
5.2 Algebra of limits

Given some functions f : R! R and g : R! R, our goal is to understand how limits
of f ± g might behave, as well as limits of f · g and f

g . In general we should exercise
caution!

Example 5.1: Let C 2 R. Consider the sequences an = n + C and bn = �n. Then:

lim
n!1 an = +1 lim

n!1 bn = �1

and
lim

n!1(an + bn) = lim
n!1(n + C � n) = lim

n!1C = C.

This suggests that +1�1 = C for any C. The analogous example for functions would
involve f (x) = x + C and g(x) = �x.

Example 5.2: Consider the sequences an = 2n and bn = �n. Then:

lim
n!1 an = +1 lim

n!1 bn = �1

and
lim

n!1(an + bn) = lim
n!1(2n � n) = lim

n!1n = +1.

Example 5.3: Consider the sequences an = n and bn = �2n. Then:

lim
n!1 an = +1 lim

n!1 bn = �1

and
lim

n!1(an + bn) = lim
n!1(n � 2n) = lim

n!1(�n) = �1.

These examples demonstrate that we should be cautious when taking limits of sums
or di↵erences of sequences and functions. In particular, these examples show that+1�
1 is a meaningless expression. Similar absurdities can be achieved by multiplication
or division of sequences or functions. Let’s list the meaningless expressions:

The following expressions do not make sense:

+1�1 �1 +1 ±1 · 0 ±1
±1

0
0

Meaningless expressions

In contrast, here are the meaningful expressions:
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The following expressions do make sense:

+1 + C = +1 (if C 2 R [ {+1})
�1 + C = �1 (if C 2 {�1} [R)
±1 · C = ±1 (if C 2 R+ [ {+1})
±1 · C = ⌥1 (if C 2 {�1} [R�)
±1
C

= ±1 (if C 2 R+)
±1
C

= ⌥1 (if C 2 R�)

C
±1 = 0 (if C 2 R)

Meaningful expressions

A more delicate meaningful expression is

C
0
= 1 (if C 2 {�1} [R [ {+1} \ {0})

However to determine whether it is +1 or �1we need to look at the numer-
ator and the denominator in a neighborhood of the point in question. This
could lead to di↵erent left and right limits (in the case that the denominator
changes sign at the point in question).

Example 5.4: We start with a simple example:

f (x) =
1
x
.

At x = 0, we have an expression of the form C
0 . The constant C = 1 > 0 in this case, and

the denominator changes sign from negative (left of 0) to positive (right of 0). Hence

lim
x!0�

1
x
= �1 and lim

x!0+
1
x
= +1.

Example 5.5: We analyze the rational function

f (x) =
x � 2

x2 � 2x + 1
.

Numerator: x � 2 is < 0 when x < 2, = 0 when x = 2 and > 0 when x > 2.
Denominator: x2 � 2x + 1 = (x � 1)2 is always � 0, and = 0 only at x = 1.

At x = 1 we encounter the situation C
0 with C < 0. Near x = 1, the denominator is

> 0, so that both left and right limits must be �1 and we have:

lim
x!1

x � 2
x2 � 2x + 1

= �1.
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The rules we stated allow us to state the following important theorem:

Theorem 5.5 (Algebra of Limits): Let f : R! R and g : R! R, and let x0 either be a
real number, or +1 or �1. Suppose that as x! x0, both f and g have limits

lim
x!x0

f (x) = ` f and lim
x!x0

f (x) = `g

(these limits can be finite of infinite). Then the following equalities hold only when the
right hand side is a meaningful expression:

lim
x!x0

( f (x) ± g(x)) = ` f ± `g
lim

x!x0
( f (x) · g(x)) = ` f · `g

lim
x!x0

f (x)
g(x)

=
` f

`g
,

where in the last case, g(x) must be nonzero for all x tending to x0, and it is possible
that there are di↵erent left and right limits (for instance, if g changes sign at x0).

Proof. We prove just one case to demonstrate the idea of the proof. Let us prove that

lim
x!x0

( f (x) + g(x)) = ` f + `g

in the case that both ` f and `g are real numbers (and not ±1). That is, we need to show
that for any " > 0 there exists � = �(") > 0 such that for all 0 < |x� x0| < �, we have that
|( f (x) + g(x)) � (` f + `g)| < ".

Fix "̃ > 0. We start with f : since limx!x0 f (x) = ` f ,

9� f = � f ("̃) > 0 such that 80 < |x � x0| < � f , | f (x) � ` f | < "̃.
Similarly, for g, using the same "̃:

9�g = �g("̃) > 0 such that 80 < |x � x0| < �g, |g(x) � `g| < "̃.
Define � = min{� f , �g}. Then for all 0 < |x � x0| < �,

|( f (x) + g(x)) � (` f + `g)| = |( f (x) � ` f ) + (g(x) � `g)|
(triangle inequality)  | f (x) � ` f | + |g(x) � `g|

< "̃ + "̃ = 2"̃.

By defining " = 2"̃ we are done: we have shown that for every " > 0 there exists � > 0
such that for all 0 < |x � x0| < �, we have | ( f (x) + g(x))

|         {z         }
this is the function

� (` f + `g)
|   {z   }

this is the limit

| < ". ⇤

An immediate corollary is this:

Corollary 5.6: If f and g are continuous at x0 2 R, then so are f ± g, f · g and f
g

continuous at x0 (the last one only if g(x0) , 0).

Another corollary is this:

Corollary 5.7: Rational functions are continuous on their domains and polynomials
are continuous on R.
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5.3 Comparison theorems

Theorem 5.8: Let f : R ! R and g : R ! R and let x0 2 {�1} [R [ {+1}. Suppose
that

lim
x!x0

f (x) = ` f and lim
x!x0

g(x) = `g.

If in a neighborhood of x0 (excluding x0 itself) we have f (x)  g(x), then ` f  `g.

Proof. We skip the proof here. It can be found in the book. ⇤

Theorem 5.9 (Squeeze Theorem): Let f , g, h : R! R and let x0 2 {�1}[R[ {+1}. If

lim
x!x0

f (x) = lim
x!x0

h(x) = ` 2 R and f  g  h in a neighborhood of x0

(excluding x0 itself)

then
lim

x!x0
g(x) = `.

Proof. We skip the proof here. It can be found in the book. ⇤

Example 5.6: Using this theorem we can immediately conclude that

lim
x!0

x2 sin
✓1
x

◆
= 0.

x

y

h(x) = x2

f (x) = �x2

g(x) = x2 sin
⇣

1
x

⌘

Example 5.7: The Squeeze Theorem justifies our computation in Example 4.12 (the
removable singularity of sin x

x at x = 0). In that problem we found that

cos x|{z}
f (x)

<
sin x

x|{z}
g(x)

< 1|{z}
h(x)

and used the fact that limx!0 cos x = 1 to conclude that

lim
x!0

sin x
x
= 1.

5 – 84


	Basic Notions
	Sets
	Elements of mathematical logic
	Connectives
	Predicates
	Quantifiers

	Sets of numbers
	The ordering of real numbers
	Bounded sets
	The cardinality of subsets of R

	Cartesian product
	Relations in the Cartesian plane
	Factorials and binomial coefficients

	Functions
	Definitions and examples
	Range and pre-image
	Surjectivity, injectivity, and invertibility
	Monotone functions and sequences
	Composition of functions
	Elementary functions
	Powers
	Polynomials and rational functions
	Exponential and logarithmic functions
	Trigonometric functions and their inverses


	Complex Numbers
	Algebraic operations
	Cartesian coordinates
	Trigonometric and exponential form
	Powers and nth roots
	Algebraic equations and the Fundamental Theorem of Algebra

	Limits and continuity
	Neighborhoods
	Limits of sequences
	Limits of functions

	Properties and computation of limits
	Uniqueness of the limit and local sign of a function
	Algebra of limits
	Comparison theorems
	Indeterminate forms of algebraic type
	Substitution Theorem
	Theorems on limits of sequences
	Fundamental limits and indeterminate forms of exponential type


