Nonexistence of a limit

To show that a limit lim,_,y, g(y) doesn’t exist we can rely on the previous results. A
common method is as follows: as in the figure below, compose g with a sequence a4,
such that lim, e a, = €. Then try to find another sequence, {b,,},cN, also satisfying
limy, 00 by, = €, but for which lim,, . §(a,) # limy e g(by). Then g doesn’t have a limit
at {.

NcR R R

Theorem 5.14 (Criterion for nonexistence of a limit): Let g : R — R be defined in a
neighborhood of ¢ € {—oco} UR U {+00} (possibly excluding ¢ itself). Suppose that there
exist sequences {1, },eNn and {b,},en such that limy, .« 4, = € = lim, .« by, and such that

7}1_1)7((}0 glan) # 7}1_{1(}0 g(bn).
Then g(y) does not have a limitas y — ¢.

Proof. By contradiction. If the limit existed, then the Substitution Theorem would
imply that

lim g(a,) = lim g(y) = lim g(by),

n—oo y-)ﬁ n—oo

in contradiction to the assumption. |

5.6 Theorems on limits of sequences

We can now continue the analysis of sequences, which we begun in Section 4.2. To
simplify the presentation, let us agree that we say that a sequence {a,},cn satisfies
a property for all large n if there exists N € IN such that for all n > N the sequence
satisfies this property. The results we obtained for functions all carry over to sequences,
so we can state the following ‘big” theorem:

Theorem 5.15: 1. The limit of a sequence (if exists) is unique.
2. A convergent sequence is bounded.
3. A sequence that is monotone for all large n cannot be indeterminate.

4. For sequences {a,}yeN, {bnlnen, if a, < by for all large n, then lim,.a, <
llmn_)oo bn.

5. For sequences {a;}neN, {bn}neN, {cnlnen, if for all large n, a, < b, < ¢, and
lim;, 00 a4, = lim,,_, ¢, then b, has a limit and it is the same limit.
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6. If two sequences {a,}neN, {bn}new have limits limy, e 1, = €, and limy 00 by, = €,
then

(@) limyseo(ay £by) =6+ 4
(b) limy—eo(@n - by) = Ca - by
(c) im0 (Z—Z) = %, if for all large n, b, # 0,
whenever the expressions on the right hand side are meaningful.

7. If {an}nen has the limit £ and g : R — R is defined in a neighborhood of ¢, then

(a) if £ € R and g is continuous at ¢, then lim;,—,« g(a,) = g(£),
(b) if £ = oo and lim,, ¢ g(y) exists, then lim;, 00 g(a,) = limy ¢ ().

8. limy, e a, = 0if and only if lim;, . |a,| = 0.

9. Ifasequence {a,},cN is bounded, and another sequence {b; } . satisfies limy, o0 by, =
0, then lim;,—,(a,b,) = 0.

Proof. The proofis completely analogous to the various proofs we’ve seen for functions.
We skip it here. O

For sequences there is an additional useful tool, which relies in the fact that se-
quences are discrete (as opposed to functions on IR):

Theorem 5.16 (Ratio Test): Let {a,},en be a sequence that for is positive for all large
n (i.e. there exists N € IN such that for all » > N, a, > 0). Assume that the limit
limy, 0 24 = g exists (it may be finite or infinite). Then

a
e ifg <1, thenlim,ewa, =0,
e if g> 1, then lim, e a, = +00,
e if g =1, it is impossible to determine whether or not the sequence has a limit.
Note that the theorem applies also for sequences that are negative for all large n.

Proof. The proof is simple and we skip it here. ]

Example 5.16: Consider a sequence that we have previously seen:

n!
Ay = —.
1100
We have
ap+1  +D)0 7 (n+1)! _( n )100 (n+1)
= — = = ,
an ﬁ (n + 1)100! n+1 —
—+00
—1
hence fyat
lim 22 = +00
n—oo

so that the sequence a,, diverges.



5.7 Fundamental limits and indeterminate forms of ex-
ponential type
We have seen before that ;
lim (1 + l) =e.
n—oo0 n

X
Now we show the same result for the function (1 + %) :

Claim: The function (1 + %)x has limits as x — +o0, and

1 X
lim (1 + —) =e.
X—>%00 X

Proof. Observe that the function (1 + %)x is defined when 1 + % > (0 and x # 0. Hence it
is defined when either x > 0 or x < —1. We prove for the case x — +oco.
Letn = [x]. Then
n<x<n+l.

Hence
1 1 1
<-< -
n+l x n
U
14 —<1+-<1+-
X
U
1 n X X x n+1
(1+—) 5( +—) <(1+1) §(1+1) <(1+1)
1 1 X n
So we have:

1 n+1 -1 x n
(1+—) (1+L) <(1+1) <(1+1) (1+1)
n+1 n+1 X n n

—e -1 —e —1

So by the Squeeze Theorem,
1 X
lim (1 + —) =e.
xX—+00 X
The proof in the case x — —oo follows similarly, taking caution with signs. |
Observe that by substituting y = 1 we have:

li 1+_1x:1_ 1+ v =
y
im ( ) yll’%( Y)Y =e.

X—+00

Claim:
. In(1+x)
lim —= =
x—0 X

1.
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Proof.

@ - %ln(1+x) = In((1+x)).

Hence, using the continuity of the logarithm, we have:

In(1 +
lim M =In (lim(l + x)}?) =e
x—0 x—0
where in the last equality we have used the previous remark (above). m|
Claim: 1
lim == = 1.
-0 X

Proof. Follows from the previous claim with an appropriate substitutions, we skip this
here. m|

Useful identities

. sinx
Iim—=1
x—0 X

. 1—-cosx 1
Iim——F— = =
x—0 xZ 2

a X
lim (1 + —) =, (a € R)
X—+00 X
. log (1+x) 1
lim =

x—0 X Ina

a* -1

, (@>0,a+1)

lim
x—0 X

1+x)*-1
i L =1
x—0 X

=1Ina, (a>0)

a, (o € R)

Power functions

Limits of powers of functions

Let h(x) = [f(x)]g(x), let xg € {—oo} UR U {400} and assume that f, ¢ have limits
as x — xg and that f > 0 near xg. Observe that i = e§!"f. Hence, by the
continuity of the exponential and the fact that for continuous functions we
can commute the operations of taking the limit and applying the function:

lim ([f(x)8¥) = elims=so(s¢)In f6),

X—XQ

\ J

So we need to study the exponential of lim,—_,x, (g(x) In f(x)). This is the limit of the
product of two functions. We know that it is problematic if we get 0 - co. Hence we
need to investigate thoroughly in these cases:
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1. limy_y, g(x) = £o00 and lim,_,y, f(x) = 1, so that we get 1.
2. limy_y, g(x) = 0 and limy_,x, f(x) = 0, so that we get 0v.

3. limy_y, g(x) = 0 and limy_,y, f(x) = +0o0, so that we get 000,
Example 5.17: Determine lim,_, X%

We see that this has the form oo®. Let y = %, so that the problem becomes
lim,,0+(1/y)Y. We see that

We will later prove that lim, o+ (yIny) = 0, so that

Hm xx = lim eV = elimy—oe(-yIny) = 0 = 1,
X—+00 y—0*
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