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ABSTRACT. We report on new barriers in the theory of computations. These barriers show that the
standard theory of computations and complexity theory is insufficient for many core problems in com-
putational theory. Thus we are in need of a new extended complexity theory. The new theory settles
the long standing computational spectral problem and also provides new fundamental algorithms for
quantum mechanics.

1. INTRODUCTION

In the classical theory of computations and complexity we typically have two scenarios: (i) the
problem can be computed via an algorithm in finite time given a finite input, or (ii) there is a sequence
of approximations produced by an algorithm, where each output is produced in finite time, and the
solution to the problem is the limit of this sequence (think about computing an integral of a function,
computing eigenvalues of matrices etc.). It may seem that most, if not all, computational problems
would fit into these two scenarios. It is therefore surprising that there are many problems that do not
fit into this framework. Moreover, some of these problems are at the heart of computational theory,
and include: computing spectra of operators, solving inverse problems, root finding of polynomials
with rational maps, and more. The issue is that these problems cannot be computed by simply passing
to a limit. However, one can compute the solution by using several limits. Such a phenomenon may
be unexpected, but this turns out to be at the heart of the boundaries of computational mathematics.

One of the first rigorous examples of this phenomenon came with the pioneering work of Mc-
Mullen [4] and Doyle & McMullen [2]] on polynomial root finding with rational maps. This example
is not exclusive, and in fact there are many problems in this category. In this paper we report on some
of the new results concerning these barriers. The main concepts are the Solvability Complexity Index
(SCI) and towers of algorithms that merge the frameworks from [3]] and [2]]. The SCI is the smallest
number of limits needed in order to compute a desired quantity given a certain toolbox of allowed
mathematical operations.

Main consequences:

(I) Spectral problems: It is impossible to compute spectra and essential spectra of infinite ma-
trices in less than three limits. This is universal for all algorithms regardless of the operations
allowed (arithmetic operation, radicals, etc.). However, it is possible to compute spectra and
essential spectra in three limits when allowing arithmetic operations of complex numbers. It
is impossible to compute spectra of self-adjoint infinite matrices in one limit. This is uni-
versal regardless of the operations allowed, however, it is possible to compute spectra of
matrices with controlled growth on their resolvent in two limits (this then includes normal
operators).

Computing the spectrum and the essential spectrum of an infinite matrix is only possible
with three independent limits: doing so with less is impossible, regardless of the type of
mathematical operations allowed. When restricting to matrices with controlled resolvent
norm (this includes, for instance, the class of normal matrices), it is possible to obtain the
spectrum with two limits, but not one. Again, the impossibility of calculating with one limit
is true regardless of the mathematical operations allowed.

(II) Quantum Mechanics: One can compute spectra of all non-normal Schrodinger operators
with bounded potential with bounded local total variation in two limits. If the operator is
normal or if the potential blows up at infinity, then one limit suffices.
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(IITI) Inverse Problems: It is impossible to compute the solution to a general infinite linear system
in one limit, yet it is possible in two. For matrices with known/controllable off diagonal
decay, one can compute the solution to a linear system in one limit.

(IV) Impossibility of Error Control: Most problems with SCI > 1 (that is, where more than one
limit is necessary) can never be computed with error control, i.e. it is impossible to design an
algorithm that can compute an approximation to the solution and know when one is “epsilon”
away from the true solution.

(V) A New Complexity Theory: The SCI framework provides a new complexity theory for
problems that do not fit into the existing complexity theories. In particular, current complex-
ity theory cannot handle problems that require several limits in the computation.

(VD) A New Classification Theory: If SCI = k£ > 1 for a certain class of problems, the question
is: which subclasses of problems will have SCI = k — 1 or SCI = k — 2, etc.?

(VII) Decision Problems and Turing Machines: There is a connection between the SCI and the
Arithmetical Hierarchy. In particular, the A, sets in the Arithmetical Hierarchy can equiva-
lently be characterised in term of the SCI. Thus, one may view the SCI as a classification tool
that is a generalisation of this complexity hierarchy to arbitrary computational problems.

2. THE MAIN RESULTS

We propose a unified theory for computational problems. The basic objects are: €2 is some set,
called the primary set, A is a set of complex valued functions on €2, called the evaluation set, M is a
metric space, and = : 2 — M is called the problem function. The set €2 is the set of objects that give
rise to our computational problems. It can be a family of (finite or infinite) matrices, polynomials,
Schrodinger or Dirac operators, inverse problems etc. The problem function = : 2 — M is what
we are interested in computing. It could be the set of eigenvalues of an n X n matrix, root(s) of a
polynomial, the spectrum of an operator, etc. Finally, the set A is the collection of functions that
provide us with the information we are allowed to read, say matrix elements, polynomial coefficients
or pointwise values of a potential function of a Schrédinger operator, for example. This leads to the
following definition.

Definition 2.1 (Computational Problem). Given a primary set ), an evaluation set A, a metric
space M and a problem function = : Q8 — M we call the collection {E, ), M, A} a computational
problem.

The goal of this abstract definition is to allow most of the known computational problems into
the framework. However, to make this abstract definition a little more concrete, let us consider the
following example.

Example I: Let Q = B(H), the set of all bounded linear operators on a separable Hilbert space H,
and the problem function = be the mapping A — sp(A) (the spectrum of A). Here (M, d) is the set
of all compact subsets of C provided with the Hausdorff metric d = dy. The evaluation functions in
A could consist of the family of all functions f; ; : A — (Aej, e;), 1,7 € N, which provide the entries
of the matrix representation of A w.r.t. an orthonormal basis {e; };cn. Of course, {2 could be a strict
subset of B(#H ), for example the set of self-adjoint or normal operators, and = could have represented
the pseudo spectrum, the essential spectrum or any other interesting information about the operator.

Our aim is to find and to study families of functions (that we will sometimes refer to as algorithms)
which permit to approximate the function =. The main pillar of our framework is the concept of a
tower of algorithms.

Definition 2.2 (General Algorithm). Given a computational problem {Z,Q, M, A}, a general al-
gorithm is a mapping T : Q@ — M such that for each A € Q)

(i) there exists a finite subset of evaluations Ar(A) C A,
(i) the action of I" on A only depends on {Ay} rcn. (a) where Ay = f(A),
(iii) for every B € Q) such that By = Ay for every f € Ar(A), it holds that Ar(B) = Ar(A).
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A general algorithm has no restrictions on the operations allowed. The only restriction is that it can
only take a finite amount of information, though it is allowed to adaptively choose the finite amount
of information it reads depending on the input. Condition (iii) assures that the algorithm reads the
information in a consistent way.

Definition 2.3 (Tower of Algorithms). Given a computational problem {Z,Q), M, A}, a tower of
algorithms of height & for {=, Q, M, A} is a family of sequences of functions

Lo Q= M, Ty oy Q= Moo, Ty Q= M,

where ny,...,n1 € N and the functions Iy, . ., at the “lowest level” of the tower are general
algorithms in the sense of Definiton[2.2] Moreover, for every A € Q,

[1]

(A) = lim Tp(A), Tppomn(A) = lim o, o (A) j=k—1,... 1

N —>00 T j —> 00
In addition to a general tower of algorithms (defined above), we will focus on arithmetic towers.

Definition 2.4 (Arithmetic Tower). Given a computational problem {=,Q, M, A}, an Arithmetic
Tower of Algorithms of height k for {E,Q, M, A} is a tower of algorithms where the lowest level
functions

=Ty, .0 : Q2= M

satisfy the following: For each A € ) the action of T on A consists of only finitely many arithmetic
operations on {Af} repp.(a), where we remind that Ay = f(A).

Given the definitions above we can now define the key concept, namely, the Solvability Complexity
Index:

Definition 2.5 (Solvability Complexity Index (SCI)). A given computational problem {=Z, ), M, A}
is said to have Solvability Complexity Index SCI(Z,Q, M, A), = k with respect to a tower of al-
gorithms of type o if k is the smallest integer for which there exists a tower of algorithms of type o
of height k. If no such tower exists then SCI(Z,Q, M, A), = oo. If there exists a tower {T';, }nen of
type o and height one such that = = T, for some ny < oo, then we define SCI(Z,Q, M, A), = 0.
The type oo may be General, or Arithmetic, denoted respectively G and A. We may sometimes write
SCI(E, Q) to simplify notation when M and A are obvious.

We will let SCI(Z, Q) o and SCI(E, Q) denote the SCI with respect to an arithmetic tower and a
general tower, respectively. Note that a general tower means just a tower of algorithms as in Definition
where there are no restrictions on the mathematical operations. Thus, clearly SCI(Z,Q)s >
SCI(Z, Q). The evaluation sets A and Ar(A), given a general algorithm I" and an element A € €,
are crucial when determining the SCI as the following example demonstrates.

Example II: Suppose we want to compute the area of a disc (in the plane) given its radius. Denote
the set of discs by €2. Let f be the evaluation function which assigns to a closed dics D its radius
r = f(D). Let Ay = {f} and let A5 be the union of A; and the set of all constant functions on ).
If we allow A5 then the SCI of this problem with respect to an arithmetic tower is obviously zero as
the formula 772 immediately gives the answer. However, if we only allow A; then we must have that
SCI > 0, since 7 cannot be obtained in finitely many arithmetic operations from the input .

Remark I: Motivated by the example above, there are several settings that may be considered
when analyzing the SCI, for example: (I): A contains all constant functions. (II): Let I' be a general
algorithm, A, B € Q and let Ap(A) C Ap(A) denote the set of constant functions. Then Ap(A) =
AF(B). In particular, the constant functions are the same for A and B. (III): A contains no constant
functions. We will specify which of the above conditions are used in the upper bounds of the SCI.

2.1. The main theorems. Spectra of bounded operators: Computing spectra of operators is one of
the core problems in the theory of computations and this field has produced a vast amount of research.
We refer to [1] and the references therein for a quick overview. We commence with some definitions.
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Definition 2.6 (Dispersion). We say that the dispersion of A € B(¢?(N)) is bounded by the function
[N = Nifmax{||(I = Psm)) APmll, | P A(I = Ptm))||} — 0as m — oo, where P, denotes the
projection onto span{ei, ..., ey} and {e;} is the canonical basis. We denote the set of all operators
with the dispersion bounded by f by B¢ (¢*(N)).

Definition 2.7 (Controlled resolvent). Given some continuous function g : [0,00) — [0, 00) that
vanishes only at x = 0 and such that g(x) — oo as x — oo, define Ry(H) to be the class of all
closed linear operators on the Hilbert space H satisfying

(A = =071 7 = g(dist(z,sp(A)))

for every z € C, where we use the convention || B~1||~* := 0 if B has no bounded inverse. Note that
normal (and self-adjoint) operators satisfy this condition with g(x) = .

Definition 2.8 (Pseudospectra). For N € Z, and ¢ > 0, the (N, €)-pseudospectrum of a bounded
linear operator A € B(H) on a Hilbert space H is defined to be the set

sy (A) = {z€C:[[(A—2D)~2"277 > 1/}

We will consider variants of the computational problem suggested in Example 1. Consider the
following classes of operators: ; = B(¢3(N)), Qs = Bf(£*(N)), Q3 = R,(¢*(N)) N B(¢*(N)),
Q4 = K(£?(N)), the set of all compact operators on £2(N), and Q5 = Q5 N Q3. Define the following
problem functions: =Z;(A) = sp(A) and fore > 0 and N € Z, let Z3(A) = spy (A), as well as
E3(A) = Sp.(A) (the essential spectrum). When considering €23 then A contains, besides the usual
evaluations f; ; : A — (Aej,e;) (i,j € N) the constant functions g; ; : A — ¢(i/j) (1,7 € N),
which provide the values of g in all positive rational numbers. When considering {25 the values f(m)
(m € N) shall be available to the algorithms as constant evaluation functions.

Theorem 2.9 (SCI and spectra). Given the above setup

Spectrum: SCI(Z1, 1) = SCI(Z1,Q1)a =3, SCI(E1,Q)g = SCI(EL, Q) =2, i
SCI(Z1,U)e = SCI(Z1,Q4)a =1, SCI(Z1,Q5)c = SCI(Z1,25)a = 1,
Pseudospectrum: SCI(Zy, Q1)g = SCI(Eq,Q21)a =2, SCI(E2,Q2)c = SCI(Zs,Q2)a =1,
SCI(Zg,Q4)c = SCI(Z, Qy)a =1,
Ess-spectrum: SCI(Z3, 1) = SCI(Z3,Q1)a =3, SCI(E3,Q5)c = SCI(Z3,Q5)a = 2.

Note that all the lower bounds in the theorem above are valid for a general tower. This implies that
regardless of the permissible operations, no algorithm can improve on these lower bounds.

Inverse Problems: We seek solutions to problems of the form Az = b where A € By, (¢%(N)),
the class of bounded invertible operators, and b € ¢2(N). In particular, =(A, b) = z. We define the
classes Q1 = Biny (2(N)) x £2(N), Qo = (Biny (¢2(N)) N By (¢£3(N))) x ¢£2(N). The metric space
M would simply be ¢?(N) and A the collection of mappings {f; ;}ien jez, where f; ; @ (4,b) —
(Aej,e;) forj € Nand f; o : (A,b) — (b, e;). When considering 2 the values f(m) (m € N) shall
be available to the algorithms as constant evaluation functions. Having defined these computational
problems we have the following.

Theorem 2.10 (Linear systems). Given the setup above we have SCI(1)g = SCI(Q1)a = 2 and
SCI(Q2)c = SCI(Q)a = 1.

Quantum Mechanics: Consider the Schrodinger operator H = —A 4V with bounded potentials.
Let €2 be some set of bounded potential functions and let Z : V' — sp(—A + V'), where the domain
D(—A + V) = W22(R?) (the standard Sobolev space). Given that the spectra are unbounded, let
(M, daw) denote the set of closed subsets of C equipped with the Atfouch-Wets metric (see [1])).
Also, A will be the set of all evaluations f, : V +— V(z), x € R? and all constant functions. We

2,3,
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consider the following potential classes:
O ={V:V e L®(RY) NnBV4(RY},

where ¢ : [0,00) — [0, 00) is some increasing function, BV4(R?) = {f : TV(f(_y qa) < ¢(a)},
Ji—a,q)¢ meaning f restricted to the box [~a,a]?, TV being the total variation of a function in the
sense of Hardy and Krause (see [1]). Also, Q2 = Q; N{V : —A+V e R, (L2(R%))}. We then get
the following result.

Theorem 2.11 (Schridinger operators). Given the setup above we have SCI(Z,Q1)a < 2, and
SCI(E, )¢ = SCI(Z, Q)4 = 1.

Impossibility of Error Control: A key concept in computations is error control. Given a compu-
tational problem {Z, 2, M, A} with SCI(E, 2, M, A),, = k for some tower of algorithms of type a,
and a tower of algorithms of height &, we want to control the convergence I'y,, — =,..., Iy, . », —
Ty......n,. For e > 0, how big do ng, ..., n; have to be so that d(T'y,, . », (4),Z(A)) < ¢, for all
A € . Unfortunately, such choices of ng,...,n; may be impossible. More precisely, problems
with SCI greater than one with respect to a General tower will never have error control.

Theorem 2.12 (No global error control). Let {=,Q, M, A} be a computational problem with
SCI(Z, Q, M, A)g > 2. Suppose that there is a general tower of algorithms of height k, 'y, ..., T, . n,
for {2,Q, M, A}. Then there do NOT exist integers n, = ni(m),...,n1 = ni(m) (depending on

m) such that

d(Tny,...na (A4),E(A)) <

1
m7

Sforall A € Q and for allm € N.

A weaker concept than global error control is local error control: VA € Qand Ve > 0, Ing, ..., ny
such that d(T',,,. ., (A),Z(A4)) < e. Indeed, the existence of ny, ..., n, is guaranteed by the def-
inition of a Tower of algorithms. However, the integers ny, ..., n; cannot be computed as the next
theorem demonstrates, and thus local error control is also impossible.

Theorem 2.13 (Local error control cannot be computed). Given a computational problem {Z, Q, M, A}
with SCI(Z, Q, M, A)c > 2, suppose that there is a general tower of algorithms Ty, ..., T, n,

of height k for the computational problem. Then, there does NOT exist a sequence {fn} of general
algorithms Ty, : Q — N¥ such that for any A € Q,

dTs, 4y, P (a), (A), E(A)) <

The SCI, Turing machines and the Arithmetical Hierarchy: Given a subset A C Z, with
characteristic function x4 being definable in First-Order Arithmetic, we are interested in the SCI
of deciding whether a given number x € Z, belongs to A or not. In other words, we want to
determine the value of the characteristic function of A at the point . Thus, we want to consider
Towers of Algorithms for x4 where the functions/relations at the lowest level shall be computable,
and we again ask for the minimal height. More precisely, we consider the primary set () := Z, the
evaluation set A = {A} consisting of the function A : Z; — C,  — x, the metric space M :=
({Yes, No}, dgiser ), where dg;se- denotes the discrete metric, and consider all functions = : @ — M
in the Arithmetical Hierarchy. In honour of Kleene and Shoenfield we call a Tower of Algorithms
that is computable (in the sense of Turing) a Kleene-Shoenfield tower.

Definition 2.14 (Kleene-Shoenfield tower). A rower of algorithms given by a family {T'y,, . n, :
Q= M :ng,...,n1 € N} of functions at the lowest level is said to be a Kleene-Shoenfield tower,
if the function

N x Q— M, (ng,...,n1,x) = Ty ong(2)
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is computable. Given a computational problem {Z, Q, M, A} as above, we will write SCI(Z, Q, M, A)ks
to denote the SCI with respect to a Kleene-Shoenfield tower.

We can now present the main theorem, linking the SCI and the Arithmetical Hierarchy.

Theorem 2.15 (The SCI and the Arithmetical Hierarchy). Let m € Z. and recall the classes
Y Wi, Ay, from the Arithmetical Hierarchy. If E is A,, 11 then there exists a Kleene-Shoenfield
tower of algorithms of height m. Conversely, if SCI(Z, Q)ks = m then = is Ap,41, but not A,,.

This theorem follows from a result by Shoenfield [5] (see [1f] for details), and has an immediate
corollary that shows how the SCI can become arbitrarily large.

Corollary 2.16 (The SCI can become arbitrarily large). For every k € N there exists a problem
Sfunction = on Q with SCI(Z, Q)ks = k.

Polynomial root finding with rational maps: A purely iterative algorithm (6] is a rational map
T : Py — Rat,,, p — T, which sends any polynomial p of degree < d to a rational function T},
of a certain degree m. An important example of a purely iterative algorithm is Newton’s method.
Furthermore, a purely iterative algorithm is said to be generally convergent if lim,,_, o, T;(z) exists
for (p, z) in an open dense subset of P x (CU {oo}), and the limit is a root of p. Here T}'(z) denotes
the nth iterate 7' (z) = T,(T;~"(z)) of T},. For instance, Newton’s method is generally convergent
only when d = 2. This failure of Newton’s method prompted S. Smale [6] to ask the following: “Is
there any purely iterative generally convergent algorithm for polynomial zero finding ?” This question
led to the definition and theorem below.

Definition 2.17 (Doyle-McMullen tower). A (Doyle-McMullen) tower of algorithms is a finite se-
quence of generally convergent algorithms, linked together serially, so the output of one or more can
be used to compute the input to the next. The final output of the tower is a single number, computed
rationally from the original input and the outputs of the intermediate generally convergent algorithms.

It can be shown that a Doyle-McMullen tower is a general tower as in Definition 2.3] with the
slight change that the convergence holds only for an open dense set, thus the following theorem can
be formulated in terms of the SCI.

Theorem 2.18 (McMullen [4]; Doyle and McMullen [2]). For P, there exists a generally conver-
gent algorithm only for d < 3. Towers of algorithms exist additionally for d = 4 and d = 5 but not
ford > 6.

By the proof of this theorem one gets that the height of the tower is three, and thus the previous
theorem can be formulated in terms of the SCI as follows. For d < 3, the SCI = 1, for d = 4, 5 one
has SCI € {2, 3} while for d > 6 there is no tower: SCI = co. See [|1] for details.
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