
Nonexistence of a limit

To show that a limit limx!x0 g(y) doesn’t exist we can rely on the previous results. A
common method is as follows: as in the figure below, compose g with a sequence an
such that limn!1 an = `. Then try to find another sequence, {bn}n2N, also satisfying
limn!1 bn = `, but for which limn!1 g(an) , limn!1 g(bn). Then g doesn’t have a limit
at `.

N ⇢ R R R

n

an

g(an)

`

g

Theorem 5.14 (Criterion for nonexistence of a limit): Let g : R ! R be defined in a
neighborhood of ` 2 {�1}[R[ {+1} (possibly excluding ` itself). Suppose that there
exist sequences {an}n2N and {bn}n2N such that limn!1 an = ` = limn!1 bn and such that

lim
n!1

g(an) , lim
n!1

g(bn).

Then g(y) does not have a limit as y! `.

Proof. By contradiction. If the limit existed, then the Substitution Theorem would
imply that

lim
n!1

g(an) = lim
y!`

g(y) = lim
n!1

g(bn),

in contradiction to the assumption. ⇤

5.6 Theorems on limits of sequences

We can now continue the analysis of sequences, which we begun in Section 4.2. To
simplify the presentation, let us agree that we say that a sequence {an}n2N satisfies
a property for all large n if there exists N 2 N such that for all n > N the sequence
satisfies this property. The results we obtained for functions all carry over to sequences,
so we can state the following ‘big’ theorem:

Theorem 5.15: 1. The limit of a sequence (if exists) is unique.

2. A convergent sequence is bounded.

3. A sequence that is monotone for all large n cannot be indeterminate.

4. For sequences {an}n2N, {bn}n2N, if an  bn for all large n, then limn!1 an 
limn!1 bn.

5. For sequences {an}n2N, {bn}n2N, {cn}n2N, if for all large n, an  bn  cn, and
limn!1 an = limn!1 cn, then bn has a limit and it is the same limit.
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6. If two sequences {an}n2N, {bn}n2N have limits limn!1 an = `a and limn!1 bn = `b,
then

(a) limn!1(an ± bn) = `a ± `b
(b) limn!1(an · bn) = `a · `b
(c) limn!1

⇣
an
bn

⌘
= `a`b , if for all large n, bn , 0,

whenever the expressions on the right hand side are meaningful.

7. If {an}n2N has the limit ` and g : R! R is defined in a neighborhood of `, then

(a) if ` 2 R and g is continuous at `, then limn!1 g(an) = g(`),
(b) if ` = ±1 and limy!` g(y) exists, then limn!1 g(an) = limy!` g(y).

8. limn!1 an = 0 if and only if limn!1 |an| = 0.

9. If a sequence {an}n2N is bounded, and another sequence {bn}n2N satisfies limn!1 bn =
0, then limn!1(anbn) = 0.

Proof. The proof is completely analogous to the various proofs we’ve seen for functions.
We skip it here. ⇤

For sequences there is an additional useful tool, which relies in the fact that se-
quences are discrete (as opposed to functions on R):

Theorem 5.16 (Ratio Test): Let {an}n2N be a sequence that for is positive for all large
n (i.e. there exists N 2 N such that for all n > N, an > 0). Assume that the limit
limn!1

an+1
an
= q exists (it may be finite or infinite). Then

• if q < 1, then limn!1 an = 0,

• if q > 1, then limn!1 an = +1,

• if q = 1, it is impossible to determine whether or not the sequence has a limit.

Note that the theorem applies also for sequences that are negative for all large n.

Proof. The proof is simple and we skip it here. ⇤

Example 5.16: Consider a sequence that we have previously seen:

an =
n!

n100 .

We have

an+1
an
=

(n+1)!
(n+1)100

n!
n100

=
n100(n + 1)!
(n + 1)100n!

=
✓ n
n + 1

◆100

|      {z      }
!1

(n + 1)
| {z }
!+1

,

hence
lim

n!1

an+1
an
= +1

so that the sequence an diverges.
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5.7 Fundamental limits and indeterminate forms of ex-

ponential type

We have seen before that
lim

n!1

✓
1 +

1
n

◆n
= e.

Now we show the same result for the function
⇣
1 + 1

x

⌘x
:

Claim: The function
⇣
1 + 1

x

⌘x
has limits as x! ±1, and

lim
x!±1

✓
1 +

1
x

◆x
= e.

Proof. Observe that the function
⇣
1 + 1

x

⌘x
is defined when 1+ 1

x > 0 and x , 0. Hence it
is defined when either x > 0 or x < �1. We prove for the case x! +1.

Let n = dxe. Then
n  x < n + 1.

Hence

1
n + 1

<
1
x


1
n

+

1 +
1

n + 1
< 1 +

1
x
 1 +

1
n

+

✓
1 +

1
n + 1

◆n


✓
1 +

1
n + 1

◆x
<

✓
1 +

1
x

◆x


✓
1 +

1
n

◆x
<

✓
1 +

1
n

◆n+1

So we have:
✓
1 +

1
n + 1

◆n+1

|           {z           }
!e

✓
1 +

1
n + 1

◆�1

|          {z          }
!1

<
✓
1 +

1
x

◆x
<

✓
1 +

1
n

◆n

|   {z   }
!e

✓
1 +

1
n

◆

|  {z  }
!1

So by the Squeeze Theorem,

lim
x!+1

✓
1 +

1
x

◆x
= e.

The proof in the case x! �1 follows similarly, taking caution with signs. ⇤

Observe that by substituting y = 1
x we have:

lim
x!±1

✓
1 +

1
x

◆x
= lim

y!0

�
1 + y

� 1
y = e.

Claim:

lim
x!0

ln(1 + x)
x

= 1.
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Proof.
ln(1 + x)

x
=

1
x

ln(1 + x) = ln
⇣
(1 + x)

1
x
⌘
.

Hence, using the continuity of the logarithm, we have:

lim
x!0

ln(1 + x)
x

= ln
✓
lim
x!0

(1 + x)
1
x

◆
= e

where in the last equality we have used the previous remark (above). ⇤

Claim:

lim
x!0

ex � 1
x
= 1.

Proof. Follows from the previous claim with an appropriate substitutions, we skip this
here. ⇤

lim
x!0

sin x
x
= 1

lim
x!0

1 � cos x
x2 =

1
2

lim
x!±1

✓
1 +

a
x

◆x
= ea, (a 2 R)

lim
x!0

loga(1 + x)
x

=
1

ln a
, (a > 0, a , 1)

lim
x!0

ax � 1
x
= ln a, (a > 0)

lim
x!0

(1 + x)↵ � 1
x

= ↵, (↵ 2 R)

Useful identities

Power functions

Let h(x) = [ f (x)]g(x), let x0 2 {�1} [R [ {+1} and assume that f , g have limits
as x ! x0 and that f > 0 near x0. Observe that h = eg ln f . Hence, by the
continuity of the exponential and the fact that for continuous functions we
can commute the operations of taking the limit and applying the function:

lim
x!x0

⇣
[ f (x)]g(x)

⌘
= elimx!x0(g(x) ln f (x)).

Limits of powers of functions

So we need to study the exponential of limx!x0

�
g(x) ln f (x)

�
. This is the limit of the

product of two functions. We know that it is problematic if we get 0 ·1. Hence we
need to investigate thoroughly in these cases:
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1. limx!x0 g(x) = ±1 and limx!x0 f (x) = 1, so that we get 11.

2. limx!x0 g(x) = 0 and limx!x0 f (x) = 0, so that we get 00.

3. limx!x0 g(x) = 0 and limx!x0 f (x) = +1, so that we get10.

Example 5.17: Determine limx!+1 x
1
x .

We see that this has the form 10. Let y = 1
x , so that the problem becomes

limy!0+(1/y)y. We see that

x
1
x =

 
1
y

!y

= ey ln 1
y = e�y ln y.

We will later prove that limy!0+
�
y ln y

�
= 0, so that

lim
x!+1

x
1
x = lim

y!0+
e�y ln y = elimy!0+(�y ln y) = e0 = 1.
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