
2.6.2 Polynomials and rational functions

A polynomial function is a function of the form

p(x) = anx
n + an�1x

n�1 + · · · + a1x + a0

where a0, a1, . . . , an 2 R are constants and an , 0. The number n is called the
degree of the polynomial, denoted deg(p) = n. The domain is dom(p) = R.

Polynomial functions

Example 2.8: 1. Constant functions: p(x) = c (degree 0).

2. Linear functions: p(x) = ax + b with a , 0 (degree 1).

3. Quadratic functions: p(x) = ax
2 + bx + c with a , 0 (degree 2).

4. Cubic functions: p(x) = ax
3 + bx

2 + cx + d with a , 0 (degree 3).
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Figure 2.13: Examples of polynomial functions

• The sum and product of two polynomials is a polynomial.

• If p has degree n, then p has at most n real roots (zeros).

Properties of polynomials
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A rational function is a quotient of two polynomials:

r(x) =
p(x)
q(x)

where p and q are polynomials with q . 0. If p and q have no common factors
then the domain is

dom(r) = {x 2 R | q(x) , 0}.

Rational functions
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2.6.3 Exponential and logarithmic functions

For a > 0, a , 1, the exponential function with base a is

f (x) = a
x

with dom( f ) = R and im( f ) = (0,+1). The most important case is a = e,
where e ⇡ 2.71828 . . . is Euler’s number. We write

exp(x) = e
x.

The exponential function
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For a > 0, a , 1:
• a

x is strictly increasing if a > 1 and strictly decreasing if 0 < a < 1.

• a
0 = 1 for all a > 0.

• a
x > 0 for all x 2 R.

Properties of exponential functions

For a, b > 0 and x, y 2 R:

a
x · ay = a

x+y
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Algebraic rules for exponentials
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Figure 2.14: Exponential functions with di↵erent bases

For a > 0, a , 1, the logarithm with base a is the inverse of a
x:

f (x) = log
a
(x)

with dom( f ) = (0,+1) and im( f ) = R. The most important case is a = e, called
the natural logarithm:

ln(x) = log
e
(x).

The logarithmic function
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For a > 0, a , 1:
• log

a
(x) is strictly increasing if a > 1 and strictly decreasing if 0 < a < 1.

• log
a
(1) = 0 and log

a
(a) = 1 for all a > 0, a , 1.

• log
a
(ax) = x for all x 2 R and a

log
a
(x) = x for all x > 0.

Properties of logarithms

For a > 0, a , 1, and x, y > 0:

log
a
(xy) = log

a
(x) + log

a
(y)

log
a
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= log

a
(x) � log

a
(y)

log
a
(xr) = r log

a
(x) for r 2 R

log
a
(x) =

log
b
(x)

log
b
(a)

(change of base)

Algebraic rules for logarithms
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Figure 2.15: Logarithmic functions with di↵erent bases
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2.6.4 Trigonometric functions and their inverses

The sine and cosine functions are defined as

f (x) = sin(x), g(x) = cos(x)

with dom( f ) = dom(g) = R and im( f ) = im(g) = [�1, 1]. Both functions are
periodic with period 2⇡.

Sine and cosine
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The other trigonometric functions are defined in terms of sine and cosine:

tan(x) =
sin(x)
cos(x)

dom(tan) = R \
⇢⇡

2
+ k⇡ | k 2 Z

�

cot(x) =
cos(x)
sin(x)

dom(cot) = R \ {k⇡ | k 2 Z}

sec(x) =
1

cos(x)
dom(sec) = R \

⇢⇡
2
+ k⇡ | k 2 Z

�

csc(x) =
1

sin(x)
dom(csc) = R \ {k⇡ | k 2 Z}

Other trigonometric functions
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sin2(↵) + cos2(↵) = 1

tan2(↵) + 1 = sec2(↵)

1 + cot2(↵) = csc2(↵)
sin(↵ ± �) = sin(↵) cos(�) ± cos(↵) sin(�)
cos(↵ ± �) = cos(↵) cos(�) ⌥ sin(↵) sin(�)

sin(2↵) = 2 sin(↵) cos(↵)

cos(2↵) = cos2(↵) � sin2(↵) = 2 cos2(↵) � 1 = 1 � 2 sin2(↵)
sin(�↵) = � sin(↵) (sine is odd)
cos(�↵) = cos(↵) (cosine is even)

sin(↵) � sin(�) = 2 cos
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Fundamental trigonometric identities

The inverse trigonometric functions are defined by restricting the domains
appropriately:
• arcsin : [�1, 1]! [�⇡2 , ⇡2 ] is the inverse of sin restricted to [�⇡2 , ⇡2 ].

• arccos : [�1, 1]! [0,⇡] is the inverse of cos restricted to [0,⇡].

• arctan : R! (�⇡2 , ⇡2 ) is the inverse of tan restricted to (�⇡2 , ⇡2 ).

Inverse trigonometric functions
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Here are some notable values of the trigonometric functions:
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