1

Let us prove the indeed this is the case for f(x) = o2z

Example 4.11: Show that f(x) = ﬁ tends to +oo as x — 2.

We want to show that for every A > 0, there exists 6 > 0 such that:

> A.

O<lx=-2|<o6=
e =2l (x —2)?

Fix A > 0. We need to find 6 > 0 such that:
1

—>A
(x —2)?
This inequality is equivalent to:
1
-2y <« =
(=2 <5

Taking square roots (and noting both sides are positive):

1
Ix -2 < —
VA
Therefore, if we choose 6 = %, then for 0 < [x — 2| < 6:
1 1

. . -aA
x—272

Since A > 0 was arbitrary, we conclude that

lim +00

2 (x—2)2

N F-——m - === =




Negative infinite limit at x; (vertical asymptote) N

Let f : R — R be a real-valued function defined in a neighborhood of some
point xp € R, but possibly not at xy itself. We say that f tends to —co as x — xp
if for every A < 0 there exists 6 = 6(A) > 0 such that for all 0 < |x — xp| < 6, we
have f(x) < A, and we write

lim f(x) = —oco.
X=X

The condition for convergence can be written symbolically as:
YA <0, 36 >0, s.t. YO < |x —xp| < 0, f(x) < A.

In this case we also say that the line x = xq is a vertical asymptote of f(x).

\ J

Note that as defined here, the infinite limit must be the same whether x tends to x(
from the right or from the left. Hence, the function f(x) = % does not have a limit as
x — 0.

Left and right limits and discontinuity points

We have already seen some examples of functions that have points where we tend to
different values if we approach from the left or from the right. Two simple examples

at the functions f(x) = % and the ceiling function g(x) = [x], sketched below.

flx) =1 g(x) = [x]

2 —
k 10—

X o X
-2 -1 0 1 2
——1
— 2

Figure 4.4: Examples of functions that have points with different left and right limits.

Hence we want to repeat the ideas that we’ve seen above, with the only differ-
ence being the neighborhoods around xp: we’ll want a right neighborhood and a left
neighborhood.



Finite right limit

Let f : R — R be a real-valued function. We say that f has a right limit £ at
xo € Rif for every ¢ > 0 there exists 6 = 6(¢) > 0 such that for all x € (xq, xp +9),
we have that f(x) € (£ — ¢, + ¢) and we write

lim f(x) = ¢.
x—>xa“

The condition for a right limit can be written symbolically as:

Ve>0,36=0(¢) >0, st. 0<x—x0<0 = |f(x)={|<e.

Right-continuous

A function f : R — R is said to be right-continuous at xj if

Tim £(x) = f(xo).

+oo right limit

Let f : R — R be a real-valued function. We say that f tends to +co from the
right at xp € R if for every A = 0 there exists 6 = 6(A) > 0 such that for all
x € (xp,xp + 0), we have that f(x) 2 A and we write

lim f(x) = +oo.
x—>x5r

The condition for an infinite right limit can be written symbolically as:

VA20,356=06(A)>0, st 0<x—x9<5 = f(x)2A.

\

Finite left limit

Let f : R — R be a real-valued function. We say that f has a left limit ¢ at
xo € Rif for every ¢ > 0 there exists 6 = 0(¢) > 0 such that for all x € (xo— 06, xp),
we have that f(x) € (€ — ¢, + ¢) and we write

lim f(x) = €.

.X'—>X0

The condition for a left limit can be written symbolically as:

Ve>0,36=0(e)>0,st. 0<xp—x<0 = |f(x)-{|<e.




Left-continuous )

A function f : R — R is said to be left-continuous at x if

Tim f(x) = f(xo)

+00 left limit ~

Let f : R — R be a real-valued function. We say that f tends to +co from
the left at xp € R if for every A = 0 there exists 6 = 6(A) > 0 such that for all
x € (xp — 0, x0), we have that f(x) 2 A and we write

lim f(x) = +oo.

o
XXO

The condition for an infinite left limit can be written symbolically as:

VAZz0, 30=0(A)>0,st.0<xp—-x<0 = f(x)=A.

7

J

Looking back at Figure 4.4 it appears that the function f(x) = % has limits +oo
left/right limits, and that the function g(x) = [x] has different left/right limits at all
integer points, though it appears that it is always left-continuous.

Jump discontinuity .

Let f : R — R be a real-valued function. If at some point xg the left and right
limits exist, yet

lim f(x) # lim f(x)

+
x—>x0

then we say that f has a jump discontinuity at x.

Conversely, we have the following simple proposition:

Proposition 4.4: Let f : R — R be defined in a neighborhood of x( (possibly not at xg
itself). Then

lim f(x)=L = lim f(x)=L and lim f(x)=L
X=X x—x§ xX—xy
where L can be any number or +co. Moreover, the function is continuous at xy if and

only if it is both right- and left-continuous at xo.

Proof. Exercise. m|

sin x

xat

Now we have the tools to consider the removable discontinuity of f(x) =
x =0:



Example 4.12: Consider the function f(x) = $2£ for x # 0. Show that f has a remov-
able discontinuity at x = 0 and find the limit.

We want to show that lim,_, % exists. We guess that as x — 0, the value of f(x)
should tend to 1 (there are good reasons for this particular guess, which we will see

later in the course). We want to show that lim,_,q % = 1. Consider the unit circle and

let x be a small positive angle. From geometric considerations, for 0 < x < 7 we have:
sinx < x < tanx

(the first inequality is relatively simple, the second requires a bit more work). Dividing
by sin x (which is positive, so inequalities don’t change direction):

X 1
<

1< — .
sSinx COS X

Taking reciprocals (which reverses inequalities):

sinx
cosx < — < 1.
X

Since cos x is continuous and cos 0 = 1, the only possible option (we will prove this
later, it is called the squeezing theorem) is that:

lim 225 =1
x—0t X
Forx <0, let y = —x > 0, then:
sinx _sin(-y) -—siny siny
x -y -y Yy
So the left limit equals the right limit:
i SO g SOX
x—=0" X x—0t X

sinx

Therefore, using Proposition 4.4, lim,_,o *%* = 1, and the discontinuity at x = 0 is

removable.
fo) = sin
1+e
************** 7—0\*”*************
1-¢
) X




Finally, some really bad discontinuities!

We have seen removable discontinuities and jump discontinuities. Perhaps it would
be wise to define what is a discontinuity is:

Let f : R — R be a real-valued function. If f is not continuous at xo then we
say that it is discontinuous at xp and x is called a point of discontintinuity.

There are points of discontinuity that are neither removable nor jump discontinuities:
Consider the function

. (1
fx) = sm(x)
whose domain is R \ {0}. It is discontinuous at xg = 0 because the limit does not
exist: indeed, as x approaches 0, the argument Jl—c grows without bound, causing the
sine function to oscillate infinitely rapidly between —1 and 1. No matter how small

a 6-neighborhood around xp = 0 we choose, the function takes all values between —1
and 1 infinitely many times, preventing convergence to any particular limit value.

2 -1 1 2 3

=1

Discontinuity of the second type

A discontinuity point that is neither removable nor jump, is called a disconti-
nuity of the second type.

Limits of monotone functions
The situation is better for monotone functions, just as it was for monotone sequences:

Theorem 4.5: A monotone (increasing or decreasing) function f : R — R cannot
have a discontinuity of the second type. That is, a monotone function could only
have removable discontinuities, jump discontinuities, or have asymptotes (vertical or
horizontal).

Proof. We prove the theorem for a monotone increasing function. The same ideas will
carry over for a monotone decreasing function. We split the proof into two claims:

(1) Claim: for any xp € {—c0} UR,
lim f(x) = inf f(x).
x—>x6’

X>X0
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