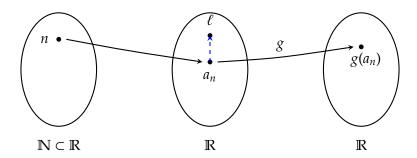
Nonexistence of a limit

To show that a limit $\lim_{x\to x_0} g(y)$ *doesn't* exist we can rely on the previous results. A common method is as follows: as in the figure below, compose g with a sequence a_n such that $\lim_{n\to\infty} a_n = \ell$. Then try to find another sequence, $\{b_n\}_{n\in\mathbb{N}}$, also satisfying $\lim_{n\to\infty} b_n = \ell$, but for which $\lim_{n\to\infty} g(a_n) \neq \lim_{n\to\infty} g(b_n)$. Then g doesn't have a limit at ℓ .



Theorem 5.14 (Criterion for nonexistence of a limit): Let $g : \mathbb{R} \to \mathbb{R}$ be defined in a neighborhood of $\ell \in \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$ (possibly excluding ℓ itself). Suppose that there exist sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} a_n = \ell = \lim_{n\to\infty} b_n$ and such that

$$\lim_{n\to\infty}g(a_n)\neq\lim_{n\to\infty}g(b_n).$$

Then g(y) does not have a limit as $y \to \ell$.

Proof. By contradiction. If the limit existed, then the Substitution Theorem would imply that

$$\lim_{n\to\infty}g(a_n)=\lim_{y\to\ell}g(y)=\lim_{n\to\infty}g(b_n),$$

in contradiction to the assumption.

5.6 Theorems on limits of sequences

We can now continue the analysis of sequences, which we begun in Section 4.2. To simplify the presentation, let us agree that we say that a sequence $\{a_n\}_{n\in\mathbb{N}}$ satisfies a property **for all large** n if there exists $N\in\mathbb{N}$ such that for all n>N the sequence satisfies this property. The results we obtained for functions all carry over to sequences, so we can state the following 'big' theorem:

Theorem 5.15: 1. The limit of a sequence (if exists) is unique.

- 2. A convergent sequence is bounded.
- 3. A sequence that is monotone for all large *n* cannot be indeterminate.
- 4. For sequences $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$, if $a_n \leq b_n$ for all large n, then $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.
- 5. For sequences $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$, $\{c_n\}_{n\in\mathbb{N}}$, if for all large n, $a_n \leq b_n \leq c_n$, and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$, then b_n has a limit and it is the same limit.

- 6. If two sequences $\{a_n\}_{n\in\mathbb{N}}$, $\{b_n\}_{n\in\mathbb{N}}$ have limits $\lim_{n\to\infty}a_n=\ell_a$ and $\lim_{n\to\infty}b_n=\ell_b$, then
 - (a) $\lim_{n\to\infty} (a_n \pm b_n) = \ell_a \pm \ell_b$
 - (b) $\lim_{n\to\infty} (a_n \cdot b_n) = \ell_a \cdot \ell_b$
 - (c) $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\ell_a}{\ell_b}$, if for all large $n, b_n \neq 0$,

whenever the expressions on the right hand side are meaningful.

- 7. If $\{a_n\}_{n\in\mathbb{N}}$ has the limit ℓ and $g:\mathbb{R}\to\mathbb{R}$ is defined in a neighborhood of ℓ , then
 - (a) if $\ell \in \mathbb{R}$ and g is continuous at ℓ , then $\lim_{n\to\infty} g(a_n) = g(\ell)$,
 - (b) if $\ell = \pm \infty$ and $\lim_{y \to \ell} g(y)$ exists, then $\lim_{n \to \infty} g(a_n) = \lim_{y \to \ell} g(y)$.
- 8. $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} |a_n| = 0$.
- 9. If a sequence $\{a_n\}_{n\in\mathbb{N}}$ is bounded, and another sequence $\{b_n\}_{n\in\mathbb{N}}$ satisfies $\lim_{n\to\infty}b_n=0$, then $\lim_{n\to\infty}(a_nb_n)=0$.

Proof. The proof is completely analogous to the various proofs we've seen for functions. We skip it here. \Box

For sequences there is an additional useful tool, which relies in the fact that sequences are discrete (as opposed to functions on \mathbb{R}):

Theorem 5.16 (Ratio Test): Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence that for is positive for all large n (i.e. there exists $N\in\mathbb{N}$ such that for all n>N, $a_n>0$). Assume that the limit $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$ exists (it may be finite or infinite). Then

- if q < 1, then $\lim_{n \to \infty} a_n = 0$,
- if q > 1, then $\lim_{n \to \infty} a_n = +\infty$,
- if q = 1, it is impossible to determine whether or not the sequence has a limit.

Note that the theorem applies also for sequences that are negative for all large n.

Proof. The proof is simple and we skip it here.

Example 5.16: Consider a sequence that we have previously seen:

$$a_n = \frac{n!}{n^{100}}.$$

We have

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)!}{(n+1)^{100}}}{\frac{n!}{n^{100}}} = \frac{n^{100}(n+1)!}{(n+1)^{100}n!} = \underbrace{\left(\frac{n}{n+1}\right)^{100}}_{\to 1}\underbrace{(n+1)}_{\to +\infty}^{100},$$

hence

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = +\infty$$

so that the sequence a_n diverges.

5.7 Fundamental limits and indeterminate forms of exponential type

We have seen before that

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Now we show the same result for the function $\left(1 + \frac{1}{x}\right)^x$:

Claim: The function $\left(1 + \frac{1}{x}\right)^x$ has limits as $x \to \pm \infty$, and

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Proof. Observe that the function $\left(1+\frac{1}{x}\right)^x$ is defined when $1+\frac{1}{x}>0$ and $x\neq 0$. Hence it is defined when either x>0 or x<-1. We prove for the case $x\to +\infty$.

Let $n = \lceil x \rceil$. Then

$$n \le x < n + 1$$
.

Hence

$$\frac{1}{n+1} < \frac{1}{x} \le \frac{1}{n}$$

$$\downarrow \downarrow$$

$$1 + \frac{1}{n+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{n}$$

$$\downarrow \downarrow$$

$$\left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{n+1}\right)^x < \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x < \left(1 + \frac{1}{n}\right)^{n+1}$$

So we have:

$$\underbrace{\left(1 + \frac{1}{n+1}\right)^{n+1}}_{\rightarrow e} \underbrace{\left(1 + \frac{1}{n+1}\right)^{-1}}_{\rightarrow 1} < \left(1 + \frac{1}{x}\right)^{x} < \underbrace{\left(1 + \frac{1}{n}\right)^{n}}_{\rightarrow e} \underbrace{\left(1 + \frac{1}{n}\right)^{n}}_{\rightarrow 1} \underbrace{\left(1 + \frac{1}$$

So by the Squeeze Theorem,

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

The proof in the case $x \to -\infty$ follows similarly, taking caution with signs.

Observe that by substituting $y = \frac{1}{x}$ we have:

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to 0} \left(1 + y \right)^{\frac{1}{y}} = e.$$

Claim:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Proof.

$$\frac{\ln(1+x)}{x} = \frac{1}{x}\ln(1+x) = \ln\left((1+x)^{\frac{1}{x}}\right).$$

Hence, using the continuity of the logarithm, we have:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \ln\left(\lim_{x \to 0} (1+x)^{\frac{1}{x}}\right) = e$$

where in the last equality we have used the previous remark (above).

Claim:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Proof. Follows from the previous claim with an appropriate substitutions, we skip this here. \Box

Useful identities

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x}\right)^x = e^a, \quad (a \in \mathbb{R})$$

$$\lim_{x \to 0} \frac{\log_a (1 + x)}{x} = \frac{1}{\ln a}, \quad (a > 0, a \neq 1)$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, \quad (a > 0)$$

$$\lim_{x \to 0} \frac{(1 + x)^\alpha - 1}{x} = \alpha, \quad (\alpha \in \mathbb{R})$$

Power functions

Limits of powers of functions

Let $h(x) = [f(x)]^{g(x)}$, let $x_0 \in \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$ and assume that f, g have limits as $x \to x_0$ and that f > 0 near x_0 . Observe that $h = e^{g \ln f}$. Hence, by the continuity of the exponential and the fact that for continuous functions we can commute the operations of taking the limit and applying the function:

$$\lim_{x \to x_0} \left([f(x)]^{g(x)} \right) = e^{\lim_{x \to x_0} \left(g(x) \ln f(x) \right)}.$$

So we need to study the exponential of $\lim_{x\to x_0} (g(x) \ln f(x))$. This is the limit of the product of two functions. We know that it is problematic if we get $0 \cdot \infty$. Hence we need to investigate thoroughly in these cases:

- 1. $\lim_{x\to x_0} g(x) = \pm \infty$ and $\lim_{x\to x_0} f(x) = 1$, so that we get 1^{∞} .
- 2. $\lim_{x \to x_0} g(x) = 0$ and $\lim_{x \to x_0} f(x) = 0$, so that we get 0^0 .
- 3. $\lim_{x\to x_0} g(x) = 0$ and $\lim_{x\to x_0} f(x) = +\infty$, so that we get ∞^0 .

Example 5.17: Determine $\lim_{x\to +\infty} x^{\frac{1}{x}}$.

We see that this has the form ∞^0 . Let $y = \frac{1}{x}$, so that the problem becomes $\lim_{y\to 0^+}(1/y)^y$. We see that

$$x^{\frac{1}{x}} = \left(\frac{1}{y}\right)^y = e^{y \ln \frac{1}{y}} = e^{-y \ln y}.$$

We will later prove that $\lim_{y\to 0^+} (y \ln y) = 0$, so that

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = \lim_{y \to 0^+} e^{-y \ln y} = e^{\lim_{y \to 0^+} (-y \ln y)} = e^0 = 1.$$