2.6.2 Polynomials and rational functions

Polynomial functions

A **polynomial function** is a function of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$ are constants and $a_n \neq 0$. The number n is called the **degree** of the polynomial, denoted $\deg(p) = n$. The domain is $\dim(p) = \mathbb{R}$.

Example 2.8: 1. Constant functions: p(x) = c (degree 0).

- 2. Linear functions: p(x) = ax + b with $a \ne 0$ (degree 1).
- 3. Quadratic functions: $p(x) = ax^2 + bx + c$ with $a \ne 0$ (degree 2).
- 4. Cubic functions: $p(x) = ax^3 + bx^2 + cx + d$ with $a \ne 0$ (degree 3).

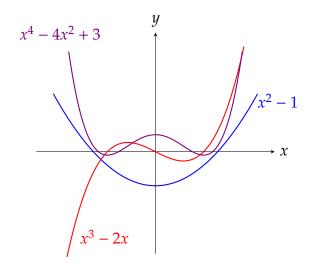


Figure 2.13: Examples of polynomial functions

Properties of polynomials

- The sum and product of two polynomials is a polynomial.
- If p has degree n, then p has at most n real roots (zeros).

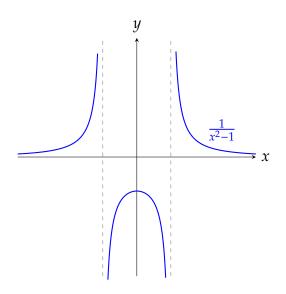
Rational functions

A **rational function** is a quotient of two polynomials:

$$r(x) = \frac{p(x)}{q(x)}$$

where p and q are polynomials with $q \not\equiv 0$. If p and q have no common factors then the domain is

$$dom(r) = \{x \in \mathbb{R} \mid q(x) \neq 0\}.$$



2.6.3 Exponential and logarithmic functions

The exponential function

For a > 0, $a \ne 1$, the **exponential function with base** a is

$$f(x) = a^x$$

with $dom(f) = \mathbb{R}$ and $im(f) = (0, +\infty)$. The most important case is a = e, where $e \approx 2.71828...$ is Euler's number. We write

$$\exp(x) = e^x.$$

Properties of exponential functions

For a > 0, $a \ne 1$:

- a^x is strictly increasing if a > 1 and strictly decreasing if 0 < a < 1.
- $a^0 = 1$ for all a > 0.
- $a^x > 0$ for all $x \in \mathbb{R}$.

Algebraic rules for exponentials

For a, b > 0 and $x, y \in \mathbb{R}$:

$$a^{x} \cdot a^{y} = a^{x+y}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$(a^{x})^{y} = a^{xy}$$

$$a^{x}b^{x} = (ab)^{x}$$

$$a^{-x} = \frac{1}{a^{x}}$$

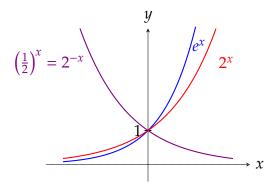


Figure 2.14: Exponential functions with different bases

The logarithmic function

For a > 0, $a \ne 1$, the **logarithm with base** a is the inverse of a^x :

$$f(x) = \log_a(x)$$

with $dom(f) = (0, +\infty)$ and $im(f) = \mathbb{R}$. The most important case is a = e, called the **natural logarithm**:

$$\ln(x) = \log_e(x).$$

Properties of logarithms

For a > 0, $a \ne 1$:

- $\log_a(x)$ is strictly increasing if a > 1 and strictly decreasing if 0 < a < 1.
- $\log_a(1) = 0$ and $\log_a(a) = 1$ for all a > 0, $a \ne 1$.
- $\log_a(a^x) = x$ for all $x \in \mathbb{R}$ and $a^{\log_a(x)} = x$ for all x > 0.

Algebraic rules for logarithms

For a > 0, $a \ne 1$, and x, y > 0:

$$\log_{a}(xy) = \log_{a}(x) + \log_{a}(y)$$

$$\log_{a}\left(\frac{x}{y}\right) = \log_{a}(x) - \log_{a}(y)$$

$$\log_{a}(x^{r}) = r\log_{a}(x) \quad \text{for } r \in \mathbb{R}$$

$$\log_{a}(x) = \frac{\log_{b}(x)}{\log_{b}(a)} \quad \text{(change of base)}$$

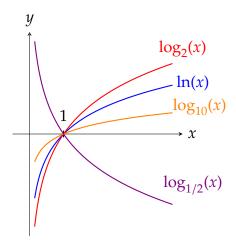


Figure 2.15: Logarithmic functions with different bases

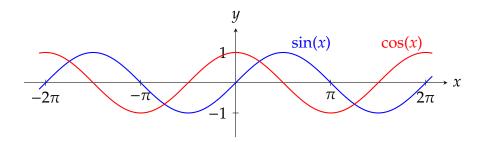
2.6.4 Trigonometric functions and their inverses

Sine and cosine

The sine and cosine functions are defined as

$$f(x) = \sin(x),$$
 $g(x) = \cos(x)$

with $dom(f) = dom(g) = \mathbb{R}$ and im(f) = im(g) = [-1, 1]. Both functions are periodic with period 2π .



Other trigonometric functions

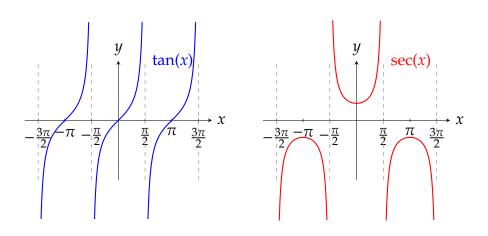
The other trigonometric functions are defined in terms of sine and cosine:

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \qquad \operatorname{dom}(\tan) = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$$

$$\cot(x) = \frac{\cos(x)}{\sin(x)} \qquad \operatorname{dom}(\cot) = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$$

$$\sec(x) = \frac{1}{\cos(x)} \qquad \operatorname{dom}(\sec) = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$$

$$\csc(x) = \frac{1}{\sin(x)} \qquad \operatorname{dom}(\csc) = \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}$$



Fundamental trigonometric identities

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$\tan^{2}(\alpha) + 1 = \sec^{2}(\alpha)$$

$$1 + \cot^{2}(\alpha) = \csc^{2}(\alpha)$$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^{2}(\alpha) - \sin^{2}(\alpha) = 2\cos^{2}(\alpha) - 1 = 1 - 2\sin^{2}(\alpha)$$

$$\sin(-\alpha) = -\sin(\alpha) \quad \text{(sine is odd)}$$

$$\cos(-\alpha) = \cos(\alpha) \quad \text{(cosine is even)}$$

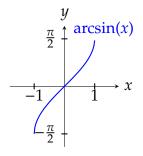
$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$

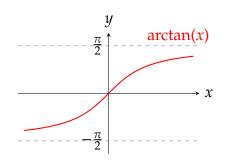
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right)$$

Inverse trigonometric functions

The inverse trigonometric functions are defined by restricting the domains appropriately:

- arcsin : $[-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$ is the inverse of sin restricted to $[-\frac{\pi}{2},\frac{\pi}{2}]$.
- arccos : $[-1,1] \rightarrow [0,\pi]$ is the inverse of cos restricted to $[0,\pi]$.
- arctan : $\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ is the inverse of tan restricted to $(-\frac{\pi}{2}, \frac{\pi}{2})$.





Here are some notable values of the trigonometric functions: