Finally, some really bad discontinuities!

We have seen removable discontinuities and jump discontinuities. Perhaps it would
be wise to define what is a discontinuity is:

Let f : R — R be a real-valued function. If f is not continuous at xo then we
say that it is discontinuous at xp and x is called a point of discontintinuity.

There are points of discontinuity that are neither removable nor jump discontinuities:
Consider the function

. (1
fx) = sm(x)
whose domain is R \ {0}. It is discontinuous at xg = 0 because the limit does not
exist: indeed, as x approaches 0, the argument Jl—c grows without bound, causing the
sine function to oscillate infinitely rapidly between —1 and 1. No matter how small

a 6-neighborhood around xp = 0 we choose, the function takes all values between —1
and 1 infinitely many times, preventing convergence to any particular limit value.
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Discontinuity of the second type

A discontinuity point that is neither removable nor jump, is called a disconti-
nuity of the second type.

Limits of monotone functions
The situation is better for monotone functions, just as it was for monotone sequences:

Theorem 4.5: A monotone (increasing or decreasing) function f : R — R cannot
have a discontinuity of the second type. That is, a monotone function could only
have removable discontinuities, jump discontinuities, or have asymptotes (vertical or
horizontal).

Proof. We prove the theorem for a monotone increasing function. The same ideas will
carry over for a monotone decreasing function. We split the proof into two claims:

(1) Claim: for any xp € {—c0} UR,
lim f(x) = inf f(x).
x—>x6’

X>X0
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Let Ly = infy.y, f(x) and suppose that L; € R. By the definition of the infimum, for
any ¢ > 0, there exists x; > xo such that f(x1) < L+ + €. Since f is monotone increasing,
for all x € (xp,x1), we have Ly < f(x) < f(x1) < Ly + €. Thus, |f(x) — L4| < ¢ whenever
0 < x —xp < x1 — xq, proving the right-hand limit exists and equals L. A similar idea
proves the claim for L, = —oco.

(2) Claim: for any xp € R U {+co},

lim f(x) = sup f(x).

xX<Xqp

Let L- = sup,_, f(x). By the definition of the supremum, for any ¢ > 0, there exists
x1 < xp such that f(x;) > L_ — ¢. Since f is increasing, for all x € (x1,xp), we have
L_—e¢ < f(x1) < f(x) <M. Thus, |f(x) — L_| < e whenever 0 < x¢ — x < xg — X1, proving
the left-hand limit exists and equals L_. A similar idea proves the claim for L_ = +oco.

Hence, at any point xp € R, both one-sided limits exist (though they may be infinite).
The only possible discontinuities are:

e Removable discontinuity: when L_ = limx_ma flx) = limx_)xg f(x) =Ls.
e Jump discontinuity: when L_ = limx_,xa flx) < hmx—»xg f(x) =Ly

e Vertical asymptote: when one of the one-sided limits is infinite (then the other
one will not exist because of monotonicity): L; = —co or L_ = +o0.

A discontinuity of the second type cannot occur. |

Corollary 4.6: Let f : R — R be monotone increasing. Then for any xg € IR, if f is
defined in a neighborhood of x( (but not necessarily at xo),

X—

lim f(x) < lim f(x)
Xy x5
If f is defined at xp, then
lim f(x) < f(xo) < lim f(x).
x—xy x—xf

An analogous statement holds for a monotone decreasing function.

Proof. This is an immediate consequence of Theorem 4.5. m|



Chapter 5

Properties and computation of limits

5.1 Uniqueness of the limit and local sign of a function

Uniqueness

We always write the limit, not 4 limit. Implicitly, we say that it is unique. This is true,
however it requires proof. Here is the formal statement (an analogous statement could
be made for sequences):

Theorem 5.1 (Uniqueness of limits): Let f : R — R and let xg € {—co} UR U {+00}.
Suppose that lim,_,y, f(x) = £, where £ could be finite of infinite. Then there can be no
limit other than € as x — xy.

Proof. Exercise. Hint: by contradiction. m|

Local sign

It is intuitively clear that if a function has a positive limit (or +o0), then as we approach
this limit the values of the function must also be positive. Analogously, if a limit is
negative (or —oo), then the values nearby should be negative. This is stated as follows:

Theorem 5.2 (Local sign): Let f : R — R and let xp € R.

o If limy_y, f(x) > 0 or limy_,y, f(x) = +o0
then f > 0 on a neighborhood of x( (potentially excluding x itself).

o Iflimy 100 f(x) > 0 or limy 100 f(X) = +00
then there exists M > 0s.t. f > 0on {x > M}.

o If limy,_o f(x) > 0 or limy—,_ f(x) = +00
then there exists M < 0s.t. f > 0on {x < M].

Analogous statements hold if these limits are negative.

Proof. We prove the first claim: limy_,y, f(x) >0 = f > 0 on a neighborhood of
xp. Let € = limy_,y, f(x) > 0. Let e = £ > 0. By the definition of the limit, there exists
0 = 6(¢) > 0 such that for 0 < |x — xg| < 6

Fa) el —el+e)= (f— g,u g) _ (23;) C (0, +00).
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Hence f > 0 on this neighborhood of x; (potentially excluding x itself), which com-
pletes the proof. The other claims in the theorem are proved in a similar way. |

The converse of this theorem is almost true. As the figure below shows, we can have
situations where for all x satisfying 0 < |x — xg| < 0 (for some 6 > 0 small), f(x) > 0, and

yet f(xo) = 0.

X0

Hence we can prove the following statement, which is not quite the converse of the
previous theorem:

Theorem 5.3: Let f : R — R and let xg € R. Assume that lim,_,y, f(x) exists.

e If f > 0 on a neighborhood of xg
then limy_,y, f(x) > 0 or limy_,y, f(x) = +oco.

o If there exists M > 0s.t. f >0on {x > M|
then limy— 400 f(x) > 0 or limy— 400 f(x) = +00

o If there exists M < 0s.t. f>0on {x <Mj]
then limy—,_ f(x) > 0 or limy—,_ f(x) = +00.

Analogous statements hold if these limits are negative.

Proof. We prove the first claim (the others follow a similar strategy). By contradiction,
assume that f > 0 on a neighborhood of xy and that lim,_,y, f(x) < 0 or lim,_y, f(x) =
—oo. We immediately obtain a contradiction to Theorem 5.2. m|

Theorem 5.4 (Local boundedness): Let f : R — R and let xp € R.

e If lim,_,y, f(x) exists and is finite, then f is bounded on a neighborhood of x:
there exist 6 > 0 and A > 0 such that for all 0 < |[x — x| < 9, [f(x)| < A.

o If lim,_, ., f(x) exists and is finite, then f is bounded for all large x: there exist
A > 0and M > 0 such that for all x > M, |f(x)| < A.

o If limy_,_ f(x) exists and is finite, then f is bounded for all large negative x:
there exist M < 0 and A > 0 such that for all x < M, [f(x)| < A.

Proof. We prove the first claim. Denote ¢ = lim,_,y, f(x) € IR. By definition of the
limit, for any ¢ > 0 there exists 6 > 0 such that for any 0 < |x — xo| < 6, we have
f(x) € (€ —¢,€+¢€). Choosing A = [{] + ¢ will do the job: |f(x)] < A for all x €
(xo —0,x0 + 5) \ {xo}. O
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