

So here's the process:

- Fix $\varepsilon > 0$ (think of ε as being positive but VERY small!)
- Compute $1 a_n$:

$$1 - a_n = 1 - \frac{n}{n+1} = \frac{n+1-n}{n+1} = \frac{1}{n+1}.$$

• Apply the condition $|1 - a_n| < \varepsilon$:

$$\frac{1}{n+1} < \varepsilon \quad \Leftrightarrow \quad 1 < \varepsilon(n+1) \quad \Leftrightarrow \quad \frac{1}{\varepsilon} < n+1$$

• Find N_{ε} : define

$$N_{\varepsilon} = \left[\frac{1}{\varepsilon}\right].$$

• Verify the condition for $\forall n > N_{\varepsilon}$:

$$\forall n > N_{\varepsilon}, \qquad n+1 > N_{\varepsilon}+1 = \left\lceil \frac{1}{\varepsilon} \right\rceil + 1 \ge \frac{1}{\varepsilon} + 1 > \frac{1}{\varepsilon}$$

$$\Leftrightarrow \qquad \frac{1}{n+1} < \varepsilon$$

We have therefore answered the previous question affirmatively:

A: Yes,

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ \text{s.t.} \ \forall n > N_{\varepsilon}, \ |1 - a_n| < \varepsilon.$$

In fact, there is an explicit choice for N_{ε} , namely: $N_{\varepsilon} = \left[\frac{1}{\varepsilon}\right]$.

Since this is true *for every* $\varepsilon > 0$, the sequence $a_n = \frac{n}{n+1}$ gets arbitrarily close to the number 1. We say that 1 is the *limit* of this sequence.

Finite limit of a sequence

Let $\{a_n\}_{n\in\mathbb{N}}$ be a real-valued sequence. We say that the sequence **converges to** $\ell \in \mathbb{R}$ if for any $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that for any $n > N_{\varepsilon}$, we have $|\ell - a_n| < \varepsilon$. In this case we write

$$\lim_{n\to\infty}a_n=\ell.$$

The condition for convergence can be written symbolically as:

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}, \ \text{s.t.} \ \forall n > N_{\varepsilon}, \ |\ell - a_n| < \varepsilon.$$

Returning to Example 4.1, we conclude that:

$$\lim_{n\to\infty}\frac{n}{n+1}=1.$$

A sequence might also grow indefinitely and 'tend' to $+\infty$ (for example, $a_n = e^n$), or decrease and 'tend' to $-\infty$ (for example, $a_n = -n^8$). This can be formalized as follows:

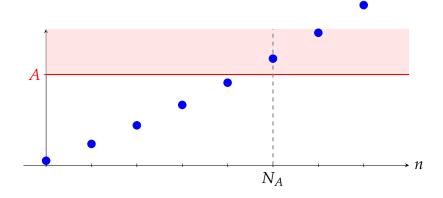
Divergent sequence (to $+\infty$)

Let $\{a_n\}_{n\in\mathbb{N}}$ be a real-valued sequence. We say that the sequence **diverges to** $+\infty$ if for any A>0 there exists $N_A\in\mathbb{N}$ such that for any $n>N_A$, we have $a_n>A$. In this case we write

$$\lim_{n\to\infty}a_n=+\infty.$$

The condition for convergence can be written symbolically as:

$$\forall A > 0$$
, $\exists N_A \in \mathbb{N}$, s.t. $\forall n > N_A$, $a_n > A$.



Here we *think of A as being VERY big!*

We can make a similar definition for a sequence divergent to $-\infty$:

Divergent sequence (to $-\infty$)

Let $\{a_n\}_{n\in\mathbb{N}}$ be a real-valued sequence. We say that the sequence **diverges to** $-\infty$ if for any A<0 there exists $N_A\in\mathbb{N}$ such that for any $n>N_A$, we have $a_n<A$. In this case we write

$$\lim_{n\to\infty}a_n=-\infty.$$

The condition for convergence can be written symbolically as:

$$\forall A < 0, \exists N_A \in \mathbb{N}, \text{ s.t. } \forall n > N_A, a_n < A.$$

Here we think of A as being VERY big and negative!

Example 4.2: Consider the sequence $a_n = \frac{n!}{n^{100}}$. Does $\{a_n\}_{n \in \mathbb{N}}$ have a limit as $n \to \infty$? If so, what is it? Does it diverge?

Solution. Let us rewrite the *n*th term as follows:

$$a_{n} = \frac{n!}{n^{100}}$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \cdots (n-98) \cdot (n-99) \cdot (n-100) \cdots 3 \cdot 2 \cdot 1}{\underbrace{n \cdot n \cdots n}_{100 \text{ times}}}$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \cdots (n-98) \cdot (n-99)}{\underbrace{n \cdot n \cdots n}_{100 \text{ times}}} \cdot (n-100) \cdots 3 \cdot 2 \cdot 1.$$

Observe that

$$\forall n > 198, \qquad \frac{n-99}{n} > \frac{1}{2}.$$

Hence, for all n > 198:

$$a_n = \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-98}{n} \cdot \frac{n-99}{n} \cdot (n-100)!$$

$$> \underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2} \cdot \frac{1}{2}}_{100 \text{ times}} \cdot (n-100)!$$

$$= \underbrace{\frac{1}{2^{100}} \cdot (n-100)!}_{100 \text{ times}}$$

Now, $\frac{1}{2^{100}}$ is some (*very* small) positive number, however (n-100)! diverges as $n \to \infty$, so that eventually, for any A > 0, there exists $N_A \in \mathbb{N}$ such that $\frac{1}{2^{100}} \cdot (n-100)! > A$ for all $n > N_A$. Hence

$$\lim_{n\to\infty}a_n=+\infty$$

Indeterminate sequences

Some sequences do not converge but also do not diverge. These are called **indeterminate sequences**. Examples include:

- The sequence $a_n = (-1)^n$ is *bounded* but does *not* converge.
- The sequence $a_n = n(-1)^n$ is *not* bounded (not from below and not from above) *and* does *not* converge.

A crucial feature of indeterminate sequences is that their values are not monotone: they increase and decrease repeatedly. The following theorem shows that this is indeed a crucial feature.

Theorem 4.1: Let $\{a_n\}_{n\in\mathbb{N}}$ be a real-valued sequence. Assume that there exists $N\in\mathbb{N}$ such that for all n>N, the sequence is monotone. Then the sequence *cannot* be indeterminate. More precisely:

- In the case that the sequence is monotone increasing:
 - ★ If $\sup\{a_n \mid n > N\} < +\infty$, then

$$\lim_{n\to\infty} a_n = \sup\{a_n \mid n > N\}.$$

- ★ If $\sup\{a_n \mid n > N\} = +\infty$, then the sequence diverges to $+\infty$.
- In the case that the sequence is monotone decreasing:
 - ★ If $\inf\{a_n \mid n > N\} > -\infty$, then

$$\lim_{n\to\infty} a_n = \inf\{a_n \mid n > N\}.$$

★ If $\inf\{a_n \mid n > N\} = -\infty$, then the sequence diverges to $-\infty$.

Proof. We only prove for the monotone *increasing* case (the decreasing case follows the same proof). For brevity we shall write

$$\sup_{n>N} a_n = \sup\{a_n \mid n>N\}$$

- ★ Suppose that $\sup_{n>N} a_n = \ell < +\infty$. Fix some $\varepsilon > 0$. By the definition of the supremum,
 - 1. there exists some index $N_{\varepsilon} > N$ such that $\ell a_{N_{\varepsilon}} < \varepsilon$;
 - 2. for all n > N, $a_n \le \ell$.

Combining these with the fact that the sequence is monotone increasing for n > N, we have the following sequence of inequalities

$$a_{N+1} \le a_{N+2} \le \cdots \le \underbrace{a_{N_{\varepsilon}}}_{>\ell-\varepsilon} \le a_{N_{\varepsilon}+1} \le \cdots \le \ell$$

Neglecting the terms up to a_{N_s} , this can be written as

$$\ell - \varepsilon < a_{N_{\varepsilon}} \le a_{N_{\varepsilon}+1} \le \cdots \le \ell$$

This means that for all $n \ge N_{\varepsilon}$, $|\ell - a_n| < \varepsilon$. By the definition of the limit of a sequence, this means that

$$\lim_{n\to\infty}a_n=\ell.$$

★ Now, suppose that $\sup_{n>N} a_n = +\infty$. Then (by definition) for every A > 0, there exists $N_A > N$ such that $a_{N_A} > A$. So we have

$$A < a_{N_A} \le a_{N_A+1} \le \cdots$$

By definition, this precisely means that

$$\lim_{n\to\infty}a_n=+\infty.$$