Corollary 5.10 (Squeeze to 0 Theorem): Let xp € {—oco} UR U {+0o0}. Let f : R — R be
bounded in a neighborhood of xq. Let ¢ : R — R satisfy limy_,y, g(x) = 0. Then

lim f(x) - g(x) = 0.

Proof. Observe that lim,_,y, g(x) = 0 is satisfied if and only if lim,_y, |g(x)| = 0. By
assumption, f is bounded on a neighborhood of xg. This means that there exists M > 0
such that |f(x)] < M for all x in this neighborhood. Hence, on this neighborhood of xj
we have

0 <|f(x) - g()| < Mg(x)

and the claim follows from Theorem 5.9. m|

Theorem 5.11 (Squeeze to 0o Theorem): Let f, g : R — Randletxg € {—ooJURU{+00}.
If

xlin; f(x) = +o0 and  f < ginaneighborhood of x
—X0

(excluding x itself)
then

Jimy, ) = oo

An analogous statement (with obvious modifications) can be made for the case when
the limit is —oo.

Proof. The proof is a simple adaptation of previous proofs, we skip it here. |

Example 5.8: Show that
lim (x2 — " —3sinx — 8) = +o0.

X——00
Observe that for x < 0 we have:
x> - —3sinx-8>x>-1-3-8=x%-12.
Letting f(x) = x? — 12, we see that limy_,_« f(x) = +o0, and the theorem implies the

required result.

5.4 Indeterminate forms of algebraic type

We go back to the meaningless expressions:

Meaningless expressions

H
g
(@]

+00 — 00 — 00 + 0 +00-0 —_— —

H
g
(@]

Here we want to show that for algebraic functions (i.e. polynomials, rational
functions or functions involving roots of polynomials) we can sometimes make sense
of such expressions, by careful inspection and simple manipulation.

5-86



Simple examples
Example 5.9: The indeterminate form +oco — oo can yield any result:

o limy i ((x+1)—x)=1

limy 400 (x = (x +1)) = -1

limy 400 (2x — Xx) = +00

limy 40 ((x + sin x) — x) does not exist (oscillates)

Example 5.10: The indeterminate form +co - 0 can yield any result:

[ ] limx_)+(>o X %) = 1

.
X xZ) 0
. sinx

X

==

+00

) does not exist (oscillates)

x+xsinx
x

e limy ;00 does not exist (oscillates between 0 and 2)

Example 5.12: The indeterminate form % can yield any result:

°
5.
!
()

°
5.
!
o

[
=
£
)
(e}
—_— —~~ —~
E
=
~
Il



Polynomials

Consider the following polynomial (assume a,, # 0):

1

p(x) = apx" + a,_1X"" + -+ + a;x + ap.

It can be rewritten as

An-1 LN a_o)

—_ n ...
p(x) = x (an+ + +x”—1 T

converges to a, as x—=+oo

Since we know how the part in the brackets behaves, we can deduce that:

lim () +oo ifa, >0
1 =
X—+00 p —00 ].f an < 0
and
+o00 ifa, > 0and nis even
. —oo ifa, > 0and nis odd
lim p(x) = . .
X——00 +o00 ifa, < 0and nis odd

—oco ifa, < 0and niseven

Rational functions
Consider the following rational function (assume a,, # 0, by, # 0):
) = px)  apx" +a, x4+ agx + ag
g(x)  byx™ + by XML+ + byx + by
Ay + Ay x '+ - a4 g
by + by_1x~ 1 + - + byx~m+l 4 pox—m

n—-m

Converges to % as Xx— %00
We therefore have
oo ifn>m
lim r(x) =47~ ifn=m
X— 00 m

0 ifn<m

The first case (n > m) requires further analysis (as in the case of a polynomial) to
determine the type of infinity (i.e. whether the limit is +co or —c0).

Other algebraic functions

If we encounter a problem with roots, our first goal is to get rid of these roots, at least in
the numerator. This can often be achieved by using the fact that (a + b)(a — b) = a® — b*:

Vi@ + V3 _ @+ g VAR - V8@ f() - gW)
h(x) h(x) VI = 5@ h)(VF®) - vg)

We have thereby gotten rid of the roots in the numerator, and, hopefully, the resulting
expression is easier to deal with.
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Examples

Example 5.13: Compute

o V1+5x— V1-2x
lim .
x—0 3x

Observe that, in the limit, we get an expression of the form 8, so we cannot determine

the limit. To proceed, we multiply numerator and denominator by V1 +5x + V1 —2x
to get:

V1i+5x—V1-2x V1+5x—V1I—-2x V1+5x+ V1-2x

3x 3x V1 +5x+ V1 -2x
1+5x—(1-2x)

3x(\/1+5x+ VI-2x)

_ 7x
3x(\/1+5x+ VI -2x)
7 1

7
"3 Vitbox+Vi-2x 6

this tends to 3 asx — 0

We have therefore found that:

o V1+5x— V1-2x
lim =

7
x—0 3x 6 '

5.5 Substitution Theorem

We now want to understand how limits behave under composition of functions: if
we have f,¢ : R — R, with limy_y, f(x) = € and limy,; g(y) = L, then we want to
conclude that limy_,y, g(f(x)) = L.

h=gof

= g(f())

R R R

This is indeed true:

Theorem 5.12 (Substitution Theorem): Let f,¢: R — Randletxg, { € {—co}]URU{+00}.

Suppose that
lim f(x) =¢

X—X0
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and that g is defined on a neighborhood of ¢ (possibly excluding ¢ itself), satisfying:

e if £ € R then g is continuous at £, and

e if { = oo then lim,,, ¢(y) exists (possibly infinite).

[hen h = g o f has a limit as x — xp and:
i =li .
xhrgclo q(f(x)) ylrr} g(y)

Proof. We skip the proof. It is straightforward, and can be found in the book. m|

Composition of continuous functions N

Observe that if £ € R and g is continuous at £, then lim,_,, ¢(y) = g({) so that
the conclusion of the theorem simplifies to:

lim g(f() = g(0) = g(lim ()

That is, in this case, the operation of applying the function g and the operation
of taking the limit x — xp commute (the order at which we take them can be
replaced).

\ J

Corollary 5.13:  If f is continuous at xp and g is continuous at ¢ then go f is continuous
at xgp.

Proof. This is immediate from the last comment. Denote h = g o f. Then:

lim h(x) = lim g(f() = g(lim f(v) = g(f(x0)) = h(x0).

O
Example 5.14: Compute
. sinx?
lim
x—0  x2
We see that this function is the composition of f(x) = x? with g(y) = =7 for y #0.

Y
We know that lim,,0 ¢(y) = 1, so we complete ¢ by defining ¢(0) = 1. Now f and ¢

are continuous on R. Using the fact that lim,_,p f(x) = 0 we have

. 2 .
lim 225 = Jim sl 1.
x—0  x2 y—=0 Y
Example 5.15: Compute
lim In (sin (1)) .
X—+00 X

Here we have .
f(x) = sin (;) and  g(y)=Iny.

Asx — +oo, % — 0. We know that sin0 = 0. The logarithm In y isn’t defined for y < 0,
however we know that limy_>0+ Iny = —oco. So we have:

lim In (sin (%)) = lim Iny = —oo.

xX—+00 y—0+
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