
n

an =
n

n+1

N"

1
1 � "
1 + "

So here’s the process:
• Fix " > 0 (think of " as being positive but VERY small!)

• Compute 1 � an:

1 � an = 1 � n
n + 1

=
n + 1 � n

n + 1
=

1
n + 1

.

• Apply the condition |1 � an| < ":
1

n + 1
< " , 1 < "(n + 1) , 1

"
< n + 1

• Find N": define

N" =
⇠1
"

⇡
.

• Verify the condition for 8n > N":

8n > N", n + 1 > N" + 1 =
⇠1
"

⇡
+ 1 � 1

"
+ 1 >

1
"

, 1
n + 1

< "

We have therefore answered the previous question a�rmatively:
A: Yes,

8" > 0, 9N" 2N, s.t. 8n > N", |1 � an| < ".
In fact, there is an explicit choice for N", namely: N" =

l
1
"

m
.

Since this is true for every " > 0, the sequence an =
n

n+1 gets arbitrarily close to the
number 1. We say that 1 is the limit of this sequence.

Let {an}n2N be a real-valued sequence. We say that the sequence converges to

` 2 R if for any " > 0 there exists N" 2 N such that for any n > N", we have
|` � an| < ". In this case we write

lim
n!1 an = `.

The condition for convergence can be written symbolically as:

8" > 0, 9N" 2N, s.t. 8n > N", |` � an| < ".

Finite limit of a sequence
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Returning to Example 4.1, we conclude that:

lim
n!1

n
n + 1

= 1.

A sequence might also grow indefinitely and ‘tend’ to +1 (for example, an = en), or
decrease and ‘tend’ to �1 (for example, an = �n8). This can be formalized as follows:

Let {an}n2N be a real-valued sequence. We say that the sequence diverges to

+1 if for any A > 0 there exists NA 2 N such that for any n > NA, we have
an > A. In this case we write

lim
n!1 an = +1.

The condition for convergence can be written symbolically as:

8A > 0, 9NA 2N, s.t. 8n > NA, an > A.

Divergent sequence (to +1)

n
NA

A

Here we think of A as being VERY big!

We can make a similar definition for a sequence divergent to �1:

Let {an}n2N be a real-valued sequence. We say that the sequence diverges to

�1 if for any A < 0 there exists NA 2 N such that for any n > NA, we have
an < A. In this case we write

lim
n!1 an = �1.

The condition for convergence can be written symbolically as:

8A < 0, 9NA 2N, s.t. 8n > NA, an < A.

Divergent sequence (to �1)

Here we think of A as being VERY big and negative!
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Example 4.2: Consider the sequence an =
n!

n100 . Does {an}n2N have a limit as n ! 1?
If so, what is it? Does it diverge?

Solution. Let us rewrite the nth term as follows:

an =
n!

n100

=
n · (n � 1) · (n � 2) · · · (n � 98) · (n � 99) · (n � 100) · · · 3 · 2 · 1

n · n · · · n|    {z    }
100 times

=
n · (n � 1) · (n � 2) · · · (n � 98) · (n � 99)

n · n · · · n|    {z    }
100 times

· (n � 100) · · · 3 · 2 · 1.

Observe that
8n > 198,

n � 99
n
>

1
2
.

Hence, for all n > 198:

an =
n
n
· n � 1

n
· · · n � 98

n
· n � 99

n
· (n � 100)!

>
1
2
· 1

2
· · · 1

2
· 1

2|          {z          }
100 times

·(n � 100)!

=
1

2100 · (n � 100)!

Now, 1
2100 is some (very small) positive number, however (n� 100)! diverges as n!1,

so that eventually, for any A > 0, there exists NA 2 N such that 1
2100 · (n � 100)! > A for

all n > NA. Hence
lim

n!1 an = +1.

Some sequences do not converge but also do not diverge. These are called
indeterminate sequences. Examples include:

• The sequence an = (�1)n is bounded but does not converge.

• The sequence an = n(�1)n is not bounded (not from below and not from
above) and does not converge.

Indeterminate sequences

A crucial feature of indeterminate sequences is that their values are not monotone:
they increase and decrease repeatedly. The following theorem shows that this is indeed
a crucial feature.

Theorem 4.1: Let {an}n2N be a real-valued sequence. Assume that there exists N 2N
such that for all n > N, the sequence is monotone. Then the sequence cannot be
indeterminate. More precisely:
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• In the case that the sequence is monotone increasing:

? If sup{an | n > N} < +1, then

lim
n!1 an = sup{an | n > N}.

? If sup{an | n > N} = +1, then the sequence diverges to +1.

• In the case that the sequence is monotone decreasing:

? If inf{an | n > N} > �1, then

lim
n!1 an = inf{an | n > N}.

? If inf{an | n > N} = �1, then the sequence diverges to �1.

Proof. We only prove for the monotone increasing case (the decreasing case follows the
same proof). For brevity we shall write

sup
n>N

an = sup{an | n > N}

? Suppose that supn>N an = ` < +1. Fix some " > 0. By the definition of the
supremum,

1. there exists some index N" > N such that ` � aN" < ";

2. for all n > N, an  `.
Combining these with the fact that the sequence is monotone increasing for n > N, we
have the following sequence of inequalities

aN+1  aN+2  · · ·  aN"|{z}
>`�"

 aN"+1  · · ·  `

Neglecting the terms up to aN" , this can be written as

` � " < aN"  aN"+1  · · ·  `

This means that for all n � N", |` � an| < ". By the definition of the limit of a sequence,
this means that

lim
n!1 an = `.

? Now, suppose that supn>N an = +1. Then (by definition) for every A > 0, there
exists NA > N such that aNA > A. So we have

A < aNA  aNA+1  · · ·

By definition, this precisely means that

lim
n!1 an = +1.

⇤
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