e In the case that the sequence is monotone increasing;:

* If supfa, | n> N} < +oo, then

lim a, = supla, | n> N}.

n—oo
* If sup{a, | n > N} = +oo, then the sequence diverges to +co.
e In the case that the sequence is monotone decreasing:
x Ifinf{a,, | n > N} > —oo, then

lim a, = infla,, | n > N}.

n—00
* Ifinf{a, | n > N} = —oo, then the sequence diverges to —co.

Proof. We only prove for the monotone increasing case (the decreasing case follows the
same proof). For brevity we shall write

supa, = supla, | n> N}
n>N

* Suppose that sup, ya, = { < +o00. Fix some ¢ > 0. By the definition of the
supremum,

1. there exists some index N > N such that £ —an, < ¢;
2. foralln > N,a, <.

Combining these with the fact that the sequence is monotone increasing for n > N, we
have the following sequence of inequalities

AN+l Sang2 << an, <an41 <o <0
S~
>{—¢

Neglecting the terms up to ay,, this can be written as
{—e¢e<ap, < aN,+1 < -+ < ¢

This means that for all n > N, |[€ — a,| < . By the definition of the limit of a sequence,
this means that
lim a, = ¢.

n—-o0

* Now, suppose that sup, _,a, = +co. Then (by definition) for every A > 0, there
exists Ny > N such thatay, > A. So we have

A<an, <any+1 <
By definition, this precisely means that

lim a, = +o0.

n—-0oo



Example 4.3: 1. The sequence a,, = ;25 (n € IN) is monotonically increasing, and
its supremum is 1. Hence its limit exists (and it is 1)L.

2. The sequence a;, = % (n € IN,) is monotonically decreasing and its infimum is 0.
Hence its limit exists, and it is also 0.

Proposition 4.2 (The number ¢): The sequence a,, = gl + %)n, n € IN, is monotonically
increasing and bounded from above. Hence it has a limit, which is denoted e (this is
the famous Euler’s number, and this is how it is defined):

1 n
e= lim (1 + —) .
1n—00 n
Proof. We need to show that the sequence 4, is bounded and monotonically increasing.

The sequence is monotonically increasing. Actually, it is strictly increasing. We
write

n

1\" Nl v n 1 xv1lnm-1)---(m—k+1)
“E) ‘;(k)%‘,;kl(n—k)@‘k:oﬁ nk

ap

Il
—_—

n-—1 n—-k+1
n n

BB (-5

Similarly, we can express 4,1 as:

n+1
1 1 k-1
a"”_Zﬁl'(l_n+1)m(1_n+1)'

|
S

>
=
(@)

.

=0

each term in the product is bigger in the expression for 4,1 (and, moreover, 4,1 has
an additional positive summand k = n + 1). Therefore a,,,1 > a, (strict inequality).

The sequence is bounded. Observe that a; = 2, so that 2 is a lower bound (the
sequence is increasing). We will now show that 3 is an upper bound. We shall use the
inequality

kK =k(k-1)(k-2)---21>2-2...2 =21,
N——

k-1 terms k=1 times




We write a,, as before:

a, = 11.(1_1).......(1_k_1)
k! n n
k=0
n
1
T k__1+Zk'
n
1
S1+Z—
k12
n—1
1
=1+ —
pay 2k

We know the formula for the partial sum of a geometric series:

n—1 1

1- %
%: 2 :2(1—2%)<2.
k=0 1_7
So we find that
n-1 1
a, <1+ —<1+2=3.
2k
k=0

4.3 Limits of functions

Limits at infinity (x — +00)

Our first few definitions are very similar to definitions we’ve already seen for se-
quences:

Finite limit at infinity (horizontal asymptote) N

Let f : R — R be a real-valued function. If there exists ¢ € R such that for any
¢ > 0 there exists N, € R such that for all x > N, |[€ — f(x)| < ¢, we say that f
tends to € as x — +o00, and we write

lim f(x) =

X—+00

The condition for convergence can be written symbolically as:
Ve >0, AN, € R, s.t. Vx > N, |€ - f(x)| < e.

In this case we say that the line y = € is a right horizontal asymptote of f(x).




| R ——

z

Example 4.4: Let us show that the function f(x) = % tends to 0 as x — +oo.

Fix ¢ > 0. We need to find N, € R such that for all x > N, we have |0 - %| < ¢. Note

that for x > 0,
have:

%' < ¢ is equivalent to x > % Take N, = % Then for any x > N, we

1

X

1
Ne
Since ¢ > 0 was arbitrary, this shows that for every ¢ > 0, there exists N, such that
forall x > N, [0 — %| < ¢. Therefore,

0-=
b

’ 1 1
=-< =e.
X

1
im - =0.
X—+00 X

Example 4.5: Let us show that the function f(x) = % tends to 2 as x — +oo.

Fix ¢ > 0. We need to find N, € R such that for all x > N, we have '2 - 2"?{%‘ <e&.

First, simplify the expression:

}2_2x2+3x—1‘_ 22 +1) - (22 +3x = 1)
x2+1 x2+1
22 4+2-2x2-3x+1
B x2+1
_|-3x+3
a2+ 1
_ Blx -1
Cox2+1

Forx >1,wehave|x—-1=x-1<x,so:

3|x—1|< 3x <3x_3

2+1  2+1 a2 x

3

We want % < ¢, which is equivalent to x > =.

Take N, = max {1, %} (The max here is to ensure that N is at least 1, which is a requirement
from before). Then for any x > N, we have:

l 2x2+3x—1‘ 3 3
2- = <= e.

< —XK
X241 N,
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Since ¢ > 0 was arbitrary, this shows that for every ¢ > 0, there exists N, such that
for all x > N, |2 = f(x)| < e. Therefore,
2x? + 3x —
lim 2 3x-1_,
X—+00 .X'Z +1

Positive infinite limit at infinity N
Let f : R — R be a real-valued function. If for any A > 0 there exists N4 € R
such that for all x > Ny, f(x) > A, we say that f tends to +o0 as x — +o0, and

we write
lim f(x) = 4oo0.

X—+00

The condition for convergence can be written symbolically as:

YA >0, ANy € R, s.t. Yx > Ny, f(x) > A.

Ny

Example 4.6:  We show that f(x) = In(x) tends to +c0 as x — +o0.
Fix A > 0. We need to find N4 € R such that for all x > N4, we have In(x) > A.
Take N4 = . Then for any x > e, we have:

In(x) > In(¢?) = A.

Since A > 0 was arbitrary, this shows that for every A > 0, there exists N4 such that
for all x > Ny, In(x) > A. Therefore,

lim In(x) = +oo.
X—+00

Negative infinite limit at infinity N

Let f : R — R be a real-valued function. If for any A < 0 there exists Ny € R
such that for all x > Ny, f(x) < A, we say that f tends to —co as x — +00, and
we write

lim f(x) = —oo.

X—+00

The condition for convergence can be written symbolically as:

YA <0, ANy € R, s.t. Vx > Ny, f(x) <A.
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