2. Now we turn to the denominator. We use the fact (which we have not proved
yet) that In(1 + x) ~ x as x — 0. Hence, In(1 + x?) ~ x? as x — 0. Hence:

5In(1 + x?) ~ 5x% = 0(4x), x — 0.

3. So we have:

sin 2x + x3 . sin2x 1. sin2x 1
im = lim = — lim = —.
x-04x +5In(1+x2) x>0 4x 2x50 2x 2
~—_———

Important takeaway N

When we want to study the limit of a complicated expression, we need to
understand the asymptotic behavior of all the terms that it includes, and try
to convert them to monomials.

Fundamental limits

,

We have the following, all as x — 0: (some of these will be proven later)

sinx ~ x

1
1— ~ Zx?
COSX ~ o

In(1 +x) ~ x
e —1~x
1+x)*-1~ax

6.2 Infinitesimal and infinite functions

As we have seen in the previous section, we are interested in the asymptotic study
of the behavior of functions as we either approach their zeros (i.e. points where the
function vanishes) or where they ‘blow up’ (i.e. points where they tend to +c0). If a
function f : R — R tends to 0 as x — x, f is said to be infinitesimal at xo. If it tends
to oo as x — xp, it is said to be infinite at xo. Here, as always, xo could be any finite value,
or 00,

1) If f and g are two infinitesimal functions at xp, then:

o if f = 0(g) at xg then f is said to be infinitesimal of a higher order. Sometimes we

write:
Ifl < gl <1

to signify that f = 0(g) and g = o(1).
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e if f ~ gatxgthen f and g are said to be infinitesimal of the same order.

2) If f and g are two infinite functions at xq, then:
e if f =0(g) at xo then f is said to be infinite of a lower order. Sometimes we write:
lxfxg
to signify that f = o(g) and limy_,y, f = +o0.
e if f ~ gatxthen f and g are said to be infinite of the same order.

Ordering of important infinite functions N

The following functions are ordered in terms of their infinite order as x — +o0:
(we will prove this later)

log,x x* b*

foranya>1,s>0, b>1.

\.

This means that:
log, x = o(x®)

x° = o(b*)

Ordering of important infinite sequences

The following sequences are ordered in terms of their infinite order as n — oo:
(we will prove this later)

} as x — +oo

log.n n v onl m

foranya>1,s>0, b>1.

\ J

This means that:
log, n = o(n®)

n® = o(b")

— 00
b" = o(n!) ash
n! = o(n")

Stirling formula

There is a precise formula for the relationship between n! and n", known as
the Stirling formula, it provides a way to approximate n!:

n n
n! ~ 2nn(—) , n — oo.
e

This is useful in many applications, including in statistics, where factorials
appear in the binomial formula.
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We don’t prove it here. There is something surprising about the fact that V2, 7 and e
all appear in this formula....

6.3 Order and principal part of infinitesimals and in-
finites

The most naive thing we can do, when trying to understand the behavior of an infinite
or infinitesimal function, is to compare it to powers of x. Recall that a function f : R —
R is infinite at x if limy_,y, f(x) = oo, and it is infinitesimal at x¢ if limy_,x, f(x) = 0.

Infinitesimal functions at a finite point x

Suppose that xg € R, and that limy_,y, f(x) = 0. Then
we want to compare f to powers of @(x) = x — xp

X — X0

Infinitesimal functions at an infinite point x,

Suppose that xg € {+o0}, and that lim,_,y, f(x) = 0. Then

1
we want to compare f to powers of @(x) = .

K=

Infinite functions at a finite point x

Suppose that xp € R, and that limy_,y, f(x) = +c0. Then

1
X —Xo

we want to compare f to powers of @(x) =
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Infinite functions at an infinite point x

Suppose that xg € {+o0}, and that limy_,y, f(x) = £oco. Then

we want to compare f to powers of @(x) = x

In all the above cases, sometimes we may need ¢ to be non-negative. So we may
need to introduce an absolute value in the definitions of the various ¢.

Order of an infinitesimal/infinite function \

Let f be infinitesimal or infinite at xo. If there exists @ > 0 such that

f=¢% x—x

then we say that a is the order of f at xp with respect to ¢.

\ J

Observe that if f has an order it is unique. Furthermore, by definition of the symbol =,
f = %, x = xp, means that

lim ()

X—X (pa ( x)

=R\ {0}

This can also be written as:
f~€p®, x— xp

which can be rewritten as

f=400%+0(p%), x— xo.
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Principal part of an infinitesimal/infinite function N

If f = €@+ o(p®) as x — xp then

p(x) = £p*(x)

is called the principal part of f at xop with respect to ¢.

Examples

Example 6.3: Consider the function
f(x) =sinx —tanx, near xo = 0.

Since sin0 = tan0 = 0, f is infinitesimal at x = 0. We can write:

. ) sinx
sinx —tanx =sinx —
CcOS X
_ sinx-(cosx —1)
COS X
1.2
x - (—5x%)
1
1
= ——x3, x— 0.

2

Hence f is infinitesimal of order 3 at x = 0 with respect to ¢(x) = x. The principal part
is p(x) = —%x3 and we can write:

3

1
sinx — tanx = —Ex +o(x%), x—0.

Example 6.4: Consider the function

flx) = Va2 +3- Va2 - 1.

As x — +0o, f(x) tends to 0 (verify that you can see why!). So f is infinitesimal
at xp = +oco. We'll want to compare it to p(x) = % First we want the roots in the

denominator, so we multiply and divide by Vx2 +3 + Vx2 — 1 to get:

f)= Va2 +3 - Va2 -1
_ (@+3)-(2-1)
Va2 +3+ Va2 -1

1 i
X
\/1+x%+\/1—xl2
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To compare to p(x) = we need to look at

f()

1m
X—+00 (p“(x)

and try to identify the correct a. We see that we get:
f(x)
S T T ¢1
so that with a = 1 we have
lim ) = lim 4
x—+o0 QA(x) | x—+eo \/1 P34 \/1 1

Hence f is infinitesimal of order 1 at +co with respect to ¢(x) = x~!. The principal part
is p(x) = 2x~! and we can write

x4
X

=2.

Va2 +3— Va2 —1=2x""+o(x7h), X — +00.
Example 6.5: Consider the function
f(x) = Vox® +7x3 -1

which is infinite as x — +c0. To determine the order we compare it with ¢(x) = x:

f(x) ) Ox5 +7x3 -1
lim = lim
x—+o00 x& X—+00 x&
5
X3V 4+ 7x2 — x5
= lim )
X—+00 x*

This suggests choosing a = 3. Then we have:

f()

X2

= lim V9 +7x2— x5 =3,

X—+00

lim
X—+00

Hence f is infinite of order % at +oo with respect to ¢(x) = x. The principal part is

p(x) = 3x3 and we can write

5 5
Vx5 + 7x3 — 1 = 3x2 + 0o(x2), X — +00.

6.4 Asymptotes

We have already seen horizontal and vertical asymptotes. However it is possible
to have slanted asymptotes. We say that a function f(x) behaves asymptotically as
x — +oo like the affine function y = ax + b if

Jim (F0) — ax +0) =0
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