
Chapter 6

Local comparison of functions

In this chapter we shall gather some tools that will allow us to study the asymptotic
behavior of functions. The asymptotic behavior of a function f (x) can refer either to its
behavior as x! ±1, or as x! x0 2 R, where f (x) might tend to 0 or to ±1.

6.1 Landau symbols

Let f , g : R! R and let x0 2 {�1} [R [ {+1}. Assume that the limit

lim
x!x0

f (x)
g(x)

= `

exists (can be finite or infinite). We introduce the Landau symbols:

If ` is finite, then we say that f is controlled by g as x! x0, and we write

f = O(g), x! x0.

We often say that f is big O of g as x! x0.

Big O

If ` is finite and ` , 0, then we say that f has the same order of magnitude as

g as x! x0, and we write
f ⇣ g, x! x0.

Same order

If ` = 1, then we say that f is equivalent to g as x! x0, and we write

f ⇠ g, x! x0.

Asymptotically equivalent
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If ` = 0, then we say that f is negligible with respect to g as x ! x0, and we
write

f = o(g), x! x0.

We often say that f is little o of g as x! x0.

Little o

If ` = ±1, we need to look at g
f instead!

` = ±1

Example 6.1: 1. Since limx!0
sin x

x = 1 we have

sin x ⇠ x, x! 0.

2. Since limx!+1
sin x

x = 0 we have

sin x = o(x), x! +1.

3. Since limx!0
1�cos x

x2 = 1
2 we have

1 � cos x ⇣ x2, x! 0.

Properties of Landau symbols

1. Observe that f and g having the same order, or being asymptotically equivalent,
or being little o, are all subcases of being Big O, that is:

f ⇣ g ) f = O(g)
f ⇠ g ) f = O(g)

f = o(g) ) f = O(g)

all as x! x0. Another implication is:

f ⇠ g ) f ⇣ g

as x! x0. Conversely:

f ⇣ g ) f ⇠ `g

as x! x0.

2.
f ⇠ g , f = g + o(g)

as x! x0.
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3.

f = O(g) , f = O(�g), 8� , 0
f = o(g) , f = o(�g), 8� , 0

all as x! x0.

4.

f = O(1), x! x0 , f (x)
x!x0
����! ` 2 R

f = o(1), x! x0 , f (x)
x!x0
����! 0

In particular, in both cases, f is bounded in a neighborhood of x0.

5.
f is continuous at x0 , f (x) = f (x0) + o(1), as x! x0.

Monomials

One of the simplest functions is the monomial power of x: xn. We therefore want to
be able to compare them near where they vanish (x0 = 0) and near where they tend to
infinity (x0 = ±1).

Near 0

Near x0 = 0 we have:

xn = o(xm), x! 0, , n > m,

since xn�m ! 0 as x ! 0 when n > m. This implies that near 0, bigger powers are

negligible.

Near ±1

Near x0 = ±1we have:

xn = o(xm), x! ±1, , n < m,

since xn�m = 1
xm�n ! 0 as x ! ±1 when n < m. This implies that near ±1, smaller

powers are negligible.

Further properties of Landau symbols

Proposition 6.1: Consider functions f , f̃ , g, g̃ : R ! R such that f ⇠ f̃ and g ⇠ g̃ as
x! x0. Then

lim
x!x0

f (x)g(x) = lim
x!x0

f̃ (x)g̃(x)

lim
x!x0

f (x)
g(x)

= lim
x!x0

f̃ (x)
g̃(x)
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Proof. Let us prove the first claim. We multiply and divide by the tilde functions as
follows

lim
x!x0

f (x)g(x) = lim
x!x0

f (x)
f̃ (x)

g(x)
g̃(x)

f̃ (x)g̃(x)

=

 
lim

x!x0

f (x)
f̃ (x)

!

|       {z       }
=1

 
lim

x!x0

g(x)
g̃(x)

!

|       {z       }
=1

✓
lim

x!x0
f̃ (x)g̃(x)

◆

and the proof is complete. Note that we have used the fact that we obtained the product
of functions that in the limit give meaningful expressions (otherwise we would not have been
allowed to take limits of the individual parts of the product). ⇤

Corollary 6.2: Consider functions f , f1, g, g1 : R ! R and assume that f1 = o( f ) and
g1 = o(g) both as x! x0. Then

lim
x!x0

( f (x) ± f1(x)(g(x) ± g1(x)) = lim
x!x0

f (x)g(x)

lim
x!x0

f (x) ± f1(x)
g(x) ± g1(x)

= lim
x!x0

f (x)
g(x)

Corollary 6.3: Consider functions f , f̃ , g, g̃ : R ! R such that f ⇠ f̃ and g ⇠ g̃ as
x! x0. Then

f = O(g) , f = O(g̃) , f̃ = O(g) , f̃ = O(g̃)
f = o(g) , f = o(g̃) , f̃ = o(g) , f̃ = o(g̃)

all as x! x0.

These rules do not apply to sums and di↵erences. For instance, consider

f (x) = x f̃ (x) = x + 1
g(x) = x g̃(x) = x

Then f ⇠ f̃ and g ⇠ g̃ as x! +1. However,

lim
x!+1

( f (x) � g(x)) = lim
x!+1

0 = 0 , 1 = lim
x!+1

1 = lim
x!+1

( f̃ (x) � g̃(x)).

Warning!

Example 6.2: Compute

lim
x!0

sin 2x + x3

4x + 5 ln(1 + x2)
.

1. First we simplify the numerator. We know that limx!0
sin x

x = 1. This implies that
sin 2x ⇠ 2x as x! 0. Hence (using Corollary 6.3):

x3 = o(2x) = o(sin 2x), x! 0.
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2. Now we turn to the denominator. We use the fact (which we have not proved
yet) that ln(1 + x) ⇠ x as x! 0. Hence, ln(1 + x2) ⇠ x2 as x! 0. Hence:

5 ln(1 + x2) ⇠ 5x2 = o(4x), x! 0.

3. So we have:

lim
x!0

sin 2x + x3

4x + 5 ln(1 + x2)
= lim

x!0

sin 2x
4x

=
1
2

lim
x!0

sin 2x
2x|      {z      }

=1

=
1
2
.

When we want to study the limit of a complicated expression, we need to
understand the asymptotic behavior of all the terms that it includes, and try
to convert them to monomials.

Important takeaway
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