
• In the case that the sequence is monotone increasing:

? If sup{an | n > N} < +1, then

lim
n!1 an = sup{an | n > N}.

? If sup{an | n > N} = +1, then the sequence diverges to +1.

• In the case that the sequence is monotone decreasing:

? If inf{an | n > N} > �1, then

lim
n!1 an = inf{an | n > N}.

? If inf{an | n > N} = �1, then the sequence diverges to �1.

Proof. We only prove for the monotone increasing case (the decreasing case follows the
same proof). For brevity we shall write

sup
n>N

an = sup{an | n > N}

? Suppose that supn>N an = ` < +1. Fix some " > 0. By the definition of the
supremum,

1. there exists some index N" > N such that ` � aN" < ";

2. for all n > N, an  `.
Combining these with the fact that the sequence is monotone increasing for n > N, we
have the following sequence of inequalities

aN+1  aN+2  · · ·  aN"|{z}
>`�"

 aN"+1  · · ·  `

Neglecting the terms up to aN" , this can be written as

` � " < aN"  aN"+1  · · ·  `

This means that for all n � N", |` � an| < ". By the definition of the limit of a sequence,
this means that

lim
n!1 an = `.

? Now, suppose that supn>N an = +1. Then (by definition) for every A > 0, there
exists NA > N such that aNA > A. So we have

A < aNA  aNA+1  · · ·

By definition, this precisely means that

lim
n!1 an = +1.

⇤
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Example 4.3: 1. The sequence an =
n

n+1 (n 2 N) is monotonically increasing, and
its supremum is 1. Hence its limit exists (and it is 1)l.

2. The sequence an =
1
n (n 2 N+) is monotonically decreasing and its infimum is 0.

Hence its limit exists, and it is also 0.

Proposition 4.2 (The number e): The sequence an =
⇣
1 + 1

n

⌘n
, n 2N, is monotonically

increasing and bounded from above. Hence it has a limit, which is denoted e (this is
the famous Euler’s number, and this is how it is defined):

e = lim
n!1

✓
1 +

1
n

◆n
.

Proof. We need to show that the sequence an is bounded and monotonically increasing.

The sequence is monotonically increasing. Actually, it is strictly increasing. We
write

an =
✓
1 +

1
n

◆n
=

nX

k=0

 
n
k

!
1
nk =

nX

k=0

n!
k!(n � k)!

1
nk =

nX

k=0

1
k!

n(n � 1) · · · (n � k + 1)
nk

=
nX

k=0

1
k!

n
n
· n � 1

n
· · · n � k + 1

n

=
nX

k=0

1
k!

1 ·
✓
1 � 1

n

◆
· · ·

 
1 � k � 1

n

!
.

Similarly, we can express an+1 as:

an+1 =
n+1X

k=0

1
k!

1 ·
✓
1 � 1

n + 1

◆
· · ·

 
1 � k � 1

n + 1

!
.

Comparing an and an+1 we see that:

an =
nX

k=0

1
k!

1 ·
✓
1 � 1

n

◆
· · · · · · ·

 
1 � k � 1

n

!

^ ^

an+1 =
n+1X

k=0

1
k!

1 ·
✓
1 � 1

n + 1

◆
· · ·

 
1 � k � 1

n + 1

!

each term in the product is bigger in the expression for an+1 (and, moreover, an+1 has
an additional positive summand k = n + 1). Therefore an+1 > an (strict inequality).

The sequence is bounded. Observe that a1 = 2, so that 2 is a lower bound (the
sequence is increasing). We will now show that 3 is an upper bound. We shall use the
inequality

k! = k(k � 1)(k � 2) · · · 2
|                 {z                 }

k�1 terms

·1 � 2 · 2 · · · 2|   {z   }
k�1 times

= 2k�1.
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We write an as before:

an =
nX

k=0

1
k!

1 ·
✓
1 � 1

n

◆
· · · · · · ·

 
1 � k � 1

n

!

<
nX

k=0

1
k!
= 1 +

nX

k=1

1
k!

 1 +
nX

k=1

1
2k�1

= 1 +
n�1X

k=0

1
2k .

We know the formula for the partial sum of a geometric series:

n�1X

k=0

1
2k =

1 � 1
2n

1 � 1
2
= 2

✓
1 � 1

2n

◆
< 2.

So we find that

an < 1 +
n�1X

k=0

1
2k < 1 + 2 = 3.

⇤

4.3 Limits of functions

Limits at infinity (x! +1)

Our first few definitions are very similar to definitions we’ve already seen for se-
quences:

Let f : R! R be a real-valued function. If there exists ` 2 R such that for any
" > 0 there exists N" 2 R such that for all x > N", |` � f (x)| < ", we say that f
tends to ` as x! +1, and we write

lim
x!+1 f (x) = `.

The condition for convergence can be written symbolically as:

8" > 0, 9N" 2 R, s.t. 8x > N", |` � f (x)| < ".

In this case we say that the line y = ` is a right horizontal asymptote of f (x).

Finite limit at infinity (horizontal asymptote)
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x
N"

`
` � "
` + "

Example 4.4: Let us show that the function f (x) = 1
x tends to 0 as x! +1.

Fix " > 0. We need to find N" 2 R such that for all x > N", we have
���0 � 1

x

��� < ". Note
that for x > 0,

���1
x

��� < " is equivalent to x > 1
" . Take N" = 1

" . Then for any x > N", we
have: �����0 �

1
x

����� =
�����
1
x

����� =
1
x
<

1
N"
= ".

Since " > 0 was arbitrary, this shows that for every " > 0, there exists N" such that
for all x > N",

���0 � 1
x

��� < ". Therefore,

lim
x!+1

1
x
= 0.

Example 4.5: Let us show that the function f (x) = 2x2+3x�1
x2+1 tends to 2 as x! +1.

Fix " > 0. We need to find N" 2 R such that for all x > N", we have
����2 � 2x2+3x�1

x2+1

���� < ".

First, simplify the expression:
������2 �

2x2 + 3x � 1
x2 + 1

������ =
������
2(x2 + 1) � (2x2 + 3x � 1)

x2 + 1

������

=

������
2x2 + 2 � 2x2 � 3x + 1

x2 + 1

������

=

�����
�3x + 3
x2 + 1

�����

=
3|x � 1|
x2 + 1

.

For x > 1, we have |x � 1| = x � 1 < x, so:

3|x � 1|
x2 + 1

<
3x

x2 + 1
<

3x
x2 =

3
x
.

We want 3
x < ", which is equivalent to x > 3

" .
Take N" = max

n
1, 3
"

o
(The max here is to ensure that N" is at least 1, which is a requirement

from before). Then for any x > N", we have:
������2 �

2x2 + 3x � 1
x2 + 1

������ <
3
x
<

3
N"
 ".
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Since " > 0 was arbitrary, this shows that for every " > 0, there exists N" such that
for all x > N",

���2 � f (x)
��� < ". Therefore,

lim
x!+1

2x2 + 3x � 1
x2 + 1

= 2.

Let f : R! R be a real-valued function. If for any A > 0 there exists NA 2 R
such that for all x > NA, f (x) > A, we say that f tends to +1 as x! +1, and
we write

lim
x!+1 f (x) = +1.

The condition for convergence can be written symbolically as:

8A > 0, 9NA 2 R, s.t. 8x > NA, f (x) > A.

Positive infinite limit at infinity

x
NA

A

Example 4.6: We show that f (x) = ln(x) tends to +1 as x! +1.

Fix A > 0. We need to find NA 2 R such that for all x > NA, we have ln(x) > A.
Take NA = eA. Then for any x > eA, we have:

ln(x) > ln(eA) = A.

Since A > 0 was arbitrary, this shows that for every A > 0, there exists NA such that
for all x > NA, ln(x) > A. Therefore,

lim
x!+1 ln(x) = +1.

Let f : R! R be a real-valued function. If for any A < 0 there exists NA 2 R
such that for all x > NA, f (x) < A, we say that f tends to �1 as x! +1, and
we write

lim
x!+1 f (x) = �1.

The condition for convergence can be written symbolically as:

8A < 0, 9NA 2 R, s.t. 8x > NA, f (x) < A.

Negative infinite limit at infinity
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