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Abstract. A method for obtaining simple criteria for instabilities in kinetic

theory is described and outlined, specifically for the relativistic Vlasov-Maxwell

system. An important ingredient of the method is an analysis of a parametrized
set of averaging operators along trajectories. This leads to a connection with

similar problems in ergodic theory. In particular the rate of convergence in the
ergodic theorem is a common feature which is studied.
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1. Introduction and main results

1.1. Overview. Over the last decade significant progress has been made in
the mathematical analysis of linear and nonlinear stability in collisionless kinetic
theory. This paper continues a well-established sequence of results concerned with
linear instabilities in which the self-adjoint form of the problem is exploited in
order to reduce the search for unstable modes to the search of certain resonances,
see for instance [12, 13, 7, 1]. More recently, there has been significant progress
in the understanding of nonlinear stability/instability by using a certain continuum
of conservation laws, called Casimirs [11, 10]. Finally, perhaps the most famous
recent result in this context is the rigorous verification of the phenomenon known
as “Landau damping” [14].

We are interested in linear instabilities of the Vlasov-Maxwell system describing
the evolution of plasmas that are assumed to be colliosnless (either due to being
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extremely dilute, or due to being extremely hot where the time scales are such that
collisions can be neglected).

1.2. The relativistic Vlasov-Maxwell system. The Vlasov equation is

(1.1)
∂f±

∂t
+ v̂ · ∇xf± + F± · ∇vf± = 0,

where the two functions f± = f±(t, x, v) ≥ 0 represent the density of positively
and negatively charged particles, respectively, that at time t ∈ [0,∞) are located
at the point x ∈ Rd and have momentum v ∈ Rd. In addition, v̂ = v/

√
1 + |v|2

is the relativistic velocity (the speed of light is taken as c = 1 for simplicity) and
F± = F±(t, x, v) is the Lorentz force, given by

(1.2) F± = ±
(
E + Eext + v̂ × (B + Bext)

)
and providing the coupling to Maxwell’s equations of electromagnetism

(1.3) ∇ ·E = ρ, ∇ ·B = 0, ∇×E = −∂B
∂t
, ∇×B = j +

∂E
∂t
.

In the above, E = E(t, x) and B = B(t, x) are the electric and magnetic fields due
to the plasma itself and Eext = Eext(t, x), Bext = Bext(t, x) are the externally
induced fields. In addition, ρ = ρ(t, x) is the charge density and j = j(t, x) is the
current density, which are defined as

(1.4) ρ =
∫

(f+ − f−) dv and j =
∫
v̂(f+ − f−) dv.

We note that we have taken all constants that typically appear in these equations
(such as the particle masses) to be 1 to keep notation simple. External fields only
complicate notation, and will therefore be omitted in what follows. Since we are
interested in instabilities of equilibria, we define our notion of instability:

Definition 1.1 (Linear instability). We say that a given equilibrium f0,±(x, v)
is linearly unstable, if the system linearized around it has a purely growing mode
solution of the form

(1.5)
(
et/T f±(x, v), et/TE(x), et/TB(x)

)
, T > 0.

1.3. The 1.5-dimensional case. We restrict our attention to a lower dimen-
sional version of the RVM system where certain symmetries are assumed yet all
the main physical ingredients of the problem are kept intact. In particular, the
following is the lowest dimensional setting that allows for a nontrivial magnetic
field. Spatially, all quantities are assumed to only depend upon the x1 variable,
while in the momentum variable dependence is possible upon v1 and v2. Hence we
write x instead of x1 for brevity, and v = (v1, v2). Correspondingly, the electro-
magnetic fields have the form E = (E1, E2, 0) and B = (0, 0, B). The RVM system
is transformed into the following system of scalar equations:

∂tf
± + v̂1∂xf

± ± (E1 + v̂2B)∂v1f
± ± (E2 − v̂1B)∂v2f

± = 0(1.6a)

∂tE1 = −j1(1.6b)

∂tE2 + ∂xB = −j2(1.6c)

∂tB = −∂xE2(1.6d)

∂xE1 = ρ.(1.6e)
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For simplicity, throughout this paper we shall assume periodicity in the x variable,
with period P . Next, we state our main instability result. The main significance
of this result is in providing a relatively simple criterion for checking for linear
instability: one only has to have knowledge of the spectra of certain Schrödinger
operators acting on the spatial variable, not the entire phase-space variables. The
theorem uses several definitions that are too technical to specify here, and therefore
only appear later.

Theorem 1.2. Let f0,±(x, v) be an equilibrium of the 1.5-dimensional RVM
system (1.6) satisfying the integrability condition (1.12) (see below). There exist
two self-adjoint Schrödinger operators A∞1 and A∞2 , a bounded operator B∞ and a
number l∞ (all defined below in (2.8)) acting only in the spatial variable (and not
the momentum variable) such that the equilibrium is linearly unstable if

(i) only the constant functions are in kerA∞1
(ii) the following inequality holds:

(1.7) neg
(
A∞2 + B∞ (A∞1 )−1 (B∞)∗

)
> neg (A∞1 ) + neg(−l∞),

where neg(A) is the number of negative eigenvalues of the self-adjoint operator A,
and neg(−l∞) = 1 (resp. 0) if l∞ > 0 (resp. l∞ ≤ 0).

1.4. The equilibrium. Nontrivial equilibria
(
f0,±(x, v), E0

1(x), E0
2(x), B0(x)

)
of (1.6) are guaranteed to exist due to [6]. We shall always assume that f0,± ≥ 0
are continuously differentiable and that E0

2 ≡ 0. Define the energy e± and the
momentum p±, respectively, by the expressions

(1.8) e± = 〈v〉 ± φ0(x), p± = v2 ± ψ0(x),

where φ0 and ψ0 are the equilibrium electric and magnetic potentials, satisfying

(1.9) ∂xφ
0 = −E0

1 , ∂xψ
0 = B0.

It is well-known that e±, p± are conserved along trajectories of the linearized Vlasov
operators

(1.10) D± = v̂ · ∇x + F0,± · ∇v =
(
v̂,F0,±) · ∇x,v.

Using Jeans’ theorem [8] we replace the coordinates (x, v) by (e±, p±) and write
the equilibrium distributions as

(1.11) f0,±(x, v) = µ±(e±, p±).

We assume that there exist weight functions w± = c(1 + |e±|)−α with α > 2 and
c > 0 such that the integrability condition

(1.12)
(∣∣∣∣∂µ±∂e

∣∣∣∣+
∣∣∣∣∂µ±∂p

∣∣∣∣) (e±, p±) < w±(e±)

holds. This ensures that
∫ (
|µ±e |+ |µ±p |

)
dxdv <∞, where we have used shorthand

notation for the partial derivatives with respect to the first and second variables
respectively (this notation shall appear throughout this paper). Moreover, we define
the following functional spaces that include functions that do not necessarily decay

L2
± =

{
h(x, v)

∣∣∣∣∣ h is P -periodic in x, ‖h‖2± :=
∫ P

0

∫
R2
|h|2w± dv dx <∞

}
.
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The norm and inner-product in L2
± are denoted ‖ · ‖L2

±
and 〈·, ·〉L2

±
, respectively.

In addition we define

L2
P = {h is P -periodic and square integrable on [0, P ]}

as well as the spaces L2
P,0 of functions in L2

P of zero mean value (over a period),
H2
P of functions whose first and second distributional derivatives are in L2

P and
H2
P,0 of functions in H2

P of zero mean value. The norm and inner-product in L2
P

are denoted ‖ · ‖L2
P

and 〈·, ·〉L2
P

, respectively.

1.5. Seeking a uniform ergodic theorem. In the course of the proof of
Theorem 1.2 we encounter an application of the ergodic theorem where a detailed
knowledge of convergence rates could be advantageous. This can be seen in the
definition of the ergodic averaging operators QT± (Equation (2.5) below) whose
properties are discussed in Lemma 5.2 below. These averages are taken along the
trajectories of D±. Since a uniform rate of convergence does not exist in general,
we present methods for obtaining such rates on certain subspaces.

Since the trajectories of D± (which represent the flow of the linearized RVM
system) are quite complicated, we begin by studying first the simplest case of a
1D flow on L2 and weighted-L2 spaces. Generalizations of these results to higher
dimensional shear flows [3] and more general flows [5] are in preparation.

1. L2 case. We consider the self-adjoint operator

(1.13) H = −i d
dx

: H1(R) ⊂ L2(R)→ L2(R)

and we define the space L2,σ(R) as

(1.14) L2,σ(R) =
{
f : C→ R

∣∣∣ ‖f‖2L2,σ(R) :=
∫

(1 + x2)σ|f(x)|2 dx <∞
}
.

Then we have:

Theorem 1.3 (Uniform ergodic theorem – L2 case). For σ > 1
2 , the self-adjoint

operator H = −i ddx satisfies

(1.15) lim
T→∞

1
2T

∫ T

−T
eitHdt = 0

in the uniform operator topology on B(L2,σ(R), L2,−σ(R)).

2. Weighted-L2 case. In the weighted case the result is more interesting, as the
constant functions are part of our functional space. We let 0 < w ∈ L1(R)∩L∞(R)
and define the weighted space

(1.16) L2
w(R) =

{
f : C→ R

∣∣∣ ‖f‖2L2
w(R) :=

∫
|f |2w <∞

}
.

On this space, the operator H is no longer symmetric. However, the operator

(1.17) Hw = − i

w

d

dx
: L2

w(R)→ L2
w(R)

is. Self-adjointness, however, is less straightforward. Therefore we shall first prove:
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Theorem 1.4. The operator Hw : Dα ⊂ L2
w(R) → L2

w(R) is essentially self-
adjoint, where for a fixed α ∈ C with |α| = 1

Dα =
{
f ∈ L2

w(R)
∣∣∣ Hwf ∈ L2

w(R), lim
x→∞

f(x) = α lim
x→−∞

f(x)
}
.

We designate as Hα
w its unique self-adjoint extension.

With this statement at hand, we can now present a new uniform ergodic theo-
rem:

Theorem 1.5 (Uniform ergodic theorem – weighted-L2 case). The convergence

lim
T→∞

1
2T

∫ T

−T
eitH

α
w dt = P

holds in the uniform operator topology on B(L2
w(R), L2

w(R)) for each |α| = 1, where
P is the orthogonal projection onto the kernel of Hα

w.

1.6. Outline of the paper. Our strategy for proving Theorem 1.2 is to first
make the ansatz that the linearized Vlasov equation is linearly unstable, as defined
in (1.5). This provides us with a family of equations for f± depending upon the
parameter T > 0. This allows us to find expressions for f± (again, depending on T )
which we substitute into Maxwell’s equations via the charge and current densities.
We thus obtain a one-parameter family of self-adjoint systems of equations (in the
spatial variable only) depending upon the parameter T . We must show that this
family has a solution for some T > 0. This is done in Section 2. In Section 3 we use
the self-adjointness of this family, as well as continuity properties of its spectrum
(if such exist) in order to track its eigenvalues as T varies from 0 to +∞. Under the
conditions of Theorem 1.2 we find an eigenvalue crossing through 0, which justifies
the ansatz. The most difficult step in the proof, which is merely sketched in the
form of Theorem 3.4, is closely related to the ergodic theorem, and, specifically, to
the non-existence of a rate of convergence for ergodic averages. In Section 4 we
consider this problem, and exhibit two instances where a uniform ergodic theorem
(that is, an ergodic theorem with a rate) can be shown to hold. This presents a first
step towards more robust results in this direction. Finally, in Section 5 we gather
some technical lemmas.

2. An equivalent self-adjoint problem

2.1. Reformulation of the problem. Linearizing the Vlasov equation (1.1)
we obtain

(2.1)
∂f±

∂t
+ v̂ · ∇xf± + F0,± · ∇vf± = −F± · ∇vf0,±,

which, after making the ansatz that the time dependence is as in (1.5), becomes

(2.2)
1
T
f± + v̂ · ∇xf± + F0,± · ∇vf± = −F± · ∇vf0,±.

The right hand side of this equation includes the perturbed Lorentz forces F± =
± (E + v̂ ×B) which we want to express in terms of the electromagnetic potentials
φ and ψ. Using Maxwell’s equations, and the ansatz (1.5) to replace time derivatives
by 1

T , we obtain the expressions

B = ∂xψ, E2 = − 1
T
ψ, E1 = −∂xφ−

1
T
b.
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Above, b ∈ R is simply the mean value of E1 over a period, and is an artifact due
to the periodicity we have introduced. Hence (2.2) becomes

(2.3)
(

1
T

+D±
)
f± = ±µ±e v̂1

(
∂xφ+

1
T
b

)
± µ±p v̂1∂xψ ±

1
T

(
µ±e v̂2 + µ±p

)
ψ

where the operators D± are given in (1.10). There are two parallel approaches for
inverting this equation in order to obtain an expression for f±. In the first, which
can be found in [1], we integrate (2.3) along the trajectories (X±(s;x, v), V ±(s;x, v))
of the vectorfields D± in phase space, which satisfy

Ẋ± = V̂ ±1 ,

V̇ ±1 = ±E0
1 ± V̂ ±2 B0(X±),

V̇ ±2 = ∓V̂ ±1 B0(X±),

with the initial conditions(
X±(0;x, v), V ±(0;x, v)

)
= (x, v).

Another point of view, presented in [4], is to apply the resolvents of D±, which are
skew-adjoint differential operators. In both cases, the expressions obtained are

(2.4) f±(x, v) = ±µ±e φ(x)± µ±p ψ(x)∓ µ±e QT± (φ− v̂2ψ − bv̂1)

where QT± : L2
± → L2

± are the ergodic averaging operators given by, for k ∈ L2
±,

(2.5) (QT±k)(x, v) =
1
T

∫ 0

−∞
es/T k

(
X±(s;x, v), V ±(s;x, v)

)
ds.

Substituting (2.4) into Maxwell’s equations we obtain the self-adjoint system of
equations

−AT1 φ+ BTψ + CT b = 0(
BT
)∗
φ+AT2 ψ −DT b = 0(

CT
)∗
φ−

(
DT
)∗
ψ − P

(
T−2 − lT

)
b = 0

(2.6)

where

AT1 h = −∂2
xh−

(∑
±

∫
µ±e dv

)
h+

∑
±

∫
µ±e Q

T
±h dv,

AT2 h = −∂2
xh+ T−2h−

(∑
±

∫
v̂2µ
±
p dv

)
h−

∑
±

∫
µ±e v̂2Q

T
±(v̂2h) dv,

BTh =

(∑
±

∫
µ±p dv

)
h+

∑
±

∫
µ±e Q

T
±(v̂2h) dv,

CT b = b
∑
±

∫
µ±e Q

T
± (v̂1) dv,

DT b = b
∑
±

∫
v̂2µ
±
e Q

T
± (v̂1) dv,

lT =
1
P

∑
±

∫ P

0

∫
v̂1µ
±
e Q

T
± (v̂1) dv dx.
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The detailed derivation of this system from Maxwell’s equations may be found in
[1]. A nontrivial solution of (2.6) for some 0 < T < +∞ verifies the ansatz (1.5)
and implies the existence of a growing mode. For brevity we write (2.6) as

(2.7) MT

 φ
ψ
b

 = 0.

The properties of all operators introduced here shall be collectively discussed in
Section 5. Primarily, we care about Lemma 5.6 describing the properties of MT .
Our strategy is to prove Theorem 1.2 by showing that (2.7) has a nontrivial solution
for some 0 < T < +∞ by tracking the spectrum ofMT as T varies from 0 to +∞,
and seeking an eigenvalue that crosses through 0. For this, the self-adjointness of
MT for all T ≥ 0 is crucial. In addition, we need to understand the form of MT

(and therefore all other operators) for T = +∞. In particular, the ergodic averages
QT± converge strongly, as T → +∞, to the projection operators Q∞± defined as (see
Lemma 5.2 below for a precise statement):

Definition 2.1. We define Q∞± to be the orthogonal projections of L2
± onto

kerD±.

Accordingly, we define

A∞1 h = −∂2
xh−

(∑
±

∫
µ±e dv

)
h+

∑
±

∫
µ±e Q

∞
± h dv,

A∞2 h = −∂2
xh+ T−2h−

(∑
±

∫
v̂2µ
±
p dv

)
h−

∑
±

∫
µ±e v̂2Q

∞
± (v̂2h) dv,

B∞h =

(∑
±

∫
µ±p dv

)
h+

∑
±

∫
µ±e Q

∞
± (v̂2h) dv,

l∞ =
1
P

∑
±

∫ P

0

∫
v̂1µ
±
e Q
∞
± (v̂1) dv dx.

(2.8)

3. Tracking the spectrum of MT and finding a growing mode

As described above, our strategy for finding a value of 0 < T < +∞ for
which MT has a nontrivial kernel is to “track” its spectrum as T varies from
0 to +∞ and find an eigenvalue crossing through 0. As we state precisely in
Lemma 5.6, (0,∞) 3 T 7→ MT is continuous in the uniform operator topology.
However, the limit limT→∞MT = M∞ is only guaranteed to exist in the strong
topology. A major obstacle is that strong continuity does not guarantee continuity
of the spectrum as a set [9, VIII-§1.3]. We therefore proceed by first solving an
approximate problem set in a finite-dimensional subspace.

3.1. The truncation. We define the following two families of finite-dimensional
orthogonal projection operators:

Pn = the orthogonal projection onto the eigenspace associated

with the first n eigenvalues (counting multiplicity) of A∞1 ,
(3.1)
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and
Qn = the orthogonal projection onto the eigenspace associated

with the first n eigenvalues (counting multiplicity) of A∞2 .
(3.2)

Then we define the truncated matrix operator to be

(3.3) MT
n =

 −AT1,n BTn CTn(
BTn
)∗ AT2,n −DTn(

CTn
)∗ −

(
DTn
)∗ −P

(
T−2 − lT

)


where

AT1,n = PnAT1 Pn AT2,n = QnAT2 Qn
BTn = PnBTQn CTn = PnCT DTn = QnDT .

When T = +∞ the truncated matrix operator becomes

(3.4) M∞n =

 −A∞1,n B∞n 0
(B∞n )∗ A∞2,n 0

0 0 Pl∞


3.2. T small. For small values of T the analysis is rather simple due to the

appearance of the terms T−2. We have

Lemma 3.1. There exists T∗ > 0 such that for any n ∈ N and any T < T∗,
MT

n has exactly n+ 1 negative eigenvalues.

Proof. Since MT
n is a symmetric mapping on a 2n+ 1-dimensional subspace

of H2
P,0 ×H2

P × R it has 2n+ 1 real eigenvalues. Letting ψ ∈ H2
P , we have

(3.5)

〈
MT

n

 0
ψ
0

 ,

 0
ψ
0

〉
L2
P×L2

P×R

=
〈
AT2 Qnψ,Qnψ

〉
L2
P

> 0

for all T < T by Lemma 5.3. This implies thatMT
n is positive definite on a subspace

of dimension n, and, therefore it has at least n positive eigenvalues. Similarly, we
now show that there exists a subspace of dimension n+ 1 on whichMT

n is negative
definite. Let (φ, 0, b) ∈ H2

P,0 ×H2
P × R and consider

〈
MT

n

 φ
0
b

 ,

 φ
0
b

〉
L2
P×L2

P×R

= −
〈
AT1 Pnφ, Pnφ

〉
L2
P

+ 2
〈
CT b, Pnφ

〉
L2
P

− P (T−2 − lT )b2.

(3.6)

We estimate the second term:

2
∣∣∣〈CT b, Pnφ〉L2

P

∣∣∣ ≤ 2
∥∥CT b∥∥

L2
P

‖Pnφ‖L2
P
≤

∥∥CT b∥∥2

L2
P

ε2
+ ε2 ‖Pnφ‖2L2

P
.

Letting ε2 = T , we have〈
MT

n

 φ
0
b

 ,

 φ
0
b

〉
L2
P×L2

P×R

≤

−
〈
AT1 Pnφ, Pnφ

〉
L2
P

+ T‖Pnφ‖2L2
P
− P (T−2 − lT )b2 + T−1

∥∥CT b∥∥2

L2
P

.
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By Lemma 5.3, AT1 > γ > 0 for all T sufficiently small, and therefore this expression
is negative for all φ ∈ H2

P,0 and b ∈ R, since lT and CT are both bounded. Therefore,
there exists a T∗ > 0 such that for every T < T∗ there exists an n+ 1 dimensional
subspace and on which MT

n is negative definite. We conclude that

(3.7) neg
(
MT

n

)
= n+ 1, for all T < T∗.

Notice that T∗ does not depend upon n. �

3.3. T = +∞. We diagonalize M∞n and count its negative eigenvalues. Con-
sidering (3.4), we see that it may be rewritten as

(3.8) F∞n =

 K∞n 0 0
0 −A∞1,n 0
0 0 Pl∞


where K∞n = A∞2,n + (B∞n )∗

(
A∞1,n

)−1 B∞n . This inversion is allowed since A∞1 is
invertible on the image of B∞, see Lemma 5.7. We can therefore conclude that

neg (M∞n ) = neg
(
A∞2,n + (B∞n )∗

(
A∞1,n

)−1 B∞n
)

+ neg
(
−A∞1,n

)
+ neg (l∞)

= neg
(
A∞2,n + (B∞n )∗

(
A∞1,n

)−1 B∞n
)

+ n− dim ker
(
A∞1,n

)
− neg

(
A∞1,n

)
+ neg (l∞) .

(3.9)

Since there are only finitely may negative eigenvalues, we have the simple state-
ment whose proof is omitted:

Lemma 3.2. There exists N > 0 such that for all n > N it holds that

neg
(
A∞1,n

)
= neg (A∞1 )

and

neg
(
A∞2,n + (B∞n )∗

(
A∞1,n

)−1 B∞n
)

= neg
(
A∞2 + (B∞)∗ (A∞1 )−1 B∞

)
.

3.4. T large. The case of T → +∞ is more difficult, due to the mere strong
convergence QT± → Q∞± .

Lemma 3.3. There exists T ∗ > 0 such that for any n ∈ N and any T > T ∗,
neg(MT

n ) ≥ neg(M∞n ).

It is well-known that the spectra of a sequence of strongly continuous operators
may have discontinuities (as a set). One can think of the following simple example:
let un be some orthonormal basis, and let πN be the orthogonal projection operator
onto span({un}n≥N ). Then πN → 0 strongly as N →∞, but the spectrum of πN is
{0, 1} for all N . The proof of Lemma 3.3 relies on the following theorem regarding
the spectra of operators that are strongly continuous:

Theorem 3.4. Let AT = −∆ +V T be a Schrödinger operator on L2(Td), with
domain H2(Td) and with {V T }T∈(0,∞] a bounded family of strongly continuous,
relatively compact perturbations of ∆. Let Pn : L2(Td)→ L2(Td) be the orthogonal
projection operator onto the subspace associated to the first n eigenvalues (counting
multiplicity) of A∞. Define ATn = PnA

TPn. Let ρ ∈ ρ(A∞) be an element in
the resolvent set of the operator A∞. Then there exist N = N(ρ) > 0 and T ∗ =
T ∗(ρ) > 0 such that ρ ∈ ρ(ATn ) for all n > N and for all T > T ∗.
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Sketch of proof. The proof is by contradiction, showing that nontrivial so-
lutions of ATnf

T
n = ρfTn for arbitrarily large n and T lead to a nontrivial solution

of A∞f = ρf , in contradiction to the assumption that ρ is not an eigenvalue. The
main difficulty is in understanding the convergence of terms of the form Pn∆PnfTn .
It can be shown that Pn∆PnfTn → ∆f in the H−1 sense as T, n → ∞. However
bootstrapping this convergence to L2 requires a more delicate analysis. �

The full proof can be found in [2]. This theorem allows us to conclude that no
eigenvalues ofMT

n cross through 0 for large values of n and T if 0 is in the resolvent
set on M∞. Lemma 3.3 follows immediately.

3.5. Conclusion. Combining Lemmas 3.2 and 3.3, together with (3.7) and
the condition (1.7) we conclude that for each n sufficiently large, there exists Tn ∈
(T∗, T ∗) such that kerMTn

n 6= ∅. Now one only needs to let n→∞. This requires
an argument analogous to the one provided in Theorem 3.4, and one can conclude
that there indeed exists T0 ∈ (T∗, T ∗) such that kerMT0 6= ∅ and that there exists
an element in this kernel which is a nontrivial solution of the system (1.6).

4. On uniform ergodic theorems

The most difficult step in the proof of Theorem 1.2 is hidden in Theorem 3.4.
As mentioned above, this difficulty stems from the mere strong convergence of the
ergodic averaging operators QT±. Therefore here we take a step back and ask when
such operators may have a limit also in the uniform operator topology.

We start with the L2 theory:

Proof of Theorem 1.3. We follow the ideas set forth by von Neumann in
his proof of the ergodic theorem [15], using the added structure that differential
operators have via the Fourier transform. If {E(λ)}λ∈R is the spectral family of the
self-adjoint operator H = −i ddx : H1(R) ⊂ L2(R)→ L2(R) we have the expression

(4.1) (E(λ)f, g)L2(R) =
∫
ξ≤λ

f̂(ξ)ĝ(ξ) dξ

where f̂(ξ) = (2π)−1/2
∫

R f(x)e−ixξ dx is the Fourier transform of f . Whenever
this expression is differentiable with respect to λ, we get

(4.2)
d

dλ

∣∣∣
λ=λ0

(E(λ)f, g)L2(R) = f̂(λ0)ĝ(λ0).

The pointwise evaluations on the right hand side require f̂ , ĝ ∈ Hσ(R) with σ > 1/2
due to Sobolev embedding. This means that f, g ∈ L2,σ(R) (see the definition in
(1.14)). We can therefore estimate

(4.3)
∣∣∣∣ ddλ ∣∣∣λ=λ0

(E(λ)f, g)L2(R)

∣∣∣∣ ≤ C(σ)‖f‖L2,σ(R)‖g‖L2,σ(R)

which implies that there exists an operator A(λ0) : L2,σ(R) → L2,−σ(R) such
that 〈A(λ0)f, g〉 = d

dλ

∣∣
λ=λ0

(E(λ)f, g)L2(R) where 〈·, ·〉 is the (L2,−σ(R), L2,σ(R))
dual space pairing (with respect to the L2(R) inner product). Furthermore, the
operator norm of A may be estimated as

(4.4) ‖A(λ0)‖B(L2,σ(R),L2,−σ(R)) ≤ C(σ).
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We are now in a position to finally prove the theorem. Let PT = 1
2T

∫ T
−T e

itHdt,
then

PT f =
1

2T

∫ T

−T

∫
R
eitλdE(λ)f dt =

∫
R

sinλT
λT

dE(λ)f =
∫

R\{0}

sinλT
λT

dE(λ)f

where in the last equality we used the fact that H has a trivial kernel, i.e. E({0}) =
0. We estimate this integral by breaking it up into the following two integrals:∫

R\{0} =
∫
Iε

+
∫
ICε

where Iε = (−ε, ε) and ε > 0 (the first integral should be
∫
Iε\{0},

but since E({0}) = 0 this does not matter). We start with the (simpler) integral∫
ICε

: ∥∥∥∥∥
∫
ICε

sinλT
λT

dE(λ)f

∥∥∥∥∥
2

L2,−σ(R)

=
∫
ICε

∣∣∣∣ sinλTλT

∣∣∣∣2 d ‖E(λ)f‖2L2
w(R)

≤ 1
ε2T 2

∫
ICε

d ‖E(λ)f‖2L2(R)

≤ 1
ε2T 2

∫
R
d ‖E(λ)f‖2L2(R)

=
1

ε2T 2
‖f‖2L2(R)

≤ 1
ε2T 2

‖f‖2L2,σ(R).

(4.5)

For the other integral we need the estimate (4.4):∥∥∥∥∫
Iε

sinλT
λT

dE(λ)f
∥∥∥∥2

L2,−σ(R)

=
∥∥∥∥∫

Iε

sinλT
λT

A(λ)f dλ
∥∥∥∥2

L2,−σ(R)

≤ C(σ)‖f‖2L2,σ(R)

∫
Iε

∣∣∣∣ sinλTλT

∣∣∣∣2 dλ
≤ 2εC(σ)‖f‖2L2,σ(R).

(4.6)

Combining the two estimates (4.5) and (4.6) which hold for any ε > 0 we conclude
that indeed limT→∞ PT = 0 in B(L2,σ(R), L2,−σ(R)). �

Now we turn to the weighted-L2 theory. In this case, determining the precise
spectrum of the operator (and, indeed, even determining that the operator is self-
adjoint) requires much more work. However, once this is done, the actual ergodic
theorem is much simpler.

Proof of Theorem 1.4. It is clear that Hw is symmetric, closed and densely
defined on Dα. To show that it is essentially self-adjoint we let g ∈ L2

w(R) and seek
h ∈ L2

w(R) such that

(4.7) (Hwf, g)L2
w(R) = (f, h)L2

w(R), ∀f ∈ Dα.

By taking f to be a smooth, compactly supported test function we can conclude
that g is differentiable and −iw−1 d

dxg ∈ L
2
w(R). However C∞0 (R) is not a core. Let

f ∈ C∞(R) be such that limx→∞ f(x) = α limx→−∞ f(x). The left hand side of
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(4.7) becomes

(Hwf, g)L2
w(R) = −i

∫ ∞
−∞

d

dx
f(x)g(x) dx

= −i lim
R→∞

∫ R

−R

d

dx
f(x)g(x) dx

= i lim
R→∞

[∫ R

−R
f(x)

d

dx
g(x) dx− f(R)g(R) + f(−R)g(−R)

]
.

Since −iw−1 d
dxg ∈ L

2
w(R) all limits exist so that we obtain

(Hwf, g)L2
w(R) = i

[∫
R
f(x)

d

dx
g(x) dx− f(∞)g(∞) + f(−∞)g(−∞)

]
= i

[∫
R
f(x)

d

dx
g(x) dx− αf(−∞)g(∞) + f(−∞)g(−∞)

]
= i

∫
R
f(x)

d

dx
g(x) dx− if(−∞)

(
αg(∞)− g(−∞)

)
which must equal the right hand side of (4.7):

i

∫
R
f(x)

d

dx
g(x) dx−if(−∞)

(
αg(∞)− g(−∞)

)
=
∫

R
f(x)h(x)w(x) dx, ∀f ∈ Dα.

For this equality to hold in general, g must satisfy αg(∞) = g(−∞), which becomes
g(∞) = αg(−∞) by multiplying by α and recalling that |α| = 1. Hence we conclude
that g ∈ Dα, and therefore Hw is essentially self-adjoint on Dα.

Moreover, we can determine the spectrum of Hα
w by looking for solutions of

Hα
wf = λf . Such solutions have the form

f(x) = Ceiλ
R x
0 w(t)dt.

The condition f(∞) = αf(−∞) becomes (letting α = eiβ , β ∈ [0, 2π))

λ

∫ ∞
0

w(t) dt = β + λ

∫ −∞
0

w(t) dt+ 2πk, k ∈ Z

so that we conclude

(4.8) λβk = ‖w‖−1
L1(R)(β + 2πk), k ∈ Z.

The fact that there are no additional points in the spectrum is due to Hα
w

having compact resolvent. Indeed, let us show that Rαw(z) = (Hα
w − z)−1, where

z ∈ C \ Σ(Hα
w), is a compact operator L2

w(R) → Dα ⊂ L2
w(R). It suffices to show

that the embedding Dα ⊂ L2
w(R) is compact. Let K ⊂ Dα be a bounded set. All

elements of K are uniformly bounded near ±∞, and therefore for every ε > 0 there
exists M > 0 such that

∫
|x|>M |f(x)|2w(x) dx < ε for every f ∈ K. Concluding

that K is compact in L2
w(R) is standard, using Rellich’s theorem on |x| < M and

the smallness of the tails on |x| > M . �

Proving Theorem 1.5 is now simple due to the existence of a spectral gap:
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Proof of Theorem 1.5. Let {E(λ)}λ∈R be the spectral family of Hα
w and

let PT = 1
2T

∫ T
−T e

itHαwdt. Then P = E({0}) is the orthogonal projection onto the
kernel of Hα

w. Hence, as before, we can show that we have the representation

(PT − P )f =
∫

R\{0}

sinλT
λT

dE(λ)f

which we again break up into integrals over Iε \ {0} = (−ε, ε) \ {0} and ICε . If ε > 0
is sufficiently small, the first integral makes no contribution due to the spectral gap.
The second integral is treated as in (4.5), where the exact properties of the spectral
family (and, in particular, whether the spectral measure is absolutely continuous
or has atoms) do not matter. Moreover, we observe that these arguments do not
require f to be in any special subspace of L2

w(R) as was the case before. �

5. Properties of the operators

Here we collect all the important properties of the operators appearing in Sec-
tion 2. The proofs are technical and we refer to [1] for the details.

Lemma 5.1 (Properties of D±). D± are skew-adjoint operators on L2
±. Their

null spaces kerD± consist of all functions in L2
± that are constant on each connected

component in R × R2 of {e± = const and p± = const}. In particular, kerD±

contain all functions of e± and of p±.

Lemma 5.2 (Properties of QT±). Let 0 < T <∞.
(1) QT± map L2

± → L2
± with operator norm = 1.

(2) For all m ∈ L2
±,
∥∥QT±m−Q∞±m∥∥± → 0 as T →∞.

(3) For all m ∈ L2
±,
∥∥QT±m−m∥∥± → 0 as T → 0.

(4) If S > 0, then
∥∥QT± −QS±∥∥ = O(|T − S|) as T → S, where ‖ · ‖ is the

operator norm from L2
± to L2

±.
(5) The projection operators Q∞± preserve parity with respect to the variable

v1.

Lemma 5.3 (Properties of AT1 ,AT2 ). Let 0 ≤ T <∞.
(1) AT1 is self-adjoint on L2

P,0. AT2 is self-adjoint on L2
P . Their domains are

H2
P,0 and H2

P , respectively, and their spectra are discrete.
(2) For all h ∈ H2

P,0, ‖AT1 h−A∞1 h‖L2
P
→ 0 as T →∞. The same is true for

AT2 with h ∈ H2
P .

(3) For i = 1, 2 and S > 0, it holds that ‖ATi −AS‖ = O(|T − S|) as T → S,
where ‖ · ‖ is the operator norm from H2

P,0 to L2
P in the case i = 1, and

from H2
P to L2

P in the case i = 2.
(4) For all h ∈ H2

P,0, ‖AT1 h+ ∂2
xh‖L2

P
→ 0 as T → 0.

(5) When thought of as acting on H2
P (rather than H2

P,0), the null spaces of
AT1 and A∞1 both contain the constant functions.

(6) There exist constants γ > 0 and T > 0 such that ATi > γ > 0 for all
T ≤ T and i = 1, 2.

Lemma 5.4 (Properties of BT , CT ,DT ). Let 0 < T <∞.
(1) BT maps L2

P → L2
P with operator bound independent of T . Moreover,

Ran(B∞) ⊂ {1}⊥.



14 JONATHAN BEN-ARTZI

(2) For all h ∈ L2
P , as T →∞ we have: ‖BTh−B∞h‖L2

P
→ 0 and ‖CTh‖L2

P
, ‖DTh‖L2

P
→

0.
(3) If S > 0, then ‖BT − BS‖ = O(|T − S|) as T → S, where ‖ · ‖ is the

operator norm from L2
P to L2

P . The same is true for CT ,DT .
(4) For all h ∈ L2

P , ‖BTh‖L2
P
→ 0 as T → 0. The same is true for CT ,DT .

Lemma 5.5 (Properties of lT ). Let 0 < T <∞.
(1) lT → l∞ as T →∞.
(2) lT is uniformly bounded in T .

Lemma 5.6 (Properties ofMT ). To simplify notation, we write u for a generic
element (φ, ψ, b) ∈ H2

P ×H2
P × R.

(1) For all T ≥ 0, MT is self-adjoint on L2
P × L2

P × R with domain H2
P ×

H2
P × R.

(2) For all u ∈ H2
P ×H2

P × R, ‖MTu−M∞u‖L2
P×L2

P×L2
P
→ 0 as T →∞.

(3) If S > 0, then ‖MT −MS‖ → 0 as T → S, where ‖ · ‖ is the operator
norm from H2

P,0 ×H2
P × R to L2

P × L2
P × L2

P .

Lemma 5.7. The operator (B∞)∗ (A∞1 )−1 B∞ is a well-defined bounded operator
from L2

P → L2
P .
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