(

Figure 2.4: f(x) = x* and its inverse f~!(x) = v/, defined on x > 0, are mirror images
with respect to the line x = y

Sometimes we want to only look at part of the domain of a function. For example,
in the example above, we looked at f(x) = x? only for x > 0, so that we could look at
its inverse. Otherwise, if we had looked at x € IR, then the preimage of any y > 0 is
{+ V¥, — v} —ie., there is no inverse function. What we did was to restrict f(x) = x? to
x> 0:

Restriction of a function

Let f : X = Y be a function. Let A € dom(f) be a subset of the domain of
f. The restriction of f to A is a ‘new” function f|4 that is defined only on A,
where it is identical to f:

flatA->Y defined as fla(x) = f(x), VxeA.

\.

In Figure 2.4,the blue graph is the graph of the restriction of x* to A = {x e R | x > 0}.

2.4 Monotone functions and sequences

Functions that always increase/decrease are of particular interest because they might
have important applications. For example, when you study thermodynamics you will
see that entropy is a monotone increasing function of time, meaning that our world
always become more disorganized.



Monotone functions f : R — R

Monotone functions f : R - R

A function f : R — R is said to be (monotonically) increasing on I € dom(f)
if for every x1, xo € [ with x; < xp we have f(x1) < f(xp):

VYx1,x €1, x1<xp = f(x1) < f(xo).
The function f is said to be strictly increasing on I if
Vx1,x €1, x1<x2 = f(x1) < f(x2).

Similarly, f is said to be (monotonically) decreasing on I if for every xq,xp € I
with x1 < xp we have f(x1) > f(xp):

Vxp,xmel,  m<x = f(x)2 flx)
The function f is said to be strictly decreasing on I if

Vx1,x €1, x1<x2 = f(x1)> f(x2).

y1 = f(x1)
Y2 = f(x2) y2 = f(x2)

y1 = f(x1)

Figure 2.5: An increasing function (left) and a decreasing function (right)

Note that monotonically increasing/decreasing functions are allowed to have slope
0 and even to remain constant. So a constant function f(x) = c is (trivially) both
monotone increasing and monotone decreasing. Step functions such as f(x) = [x] or
f(x) = [x] are monotonically increasing (but not decreasing).

Example 2.4: 1. f(x) = cis monotonically increasing and decreasing.
2. f(x) = x? is neither increasing nor decreasing on RR.
3. f(x) = x? is strictly increasing on [0, +00).

4. f(x) = x? is strictly decreasing on (—oo, 0].
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5 f(x) = x3 is strictly increasing on RR.

forx <0 s .
is monotonically increasing on IR, and it is strictly increasing
x- forx>0

on [0, +00).

6. f(x) = {02

Proposition 2.1: A function that is strictly increasing/decreasing on its domain is
injective (one-to-one).

Proof. Consider first the case that f : dom(f) € R — IR is strictly increasing on
dom(f). Let x1,x2 € dom(f) with x; # xo. Without loss of generality x; < x3, so that
f(x1) < f(x2). In particular, f(x1) # f(x2), so that f is injective. The case of a strictly
decreasing function follows the same idea of proof. |

% % % The converse statement —i.e. that an injective function is strictly monotone
—is not true, see Figure 2.6 for a counterexample.

Yy

f(x) =

O R | =

(0,0)

Figure 2.6: A one-to-one function that is neither increasing nor decreasing

Lemma2.2: Let f,g: R — R be monotonically increasing on some A C R. Then f +¢
is also monotonically increasing on A. If either f or g are strictly increasing on A, then
sois f + g. The same statements hold if we replace everywhere the word ‘increasing’
with the word ‘decreasing’.

Proof. Exercise. O



Monotone sequences

s )

A sequence g, is said to be (monotonically) increasing on {N,N +1,...} if
Vn >N, ay < -

A sequence g, is said to be strictly increasing on {N,N + 1, ...} if
Vn >N, Ay < Ay

A sequence g, is said to be (monotonically) decreasing on {N,N +1,...} if
Vn >N, Ay = Ay

A sequence g, is said to be strictly decreasing on {N,N + 1, ...} if

Vn >N, Ay > Ay

\ J

Example 2.5: 1. The sequence a, = 2, n € N, is strictly decreasing.
2. The sequence a, = -5, n € N is strictly increasing.

3. The sequence a, = (—1)", n € N is neither increasing nor decreasing.

2.5 Composition of functions

The composition of functions —i.e. the application of two (or more) functions succes-
sively — is something that often comes up in mathematics and its applications.

Example 2.6 (Taxi fare): Suppose that the fare for riding a taxi is made of a flat fee
of 3 Euros plus twice the distance travelled (in kilometers). So the fee for riding x
kilometers is:

f(x) =2x+3.
Now, suppose that a card payment carries a 5% surcharge of the total fare:
8(y) = 1.05y.

So, if we travel x kilometers, and want to pay by card, the total amount to pay is:
g(f(x)) = 1.05(2x + 3) = 2.1x + 3.15

This is a composition of functions.



Let X,Y,Zbesetsand let f : X —» Yand g : Y — Z be two functions. The
composition of f and g is a new function /1 : X — Z defined as

h(x) = g(f(x)).
It is denoted by I = g o f so we can also write h(x) = (g o f)(x).

h=gof
= 8(f(%)

X Y Z
Figure 2.7: Composition of functions h(x) = g(f(x))

The domain of & is defined as follows:
x € dom(h) =3 x €dom(f) and f(x) € dom(g).

Example 2.7: 1. If f(x) = x%, g(y) = vy -3, then h(x) = g(f(x)) = x* - 3, and
dom(h) = dom(f).

2. If f(x) =¢*, g(y) = —y, then h(x) = g(f(x)) = —e*, and dom(h) = dom(f).
3. If f(x) = —x, g(y) = €Y, then h(x) = g(f(x)) = e, and dom(h) = dom(f).

£7F f(x) = VR, g(y) = 12, then h(x) = g(f(x)) = (VB2 = x, and dom(f) = dom(f) =
[0, +00).

5. If f(x) = %%, g(y) = VY, then h(x) = g(f(x)) = Va2 = |x|, and dom(h) = dom(f) =
R.

6. If f(x) = Jl—c,g(y) = siny, thenh(x) = g(f(x)) = sin %,and dom(h) = dom(f) = R\{0}.
7. If f(x) =sinx, g(y) = i, then h(x) = g(f(x)) = ﬁ, and dom(h) # dom(f). In this
case dom(h) is all x € R s.t. sinx # 0.

These examples show us that the composition of functions is not a commutative
operation:

fog#gof.
We can also see that a function and its inverse ‘cancel” one another. More precisely,
if f is one-to-one (and therefore f~! exists) then

fof T =Mdoomsy =Idimyp  and [T o f=Tdaom(p)
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