
Let us prove the indeed this is the case for f (x) = 1
(x�2)2 :

Example 4.11: Show that f (x) = 1
(x�2)2 tends to +1 as x! 2.

We want to show that for every A > 0, there exists � > 0 such that:

0 < |x � 2| < �) 1
(x � 2)2 > A.

Fix A > 0. We need to find � > 0 such that:

1
(x � 2)2 > A

This inequality is equivalent to:

(x � 2)2 <
1
A

Taking square roots (and noting both sides are positive):

|x � 2| < 1p
A

Therefore, if we choose � = 1p
A

, then for 0 < |x � 2| < �:

1
(x � 2)2 >

1
�2 = A.

Since A > 0 was arbitrary, we conclude that

lim
x!2

1
(x � 2)2 = +1.

x
2

A

2 � 1p
A

2 + 1p
A

f (x) = 1
(x�2)2
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Let f : R ! R be a real-valued function defined in a neighborhood of some
point x0 2 R, but possibly not at x0 itself. We say that f tends to �1 as x! x0
if for every A < 0 there exists � = �(A) > 0 such that for all 0 < |x � x0| < �, we
have f (x) < A, and we write

lim
x!x0

f (x) = �1.

The condition for convergence can be written symbolically as:

8A < 0, 9� > 0, s.t. 80 < |x � x0| < �, f (x) < A.

In this case we also say that the line x = x0 is a vertical asymptote of f (x).

Negative infinite limit at x0 (vertical asymptote)

Note that as defined here, the infinite limit must be the same whether x tends to x0
from the right or from the left. Hence, the function f (x) = 1

x does not have a limit as
x! 0.

Left and right limits and discontinuity points

We have already seen some examples of functions that have points where we tend to
di↵erent values if we approach from the left or from the right. Two simple examples
at the functions f (x) = 1

x and the ceiling function g(x) = dxe, sketched below.

x

f (x) = 1
x

x

g(x) = dxe

�2 �1 0 1 2

�2

�1

1

2

Figure 4.4: Examples of functions that have points with di↵erent left and right limits.

Hence we want to repeat the ideas that we’ve seen above, with the only di↵er-
ence being the neighborhoods around x0: we’ll want a right neighborhood and a left
neighborhood.
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Let f : R ! R be a real-valued function. We say that f has a right limit ` at

x0 2 R if for every " > 0 there exists � = �(") > 0 such that for all x 2 (x0, x0+�),
we have that f (x) 2 (` � ", ` + ") and we write

lim
x!x+0

f (x) = `.

The condition for a right limit can be written symbolically as:

8" > 0, 9� = �(") > 0, s.t. 0 < x � x0 < � ) | f (x) � `| < ".

Finite right limit

A function f : R! R is said to be right-continuous at x0 if

lim
x!x+0

f (x) = f (x0).

Right-continuous

Let f : R! R be a real-valued function. We say that f tends to ±1 from the

right at x0 2 R if for every A ? 0 there exists � = �(A) > 0 such that for all
x 2 (x0, x0 + �), we have that f (x) ? A and we write

lim
x!x+0

f (x) = ±1.

The condition for an infinite right limit can be written symbolically as:

8A ? 0, 9� = �(A) > 0, s.t. 0 < x � x0 < � ) f (x) ? A.

±1 right limit

Let f : R ! R be a real-valued function. We say that f has a left limit ` at

x0 2 R if for every " > 0 there exists � = �(") > 0 such that for all x 2 (x0��, x0),
we have that f (x) 2 (` � ", ` + ") and we write

lim
x!x�0

f (x) = `.

The condition for a left limit can be written symbolically as:

8" > 0, 9� = �(") > 0, s.t. 0 < x0 � x < � ) | f (x) � `| < ".

Finite left limit
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A function f : R! R is said to be left-continuous at x0 if

lim
x!x�0

f (x) = f (x0).

Left-continuous

Let f : R ! R be a real-valued function. We say that f tends to ±1 from

the left at x0 2 R if for every A ? 0 there exists � = �(A) > 0 such that for all
x 2 (x0 � �, x0), we have that f (x) ? A and we write

lim
x!x�0

f (x) = ±1.

The condition for an infinite left limit can be written symbolically as:

8A ? 0, 9� = �(A) > 0, s.t. 0 < x0 � x < � ) f (x) ? A.

±1 left limit

Looking back at Figure 4.4 it appears that the function f (x) = 1
x has limits ±1

left/right limits, and that the function g(x) = dxe has di↵erent left/right limits at all
integer points, though it appears that it is always left-continuous.

Let f : R! R be a real-valued function. If at some point x0 the left and right
limits exist, yet

lim
x!x+0

f (x) , lim
x!x�0

f (x)

then we say that f has a jump discontinuity at x0.

Jump discontinuity

Conversely, we have the following simple proposition:

Proposition 4.4: Let f : R! R be defined in a neighborhood of x0 (possibly not at x0
itself). Then

lim
x!x0

f (x) = L , lim
x!x+0

f (x) = L and lim
x!x�0

f (x) = L

where L can be any number or ±1. Moreover, the function is continuous at x0 if and
only if it is both right- and left-continuous at x0.

Proof. Exercise. ⇤

Now we have the tools to consider the removable discontinuity of f (x) = sin x
x at

x = 0:
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Example 4.12: Consider the function f (x) = sin x
x for x , 0. Show that f has a remov-

able discontinuity at x = 0 and find the limit.

We want to show that limx!0
sin x

x exists. We guess that as x ! 0, the value of f (x)
should tend to 1 (there are good reasons for this particular guess, which we will see
later in the course). We want to show that limx!0

sin x
x = 1. Consider the unit circle and

let x be a small positive angle. From geometric considerations, for 0 < x < ⇡2 we have:

sin x < x < tan x

(the first inequality is relatively simple, the second requires a bit more work). Dividing
by sin x (which is positive, so inequalities don’t change direction):

1 <
x

sin x
<

1
cos x

.

Taking reciprocals (which reverses inequalities):

cos x <
sin x

x
< 1.

Since cos x is continuous and cos 0 = 1, the only possible option (we will prove this
later, it is called the squeezing theorem) is that:

lim
x!0+

sin x
x
= 1

For x < 0, let y = �x > 0, then:

sin x
x
=

sin(�y)
�y

=
� sin y
�y

=
sin y

y

So the left limit equals the right limit:

lim
x!0�

sin x
x
= lim

x!0+
sin x

x
= 1

Therefore, using Proposition 4.4, limx!0
sin x

x = 1, and the discontinuity at x = 0 is
removable.

x
0

1 1 � "
1 + "

�� �
f (x) = sin x

x
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Finally, some really bad discontinuities!

We have seen removable discontinuities and jump discontinuities. Perhaps it would
be wise to define what is a discontinuity is:

Let f : R ! R be a real-valued function. If f is not continuous at x0 then we
say that it is discontinuous at x0 and x0 is called a point of discontintinuity.

Discontinuity

There are points of discontinuity that are neither removable nor jump discontinuities:
Consider the function

f (x) = sin
✓1
x

◆

whose domain is R \ {0}. It is discontinuous at x0 = 0 because the limit does not
exist: indeed, as x approaches 0, the argument 1

x grows without bound, causing the
sine function to oscillate infinitely rapidly between �1 and 1. No matter how small
a �-neighborhood around x0 = 0 we choose, the function takes all values between �1
and 1 infinitely many times, preventing convergence to any particular limit value.

x
�3 �2 �1 1 2 3

�1

1 f (x) = sin
⇣

1
x

⌘

A discontinuity point that is neither removable nor jump, is called a disconti-

nuity of the second type.

Discontinuity of the second type

Limits of monotone functions

The situation is better for monotone functions, just as it was for monotone sequences:

Theorem 4.5: A monotone (increasing or decreasing) function f : R ! R cannot
have a discontinuity of the second type. That is, a monotone function could only
have removable discontinuities, jump discontinuities, or have asymptotes (vertical or
horizontal).

Proof. We prove the theorem for a monotone increasing function. The same ideas will
carry over for a monotone decreasing function. We split the proof into two claims:

(1) Claim: for any x0 2 {�1} [R,

lim
x!x+0

f (x) = inf
x>x0

f (x).
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