Limits at negative infinity (x —» —o0)

The previous definitions can all be modified to consider limits of functions as x tends
to —co. We omit these here, but show an example:

Example 4.7: The function f(x) = % tends to 3 as x — —oo.

Fix € > 0. We need to find N, € R such that for all x < N, we have |3 - 3;‘T+12| <eE&.
First, simplify the expression:

' 3x+2 3(x—-1)— (Bx+2)
33— =
x—1 x—1

|3x=-3-3x-2
B x—1 ‘
| -5
Cx -1
5
Ce-1r

Forx <0,wehave|x—-1|=1-x>—-x >0, so:
5 5 _ 5
lx—1| X

<—=--
—X

We want —% < ¢, which for x < 0 is equivalent to —x > 3 orx< —%.

&
Take N, = —g. Then for any x < N, we have:

3x +2
x—1

—_— —_— =€

‘3_ ve N,

Since ¢ > 0 was arbitrary, this shows that for every ¢ > 0, there exists N, such that
forallx <N, [3-f (x)| < &. Therefore,

lim 3x+2 _ 3

x——o00 x—1

Finite limits and continuity

When we want to study the properties of a function f : R — R at a given point xg € R,
we want to understand how it behaves for other points x # xg that are close to xo. Our
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method is similar to what we’ve seen before. We call £ € R the ‘suspected’ value of f at
xo, and consider an e-neighborhood of £. We then ask whether a small neighborhood
of xp is within the pre-image of this neighborhood. We note that it isn’t necessarily the
case that £ = f(xg) (we will see several such scenarios). However, if £ = f(x() then the
function is continuous at x.

A E— 7/ S

{—¢

‘ X
Xo—0 X0 xg+ 0

& — 0 formulation ~

The so-called ¢ — 6 formulation is a staple of modern analysis: ¢ > 0 measures
a small permissible margin of error along the y-axis, and, corresponding to it
is 6 > 0 (which depends upon ¢), measuring the corresponding allowable points
of input along the x-axis.

Point of continuity

In the case that £ = f(xp) and the function approaches f(xg) for points x near xo, then
we say that the function is continuous at x:

Point of continuity N

Let f : R — IR be a real-valued function. We say that f is continuous at
xo € R if for every ¢ > 0 there exists 6 = 6(¢) > 0 (depending on ¢) such that
for all x € (xg — 6, x0 + 6), we have that f(x) € (f(xo) — ¢, f(x0) + €).

The condition for continuity can be written symbolically as:
Ve >0, 6 =0(¢) >0, s.t. [x —xg| <6 = [f(x) = f(xp)l < e.

In this case we write

lim £() = f(xo).

\.

Example 4.8: We prove that f(x) = x? is continuous at xo = 2.
Let ¢ > 0 be given. We want to find 6 > 0 such that:
x—=2l<6=x>—4|<¢
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Note that [x% — 4| = |x —2||x + 2|. If we restrict|[x—2| < 1, then1 < x < 3,50 |x +2| < 5.
Choose 6 = min{l, %} Then if |x — 2| < 6:

|x2—4|:|x—2||x+2|<§-5:€

Thus, f(x) = x% is continuous at xg = 2 with 6 = min {1, %}

/ {+e¢
E=4+ - |
{—¢
i x
Xo=2

Example 4.9: We prove that f(x) = cosx is continuous at every point xp € RR.

Let xp € R and ¢ > 0 be given. We want to find 6 > 0 such that:

|x — xp| < 6 = |cosx — cosxp| < &

+x0)sin(x—x0)
2

Taking absolute values and using the fact that | sin 0| < |0 (this is a simple geometric
fact):
sin(x i xo) sin(x — xo)
2 2

Thus, if we choose 6 = ¢, then:
|x —x0l <O =¢e=|cosx —cosxp| < |x—xp| <€

Using the trigonometric identity:

. (X
COSX — COSXp = —2sin

X — X0
2

| cos x — cos xp| = 2 32-1-‘ ':Ix—xol

Therefore, f(x) = cosx is continuous at xp with 6 = ¢.

Continuity on a set

Let f : R — R be a real-valued function, and let I € dom(f). If f is continuous
at every point x € I, then we say that f is continuous on the set I.




Proposition 4.3: All the elementary functions that we’ve seen in Section 2.6 are con-
tinuous on their entire domains.

Proof. We have just shown this for the cosine. The sine function is proved in similar
tashion. For the other elementary functions (powers, polynomials, rational functions,
the other trigonometric functions and their inverses, exponential and logarithms) we
postpone the proof until a later time. ]

Removable discontinuity

Another scenario, is either if f(xp) # € or if f(xp) is not defined (i.e. xp isn’t in the
domain of f). In this case we can only say that f has a limit as x — xp, but that
limit does not equal f(x) (either because f(x) is a different value, or because it is not
defined).

Figure 4.3: Left: f(xp) # ¢, and right: f not defined at xo.

To write the ¢ — 6 definition we must exclude the point xg itself from consideration:

Removable discontinuity N

Let f : R — R be a real-valued function. We say that f(x) tends to ¢
as x — xp if for every ¢ > 0 there exists 6 = 6(¢) > 0 such that for all
x € (xp — 0,x0 + 0) \ {xo}, we have that f(x) € (( — ¢, + ¢).

The condition for convergence can be written symbolically as:
Ve>0, 30=0(e) >0, s.t. 0<|x—x0| <0 = [f(x) - €] <e.

In this case we write

li = ¢.

i e =<
If f(xo) = ¢, then f is continuous at xg, as we have previously defined. How-
ever, if f(xg) # € orif f isnot defined at xp, then we say that f has a removable
discontinuity at x.

\.

Example 4.10: We will show later that

. sinx
lim =1
x—0 X




	Basic Notions
	Sets
	Elements of mathematical logic
	Connectives
	Predicates
	Quantifiers

	Sets of numbers
	The ordering of real numbers
	Bounded sets
	The cardinality of subsets of R

	Cartesian product
	Relations in the Cartesian plane
	Factorials and binomial coefficients

	Functions
	Definitions and examples
	Range and pre-image
	Surjectivity, injectivity, and invertibility
	Monotone functions and sequences
	Composition of functions
	Elementary functions
	Powers
	Polynomials and rational functions
	Exponential and logarithmic functions
	Trigonometric functions and their inverses


	Complex Numbers
	Algebraic operations
	Cartesian coordinates
	Trigonometric and exponential form
	Powers and nth roots
	Algebraic equations and the Fundamental Theorem of Algebra

	Limits and continuity
	Neighborhoods
	Limits of sequences
	Limits of functions

	Properties and computation of limits

