where the function Id is defined as follows:

The identity function

Id is the identity function that can be defined on any subset:

Id4(x) = x, Vx € A.

Here A could be a subset of any set.

\ J

Proposition 2.3: Let f: X = Yand g: Y — Z both be one-to-one functions. Then
(g0 f) " =fTog™.

Proof. First, we show that g o f is one-to-one, so its inverse exists. Let x1,x; € X with
(g0 f)x1) = (go f)(x2). Then g(f(x1)) = g(f(x2)). Since g is one-to-one, f(x1) = f(x2).
Since f is one-to-one, x; = xp. Thus g o f is one-to-one.

Now we show (go f)™! = f1og¢g™l. Letz € dom((go f)™!) = im(g o f). Then
there exists a unique x € X such that (g o f)(x) = z, and (g o f)"}(z) = x. We have
g(f(x)) = z,s0 f(x) = g 4(z), and thus x = f~1(g71(z)) = (f' o g 1)(z). Therefore
(0 /)1 = (f o g)(2) forall z € dom((g o f)°Y). 0

Lemma 2.4: Let f,¢: R — R. Then:

f, g are both monotone increasing = g o f is monotone increasing.

f, g are both monotone decreasing = g o f is monotone increasing.

f, g are monotone of different kinds = g o f is monotone decreasing.
Proof. Exercise. o

Translations, rescalings and reflections

Here we discuss three types of simple functions that might often appear as part of a
composition of functions.

Translations are an important family of functions: they simply ‘move’ the variable x
by some fixed amount. Here is the simple definition. Given a fixed c € R, define the
translation by c, the function . : R — R, as

te(x) =x+c.

Here x is the variable, as always, and the number c is normally called a parameter.
Given some function f : R — R, we see that

(f o te)(x) = f(tc(x)) = f(x +0),
(tc 0 ))(x) = te(f(x)) = flx) +c.

The first function is a shift of the graph of f to the left by c (if ¢ < 0 then the shift is to
the right). The second function is a shift of the graph of f up by c (if ¢ < 0 then the shift
is down).
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Rescalings ‘squeeze’ or ‘stretch’ a function horizontally. Here’s the definition. Given
a fixed ¢ > 0, define the scaling by c, the function s, : R — R, as

Sc(x) = cx.
Composition with some function f : R — RR gives
(f o 5)(x) = f(se(x)) = f(cx).

If 0 < ¢ < 1 then the graph of f is ‘stretched’ by a factor of 1, whereas if ¢ > 1 then the
graph of f is ‘squeezed’ by a factor of c, see Figure 2.8.

fle1x)

fx)

f(c2x)

Figure 2.8: Rescalings of a function f(x) by c; > 1and 0 <cp < 1.

We can also rescale a function vertically. Given a fixed ¢ > 0, define

(Sc 0 f)(x) = sc(f(x) = cf(x).

A constant ¢ > 1 will “stretch’ the graph of the function along the y-axis,and 0 <c <1
will “‘squeeze’ the graph of the function.

Reflection of a function “flips” the graph of a function along the y-axis. Define the
reflection function 7 : R — R as
r(x) = —x.

Then
(f or)(x) = f(r(x)) = f(=x).

Switching the order of composition of the two functions will result in flipping the
graph along the x-axis:

(ro f)(x) = r(f(x)) = —f(x).



2.6 Elementary functions

Even, odd and periodic functions

Even and odd functions

Let f : dom(f) € R — R and assume that if x € dom(f) then also —x € dom(f).
We say that f is even if

f(x) = f(—x), VYx € dom(f).

We say that f is odd if

fx) =—f(-x), Vx € dom(f).

Periodic functions

A function f : dom(f) € R — R s said to have period p > 0 if Yx € dom(f),
{x+np | neZ} Cdom(f)and if

f(x) = f(x+np), Vx € dom(f), Vn € Z.

NN

\/ VIRV,

Figure 2.9: Examples of an even function (left), an odd function (middle), and a periodic
function (right).

2.6.1 Powers



Non-negative integer powers

Power functions ~

A (non-negative integer) power function is a function of the form

flx) =", n € N.

The domain is dom(f) = R for all n € IN.

\ J

~

e Ifniseven, then f(x) = x" is an even function: f(—x) = (-x)" = x" = f(x).

e If n is odd, then f(x) = x" is an odd function: f(—x) = (—x)" = —x" =

—f().
e Forn >1, f(x) = x" is strictly increasing on [0, +o0).

e For even n > 2, f(x) = x" is strictly decreasing on (—oo,0] and strictly
increasing on [0, +00).

e Foroddn > 1, f(x) = x" is strictly increasing on R.

Figure 2.10: Even powers (left) and odd powers (right)



Positive rational powers

m ]

The power function f(x) = x'/7 where g € {2,3,...} is called the gth root of x
and is denoted

R q is odd
[0, +00) giseven

flx) = Ux, dom(f) = {

It is the inverse function of y = x1.

7
\.

y
iy Y
i x
{x /x
X X

Figure 2.11: Roots with even index (left) and odd index (right)

Positive rational power N

p -
=1
qS

Let p,q € N have no common divisors. A power function x” with r =
defined as follows:

R g is odd
[0, +00) giseven

fo)=x ===,  dom(f) = {

7
\.

Positive irrational powers
It is not obvious how to define an irrational power. For instance, what is the meaning

of
n‘/z =7



Since we know that V2 = 1.414213562--- we can define the number 7 V2 to be the
number that we approach by taking better and better approximations of V2:

1.4
1.41
1.414
1.4142

1.41421

4 3 3 3 3 A

1.414213

V2

Tt

However this is not a priori simple. We skip this important problem in this course.

Positive irrational power

A power function x° with s € R, \ Q is defined as the ‘limit” of x” where r € Q
and r approaches s. The domain is [0, +00).

Negative powers

Negative power functions N

e For n € N, the negative power function is

flx)y=x"= 1 dom(f) = R\ {0}.

X’

e Forr= g € Q (with p, g € N having no common divisors)

f@=x"=2= (0,+0) giseven

1 _JR\{0} gisodd
W, dom(f) = {

e Fors € R; \ Q the negative power function is

f=r*==,  dom(f)=(0,+e)




Figure 2.12: Negative powers with even exponent (left) and odd exponent (right)

Properties of negative integer powers ‘

e Forn € Ny, f(x) = x7" is strictly decreasing on (0, +o0) and on (—oo, 0).
e If niseven, f(x) = x™" is an even function.

e If nis odd, f(x) = x™" is an odd function.

Properties of real powers

Forx>0and7r,s € R:
e f(x) = x" is strictly increasing on (0, +o0) if r > 0.

o ¥ - x5 =yt

o L —x

PY (xr)s — xT‘S

e For 0 < r <1, the function x” is concave (bends downward).

e For r > 1, the function x” is convex (bends upward).
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