =
∑

x∈sp(M̃λ
ε,n)

δx, (counting multiplicities),

where δx is the standard Dirac delta function centred at x. Consider a cutoff function ϕ

satisfying

ϕ(x) =

1 x ∈ [−1, 1]

0 x ∈ R \ (−1− α−1
2 , 1 + α−1

2 )
, ϕ ∈ C(R, [0, 1]).

Finally, define the measures

µϕλ,ε = ϕνλ,ε (2.1)
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and

µ̃ϕλ,ε,n = ϕν̃λ,ε,n. (2.2)

The main theorem may now be restated as:

Theorem 2.1. The mappings [0, 1]× [0,∞) 3 (λ, ε) 7→ µϕλ,ε and [0, 1] 3 λ 7→ µ̃ϕλ,ε,n (ε > 0,

n ∈ N) are weakly continuous. As n→∞, dmeas(µ̃
ϕ
λ,ε,n, µ

ϕ
λ,ε)→ 0 uniformly in λ ∈ [0, 1].

Remark 2.2. i. The cutoff function ϕ is essential in that it allows eigenvalues to enter the

interval [−1, 1] “gradually” as the parameters λ and ε vary. While it is indeed unfortunate

that the statement above involves this auxiliary function, we point out that ϕ is identically

1 inside [−1, 1] (which is the interval of interest for us) and therefore does not play a role

for the approximation problem there.

ii. Furthermore, remembering that our goal is to approximate eigenvalues, the new for-

mulation contains more information than in the original paper as it captures multiplicities,

a feature that the Hausdorff distance lacks. We therefore emphasize that this new

formulation is not weaker than the original one. In fact, for measures on the real

line, weak convergence is equivalent to pointwise convergence of the cumulative distribution

function at its points of continuity [Vil03, Proposition 7.15].

Remark 2.3. From the results of the original paper we know that the following facts hold:

i. Upper-semicontinuity: If [0, 1]× [0,+∞) 3(λm, εm) → (λ∞, ε∞), [−1 − α, 1 + α] 3
σm → σ∞ and Mλm

εm um = σmum where ‖um‖ = 1 then um has a subsequence converging

strongly to some u∞ 6= 0 and Mλ∞
ε∞ u∞ = σ∞u∞. That is, we have upper-semicontinuity

of the spectrum on the closed interval [−1− α, 1 + α]: subsequences of eigenvalues of Mλm
εm

converge to all eigenvalues of Mλ∞
ε∞ .

ii. Lower-semicontinuity: The spectrum is lower-semicontinuous under strong resolvent

perturbations. This implies that each eigenvalue of Mλ∞
ε∞ is a limit of eigenvalues of a

subsequence of Mλm
εm .

Proof of Theorem 2.1. We split the proof into three parts, denoted I, II, III.

I. Claim: along any sequence [0, 1]× [0,+∞) 3(λm, εm)→ (λ∞, ε∞) it holds that

µϕλm,εm ⇀ µϕλ∞,ε∞
as m → ∞. Indeed, we have to show that for any bounded continuous

function f it holds that, as m→∞ (counting multiplicities)∫
f dµϕλm,εm =

∑
y∈sp(Mλm

εm )

ϕ(y)f(y)→
∑

y∈sp(Mλ∞
ε∞ )

ϕ(y)f(y) =

∫
f dµϕλ∞,ε∞

(2.3)

Note that these are finite summations and hence well-defined. Without loss of generality

we assume that f ≥ 0. We know that the spectrum of Mλ∞
ε∞ inside the support of ϕ is

discrete, consisting of a finite number of eigenvalues, each of finite multiplicity. Let them

be σ1, . . . , σM of respective multiplicities N1, . . . , NM . We split the proof of (2.3) into two

steps.

I1. Claim:

lim inf
m

∑
y∈sp(Mλm

εm )

ϕ(y)f(y) ≥
∑

y∈sp(Mλ∞
ε∞ )

ϕ(y)f(y), (counting multiplicities).

By the strong resolvent convergence of Mλm
εm to Mλ∞

ε∞ we know that for any δ > 0 small

enough there are only finitely many m’s for whichMλm
εm does not have at least Ni eigenvalues
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(counting multiplicity!) within δ of σi, for each i ∈ {1, . . . ,M}. Thus, by the continuity and

non-negativity of ϕf , ∀ε′ > 0 and ∀m large enough∑
y∈sp(Mλm

εm )

ϕ(y)f(y) ≥
∑

y∈sp(Mλ∞
ε∞ )

ϕ(y)f(y)− ε′, (counting multiplicities).

This completes step I1.

I2. Claim:

lim sup
m

∑
y∈sp(Mλm

εm )

ϕ(y)f(y) ≤
∑

y∈sp(Mλ∞
ε∞ )

ϕ(y)f(y), (counting multiplicities).

I2a. We first claim that for all but finitely many m’s we have

#
(
sp(Mλm

εm ) ∩ suppϕ
)
≤ #

(
sp(Mλ∞

ε∞ ) ∩ suppϕ
)

=: M ′, (counting multiplicities).

Indeed, suppose not. Then there would exist a subsequence (we abuse notation and still index

it by m) for which Mλm
εm has (at least) M ′ + 1 distinct eigenvalues (counting multiplicity).

Say σm,1, . . . , σm,M ′+1 with respective normalised eigenfunctions um,1, . . . , um,M ′+1. By

compactness of suppϕ we may pass to a subsequence (again we retain the index m) on

which σm,i → σ∞,i (∀i ∈ {1, . . . ,M ′+1}) and some σ∞,i ∈ suppϕ. By upper-semicontinuity

(Remark 2.3i) we may pass to successive subsequences to obtain a final subsequence (still

denotedm) for which additionally um,i → u∞,i strongly for each i, where u∞,i is a normalised

eigenfunction of Mλ∞
ε∞ with eigenvalue σ∞,i. Moreover, as all the operators involved are

self-adjoint, for each m the eigenfunctions {um,i}M
′+1

i=1 form an orthonormal system, that

is: (um,i, um,j) = δij . Taking m → ∞, we still have (u∞,i, u∞,j) = δij , for all i, j ∈
{1, . . . ,M ′+ 1} by the bilinear continuity of the scalar product. But this implies thatMλ∞

ε∞

has at least M ′ + 1 eigenvalues in suppϕ, a contradiction, proving claim I2a.

I2b. We can now complete the proof of I2. Suppose that the claimed bound fails, then

there would exist ε′ > 0 and a subsequence (still denoted m) for which∑
y∈sp(Mλm

εm )

ϕ(y)f(y) ≥
∑

y∈sp(Mλ∞
ε∞ )

ϕ(y)f(y) + ε′, (counting multiplicities).

for each m. Let Mm = #
(
sp(Mλm

εm ) ∩ suppϕ
)
. Then by I2a we know that for all but

finitely many m’s we have Mm ≤ M ′. Thus some number M ′′ ∈ {1, . . . ,M ′} is equal to

infinitely many of the Mm’s. We pass to a subsequence (still denoted m) so that Mm = M ′′

for every m. Let these eigenvalues be {σm,i}M
′′

i=1. As in the proof of the claim above, after

passing to another subsequence we have σm,i → σ∞,i for each i where {σ∞,i}M
′′

i=1 are distinct

(counting multiplicity) eigenvalues ofMλ∞
ε∞ . Hence, by continuity and non-negativity of fϕ,

we have

∑
y∈sp(Mλ∞

ε∞ )

ϕ(y)f(y) ≥
M ′′∑
i=1

ϕ(σ∞,i)f(σ∞,i) (counting multiplicities)

= lim
m→∞

M ′′∑
i=1

ϕ(σm,i)f(σm,i) ≥
∑

y∈sp(Mλ∞
ε∞ )

ϕ(y)f(y) + ε′

where the limit is on the subsequence we extracted. This is a contradiction which completes

I2, and the weak convergence µϕλm,εm ⇀ µϕλ∞,ε∞
follows.
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II. Claim: for any ε > 0 and n ∈ N fixed and along any sequence λm → λ∞

it holds that µ̃ϕλm,ε,n ⇀ µ̃ϕλ∞,ε,n.1 This may be shown either by the same proof as in I,

or we may simply note that the operators involved are finite dimensional matrices whose

coefficients vary continuously in λ.

III. Claim: for any fixed ε > 0 we have dmeas(µ̃
ϕ
λ,ε,n, µ

ϕ
λ,ε) → 0 uniformly in

λ ∈ [0, 1] as n→∞. We split the proof into two steps, III1 and III2.

III1. Let [0, 1] 3 λn → λ∞. The convergence µ̃ϕλn,ε,n ⇀ µϕλ∞,ε follows from the same

proof as in I. Indeed, one has to show that (counting multiplicities)∫
f dµ̃ϕλn,ε,n =

∑
y∈sp(M̃λn

ε,n)

ϕ(y)f(y)→
∑

y∈sp(Mλ∞
ε )

ϕ(y)f(y) =

∫
f dµϕλ∞.ε

We use the fact that Mλn
ε has finitely many eigenvalues in suppϕ, so that all of them are

recovered by M̃λn
ε,n for large enough n:

sp(M̃λn
ε,n) ∩ suppϕ = sp(Mλn

ε ) ∩ suppϕ, ∀n large, ε > 0.

Hence one really needs to show that (counting multiplicities)∫
f dµϕλn,ε =

∑
y∈sp(Mλn

ε )

ϕ(y)f(y)→
∑

y∈sp(Mλ∞
ε )

ϕ(y)f(y) =

∫
f dµϕλ∞,ε.

This was shown in I.

III2. Now we are ready to prove uniform convergence. First we note that since

µ̃ϕλn,ε,n ⇀ µϕλ∞,ε, any ball around µϕλ∞,ε within the space of finite Borel measures will

contain all but finitely many of the elements of the sequence {µ̃ϕλn,ε,n}n∈N. Choosing such a

ball, and omitting those elements of the sequence that do not belong to it, the metric dmeas

makes sense there, and one can consider the distance dmeas(µ̃
ϕ
λn,ε,n

, µϕλ∞,ε).

Uniform convergence follows from the compactness of [0, 1]. Indeed, suppose that uniform

convergence does not hold. Then ∃δ > 0 such that for infinitely many n’s ∃λn ∈ [0, 1] such

that dmeas(µ̃
ϕ
λn,ε,n

, µϕλn,ε) > δ. Extract a subsequence (we abuse notation and retain the

index n) for which λn → λ∞ ∈ [0, 1]. From I we know that for all but finitely many n’s we

must have dmeas(µ
ϕ
λn,ε

, µϕλ∞,ε) < δ/2. Therefore, by the reverse triangle inequality

dmeas(µ̃
ϕ
λn,ε,n

, µϕλ∞,ε) ≥
∣∣ dmeas(µ̃

ϕ
λn,ε,n

, µϕλn,ε)︸ ︷︷ ︸
>δ

− dmeas(µ
ϕ
λn,ε

, µϕλ∞,ε)︸ ︷︷ ︸
<δ/2

∣∣ > δ/2

for infinitely many n’s, a contradiction to the weak convergence µ̃ϕλn,ε,n ⇀ µϕλ∞,ε. �
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