
Corollary 5.10 (Squeeze to 0 Theorem): Let x0 2 {�1} [R [ {+1}. Let f : R! R be
bounded in a neighborhood of x0. Let g : R! R satisfy limx!x0 g(x) = 0. Then

lim
x!x0

f (x) · g(x) = 0.

Proof. Observe that limx!x0 g(x) = 0 is satisfied if and only if limx!x0 |g(x)| = 0. By
assumption, f is bounded on a neighborhood of x0. This means that there exists M > 0
such that | f (x)| < M for all x in this neighborhood. Hence, on this neighborhood of x0
we have

0  | f (x) · g(x)| Mg(x)

and the claim follows from Theorem 5.9. ⇤

Theorem 5.11 (Squeeze to±1Theorem): Let f , g : R! R and let x0 2 {�1}[R[{+1}.
If

lim
x!x0

f (x) = +1 and f  g in a neighborhood of x0

(excluding x0 itself)

then
lim

x!x0
g(x) = +1.

An analogous statement (with obvious modifications) can be made for the case when
the limit is �1.

Proof. The proof is a simple adaptation of previous proofs, we skip it here. ⇤

Example 5.8: Show that

lim
x!�1

⇣
x2 � ex � 3 sin x � 8

⌘
= +1.

Observe that for x < 0 we have:

x2 � ex � 3 sin x � 8 � x2 � 1 � 3 � 8 = x2 � 12.

Letting f (x) = x2 � 12, we see that limx!�1 f (x) = +1, and the theorem implies the
required result.

5.4 Indeterminate forms of algebraic type

We go back to the meaningless expressions:

+1�1 �1 +1 ±1 · 0 ±1
±1

0
0

Meaningless expressions

Here we want to show that for algebraic functions (i.e. polynomials, rational
functions or functions involving roots of polynomials) we can sometimes make sense
of such expressions, by careful inspection and simple manipulation.
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Simple examples

Example 5.9: The indeterminate form +1�1 can yield any result:

• limx!+1 ((x + 1) � x) = 1

• limx!+1 (x � (x + 1)) = �1

• limx!+1 (2x � x) = +1

• limx!+1 (x � 2x) = �1

• limx!+1 ((x + sin x) � x) does not exist (oscillates)

Example 5.10: The indeterminate form +1 · 0 can yield any result:

• limx!+1
⇣
x · 1

x

⌘
= 1

• limx!+1
⇣
x · 1

x2

⌘
= 0

• limx!+1
⇣
x2 · 1

x

⌘
= +1

• limx!+1
⇣
x · sin x

x

⌘
does not exist (oscillates)

Example 5.11: The indeterminate form +1
+1 can yield any result:

• limx!+1
⇣

x
x

⌘
= 1

• limx!+1
⇣

x
x2

⌘
= 0

• limx!+1
⇣

x2

x

⌘
= +1

• limx!+1
⇣

x+x sin x
x

⌘
does not exist (oscillates between 0 and 2)

Example 5.12: The indeterminate form 0
0 can yield any result:

• limx!0
⇣

x
x

⌘
= 1

• limx!0
⇣

x2

x

⌘
= 0

• limx!0
⇣

x
x2

⌘
= +1

• limx!0
⇣

sin x
x

⌘
= 1

• limx!0
⇣x sin(1/x)

x

⌘
does not exist (oscillates)
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Polynomials

Consider the following polynomial (assume an , 0):

p(x) = anxn + an�1xn�1 + · · · + a1x + a0.

It can be rewritten as

p(x) = xn
✓
an +

an�1
x
+ · · · + a1

xn�1 +
a0
xn

◆

|                                {z                                }
converges to an as x!±1

.

Since we know how the part in the brackets behaves, we can deduce that:

lim
x!+1 p(x) =

8>><>>:
+1 if an > 0
�1 if an < 0

and

lim
x!�1 p(x) =

8>>>>>>><>>>>>>>:

+1 if an > 0 and n is even
�1 if an > 0 and n is odd
+1 if an < 0 and n is odd
�1 if an < 0 and n is even

Rational functions

Consider the following rational function (assume an , 0, bm , 0):

r(x) =
p(x)
q(x)

=
anxn + an�1xn�1 + · · · + a1x + a0

bmxm + bm�1xm�1 + · · · + b1x + b0

= xn�m an + an�1x�1 + · · · + a1x�n+1 + a0x�n

bm + bm�1x�1 + · · · + b1x�m+1 + b0x�m
|                                            {z                                            }

converges to an
bm

as x!±1

We therefore have

lim
x!±1 r(x) =

8>>>><>>>>:

1 if n > m
an
bm

if n = m
0 if n < m

The first case (n > m) requires further analysis (as in the case of a polynomial) to
determine the type of infinity (i.e. whether the limit is +1 or �1).

Other algebraic functions

If we encounter a problem with roots, our first goal is to get rid of these roots, at least in
the numerator. This can often be achieved by using the fact that (a+ b)(a� b) = a2 � b2:

p
f (x) +

p
g(x)

h(x)
=

p
f (x) +

p
g(x)

h(x)
·
p

f (x) �
p

g(x)
p

f (x) �
p

g(x)
=

f (x) � g(x)

h(x)(
p

f (x) �
p

g(x))
.

We have thereby gotten rid of the roots in the numerator, and, hopefully, the resulting
expression is easier to deal with.
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Examples

Example 5.13: Compute

lim
x!0

p
1 + 5x �

p
1 � 2x

3x
.

Observe that, in the limit, we get an expression of the form 0
0, so we cannot determine

the limit. To proceed, we multiply numerator and denominator by
p

1 + 5x +
p

1 � 2x
to get:

p
1 + 5x �

p
1 � 2x

3x
=

p
1 + 5x �

p
1 � 2x

3x
·
p

1 + 5x +
p

1 � 2xp
1 + 5x +

p
1 � 2x

=
1 + 5x � (1 � 2x)

3x
⇣p

1 + 5x +
p

1 � 2x
⌘

=
7x

3x
⇣p

1 + 5x +
p

1 � 2x
⌘

=
7
3
· 1p

1 + 5x +
p

1 � 2x|                   {z                   }
this tends to 1

2 as x! 0

=
7
6
.

We have therefore found that:

lim
x!0

p
1 + 5x �

p
1 � 2x

3x
=

7
6
.

5.5 Substitution Theorem

We now want to understand how limits behave under composition of functions: if
we have f , g : R ! R, with limx!x0 f (x) = ` and limy!` g(y) = L, then we want to
conclude that limx!x0 g( f (x)) = L.

R R R

x
x0

f (x)

`

h(x) = g( f (x))

L

f g

h = g � f

This is indeed true:

Theorem 5.12 (Substitution Theorem): Let f , g : R! R and let x0, ` 2 {�1}[R[{+1}.
Suppose that

lim
x!x0

f (x) = `
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and that g is defined on a neighborhood of ` (possibly excluding ` itself), satisfying:

• if ` 2 R then g is continuous at `, and

• if ` = ±1 then limy!` g(y) exists (possibly infinite).

Then h = g � f has a limit as x! x0 and:

lim
x!x0

g( f (x)) = lim
y!`

g(y).

Proof. We skip the proof. It is straightforward, and can be found in the book. ⇤

Observe that if ` 2 R and g is continuous at `, then limy!` g(y) = g(`) so that
the conclusion of the theorem simplifies to:

lim
x!x0

g( f (x)) = g(`) = g( lim
x!x0

f (x)).

That is, in this case, the operation of applying the function g and the operation
of taking the limit x ! x0 commute (the order at which we take them can be
replaced).

Composition of continuous functions

Corollary 5.13: If f is continuous at x0 and g is continuous at ` then g� f is continuous
at x0.

Proof. This is immediate from the last comment. Denote h = g � f . Then:

lim
x!x0

h(x) = lim
x!x0

g( f (x)) = g( lim
x!x0

f (x)) = g( f (x0)) = h(x0).

⇤

Example 5.14: Compute

lim
x!0

sin x2

x2 .

We see that this function is the composition of f (x) = x2 with g(y) = sin y
y , for y , 0.

We know that limy!0 g(y) = 1, so we complete g by defining g(0) = 1. Now f and g
are continuous on R. Using the fact that limx!0 f (x) = 0 we have

lim
x!0

sin x2

x2 = lim
y!0

sin y
y
= 1.

Example 5.15: Compute

lim
x!+1 ln

✓
sin
✓1
x

◆◆
.

Here we have
f (x) = sin

✓1
x

◆
and g(y) = ln y.

As x! +1, 1
x ! 0. We know that sin 0 = 0. The logarithm ln y isn’t defined for y  0,

however we know that limy!0+ ln y = �1. So we have:

lim
x!+1 ln

✓
sin
✓1
x

◆◆
= lim

y!0+
ln y = �1.
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