
where the function Id is defined as follows:

Id is the identity function that can be defined on any subset:

IdA(x) = x, 8x 2 A.

Here A could be a subset of any set.

The identity function

Proposition 2.3: Let f : X! Y and g : Y! Z both be one-to-one functions. Then

(g � f )�1 = f
�1 � g

�1.

Proof. First, we show that g � f is one-to-one, so its inverse exists. Let x1, x2 2 X with
(g � f )(x1) = (g � f )(x2). Then g( f (x1)) = g( f (x2)). Since g is one-to-one, f (x1) = f (x2).
Since f is one-to-one, x1 = x2. Thus g � f is one-to-one.

Now we show (g � f )�1 = f
�1 � g

�1. Let z 2 dom((g � f )�1) = im(g � f ). Then
there exists a unique x 2 X such that (g � f )(x) = z, and (g � f )�1(z) = x. We have
g( f (x)) = z, so f (x) = g

�1(z), and thus x = f
�1(g

�1(z)) = ( f
�1 � g

�1)(z). Therefore
(g � f )�1(z) = ( f

�1 � g
�1)(z) for all z 2 dom((g � f )�1). ⇤

Lemma 2.4: Let f , g : R! R. Then:

f , g are both monotone increasing ) g � f is monotone increasing.
f , g are both monotone decreasing ) g � f is monotone increasing.

f , g are monotone of di↵erent kinds ) g � f is monotone decreasing.

Proof. Exercise. ⇤

Translations, rescalings and reflections

Here we discuss three types of simple functions that might often appear as part of a
composition of functions.

Translations are an important family of functions: they simply ‘move’ the variable x

by some fixed amount. Here is the simple definition. Given a fixed c 2 R, define the
translation by c, the function tc : R! R, as

tc(x) = x + c.

Here x is the variable, as always, and the number c is normally called a parameter.
Given some function f : R! R, we see that

( f � tc)(x) = f (tc(x)) = f (x + c),
(tc � f )(x) = tc( f (x)) = f (x) + c.

The first function is a shift of the graph of f to the left by c (if c < 0 then the shift is to
the right). The second function is a shift of the graph of f up by c (if c < 0 then the shift
is down).
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Rescalings ‘squeeze’ or ‘stretch’ a function horizontally. Here’s the definition. Given
a fixed c > 0, define the scaling by c, the function sc : R! R, as

sc(x) = cx.

Composition with some function f : R! R gives

( f � sc)(x) = f (sc(x)) = f (cx).

If 0 < c < 1 then the graph of f is ‘stretched’ by a factor of 1
c
, whereas if c > 1 then the

graph of f is ‘squeezed’ by a factor of c, see Figure 2.8.

x

y

f (x)
f (c1x)

f (c2x)

Figure 2.8: Rescalings of a function f (x) by c1 > 1 and 0 < c2 < 1.

We can also rescale a function vertically. Given a fixed c > 0, define

(sc � f )(x) = sc( f (x)) = c f (x).

A constant c > 1 will ‘stretch’ the graph of the function along the y-axis, and 0 < c < 1
will ‘squeeze’ the graph of the function.

Reflection of a function ‘flips’ the graph of a function along the y-axis. Define the
reflection function r : R! R as

r(x) = �x.

Then
( f � r)(x) = f (r(x)) = f (�x).

Switching the order of composition of the two functions will result in flipping the
graph along the x-axis:

(r � f )(x) = r( f (x)) = � f (x).
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2.6 Elementary functions

Even, odd and periodic functions

Let f : dom( f ) ✓ R! R and assume that if x 2 dom( f ) then also�x 2 dom( f ).
We say that f is even if

f (x) = f (�x), 8x 2 dom( f ).

We say that f is odd if

f (x) = � f (�x), 8x 2 dom( f ).

Even and odd functions

A function f : dom( f ) ✓ R ! R is said to have period p > 0 if 8x 2 dom( f ),
{x + np | n 2 Z} ✓ dom( f ) and if

f (x) = f (x + np), 8x 2 dom( f ), 8n 2 Z.

Periodic functions

x

y

x

y

x

y

Figure 2.9: Examples of an even function (left), an odd function (middle), and a periodic
function (right).

2.6.1 Powers
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Non-negative integer powers

A (non-negative integer) power function is a function of the form

f (x) = x
n, n 2N.

The domain is dom( f ) = R for all n 2N.

Power functions

• If n is even, then f (x) = x
n is an even function: f (�x) = (�x)n = x

n = f (x).

• If n is odd, then f (x) = x
n is an odd function: f (�x) = (�x)n = �x

n =
� f (x).

• For n � 1, f (x) = x
n is strictly increasing on [0,+1).

• For even n � 2, f (x) = x
n is strictly decreasing on (�1, 0] and strictly

increasing on [0,+1).

• For odd n � 1, f (x) = x
n is strictly increasing on R.

Properties
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Figure 2.10: Even powers (left) and odd powers (right)
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Positive rational powers

The power function f (x) = x
1/q where q 2 {2, 3, . . . } is called the qth root of x

and is denoted

f (x) = q
p

x, dom( f ) =

8>><>>:
R q is odd
[0,+1) q is even

It is the inverse function of y = x
q.

qth root

x

y

p
x

4p
x

6p
x

x

y

3p
x

5p
x

Figure 2.11: Roots with even index (left) and odd index (right)

Let p, q 2 N have no common divisors. A power function x
r with r =

p

q
is

defined as follows:

f (x) = x
r = x

p/q = (xp)1/q =
q
p

xp, dom( f ) =

8>><>>:
R q is odd
[0,+1) q is even

Positive rational power

Positive irrational powers

It is not obvious how to define an irrational power. For instance, what is the meaning
of

⇡
p

2 = ?
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Since we know that
p

2 = 1.414213562 · · · we can define the number ⇡
p

2 to be the
number that we approach by taking better and better approximations of

p
2:

⇡1.4

⇡1.41

⇡1.414

⇡1.4142

⇡1.41421

⇡1.414213

...

⇡
p

2

However this is not a priori simple. We skip this important problem in this course.

A power function x
s with s 2 R+ \Q is defined as the ‘limit’ of x

r where r 2 Q
and r approaches s. The domain is [0,+1).

Positive irrational power

Negative powers

• For n 2N+ the negative power function is

f (x) = x
�n =

1
xn
, dom( f ) = R \ {0}.

• For r =
p

q
2 Q (with p, q 2N+ having no common divisors)

f (x) = x
�r =

1
q
p

xp
, dom( f ) =

8>><>>:
R \ {0} q is odd
(0,+1) q is even

• For s 2 R+ \Q the negative power function is

f (x) = x
�s =

1
xs
, dom( f ) = (0,+1).

Negative power functions
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Figure 2.12: Negative powers with even exponent (left) and odd exponent (right)

• For n 2N+, f (x) = x
�n is strictly decreasing on (0,+1) and on (�1, 0).

• If n is even, f (x) = x
�n is an even function.

• If n is odd, f (x) = x
�n is an odd function.

Properties of negative integer powers

For x > 0 and r, s 2 R:
• f (x) = x

r is strictly increasing on (0,+1) if r > 0.

• x
r · xs = x

r+s

• x
r

xs = x
r�s

• (xr)s = x
rs

• For 0 < r < 1, the function x
r is concave (bends downward).

• For r > 1, the function x
r is convex (bends upward).

Properties of real powers
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