2.6.2 Polynomials and rational functions

Polynomial functions

A polynomial function is a function of the form

1

p(x) = apx" + a,1X"" + -+ + a1x + ag

where ag,4aq,...,a, € R are constants and a,, # 0. The number 7 is called the
degree of the polynomial, denoted deg(p) = n. The domain is dom(p) = R.
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Example 2.8: 1. Constant functions: p(x) = c (degree 0).
2. Linear functions: p(x) = ax + b with a # 0 (degree 1).
3. Quadratic functions: p(x) = ax? + bx + ¢ with a # 0 (degree 2).

4. Cubic functions: p(x) = ax® + bx? + cx + d with a # 0 (degree 3).
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Figure 2.13: Examples of polynomial functions

Properties of polynomials

e The sum and product of two polynomials is a polynomial.

e If p has degree n, then p has at most 7 real roots (zeros).
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Rational functions

A rational function is a quotient of two polynomials:

_ P

= q(x)

where p and g are polynomials with g # 0. If p and g have no common factors
then the domain is
dom(r) = {x € R | g(x) # 0}.
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2.6.3 Exponential and logarithmic functions

The exponential function

Fora > 0, a # 1, the exponential function with base a is

fx)=a

with dom(f) = R and im(f) = (0, +o0). The most important case is a = ¢,
where e ~ 2.71828 ... is Euler’s number. We write

exp(x) = e*.
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Properties of exponential functions N

Fora>0,a # 1:
e " is strictly increasing if 4 > 1 and strictly decreasing if 0 <a < 1.

e i =1foralla>0.

e 0¥ >(0forallx e R.

Algebraic rules for exponentials ‘

Fora,b>0and x,y € R:

a5 a¥ = &Y

& _ ey

a*b* = (ab)*
a = 1
e

Figure 2.14: Exponential functions with different bases

The logarithmic function N

Fora > 0,a # 1, the logarithm with base a is the inverse of a*:

f(x) = log,(x)

with dom(f) = (0, +o0) and im(f) = R. The most important case isa = e, called
the natural logarithm:

In(x) = log,(x).




Properties of logarithms

Fora>0,a # 1:
e log (x) is strictly increasing if 2 > 1 and strictly decreasing if 0 <a < 1.

e log (1) =0andlog,(a) =1foralla>0,a # 1.

e log,(a*) = x for all x € R and 4'°&® = x for all x > 0.

Algebraic rules for logarithms

Fora>0,a#1,and x,y > 0:
log,(xy) = log,(x) +log,(v)

log, (i) = log, (x) — log, (1)

log (x") = rlog,(x) forre R

1
log (x) = 08,(*) (change of base)
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Figure 2.15: Logarithmic functions with different bases



2.6.4 Trigonometric functions and their inverses

Sine and cosine

The sine and cosine functions are defined as

f)=sin(),  g(x) = cos(x)

with dom(f) = dom(g) = R and im(f) = im(g) = [-1,1]. Both functions are
periodic with period 27.

X\ )
_1 4

Other trigonometric functions

The other trigonometric functions are defined in terms of sine and cosine:
_ sin(x) B { n }
tan(x) = cos(0) dom(tan) = R\ > +kn | keZ
cot(®) = X omicot) = R\ fkrt | ke Z)
sin(x)
1 T
sec(x) = cos(0) dom(sec) = R\ {E +kn | ke Z}
1
csc(x) = Sin(o) dom(csc) = R\ {knt | ke Z}
‘ ‘ tan(x)|, ‘ ‘ Y sec(x) |
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Fundamental trigonometric identities

sin(a0) + cos?(a) = 1
tan?(a) + 1 = sec’(a)
1 + cot?(@) = csc?(a)
sin(a £ ) = sin(a) cos(B) + cos(a) sin(p)
cos(a £ ) = cos(a) cos(B) F sin(a) sin(p)
sin(2a) = 2 sin(a) cos(a)
cos(2a) = cos?(@) — sin®(a) = 2 cos?(a) — 1 = 1 — 2sin®(a)
sin(—a) = —sin(a) (sine is odd)
cos(—a) = cos(a) (cosine is even)

sin(ar) — sin(f) = 2 cos (a -2|- ﬁ)sin(a ; ﬁ)

cos(a) — cos(p) = —ZSin(a ; ﬁ)sin(a ; ﬁ)

\

Inverse trigonometric functions

The inverse trigonometric functions are defined by restricting the domains
appropriately:

e arcsin : [-1,1] — [-7F, 7] is the inverse of sin restricted to [-7, 7].

e arccos : [-1,1] — [0, 7r] is the inverse of cos restricted to [0, 7].

e arctan: R — (=7, 7) is the inverse of tan restricted to (=75, 7).

y
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Here are some notable values of the trigonometric functions:

6 |0 § 1 5 3 @
sinf | 0 % g % 1
cosf |1 g % % 0 -1
tn6 |0 2 1 V3 - 0
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