
Chapter 2

Functions

2.1 Definitions and examples

Let X and Y be two sets. A function f from X to Y is a rule that associates to
any element x 2 X at most one element y 2 Y. The subset of elements in X to
which f associates an element in Y is called the domain of f and is denoted
dom( f ). We write

f : dom( f ) ✓ X! Y.

For x 2 dom( f ), the element y 2 Y associated to it by f is called the image of

x under f and is denoted y = f (x). We often write

f : x 7! f (x).

The subset of Y of all images of elements in X is called the range of f and is
denoted:

im( f ) = {y 2 Y | 9x 2 dom( f ), y = f (x)}.
If Y = R we say that the function f is real-valued. Finally, the graph of f is
the following subset of the Cartesian product X ⇥ Y:

�( f ) = {(x, f (x)) 2 X ⇥ Y | x 2 dom( f )}.

Definition

Here is an example of how we can visualize these properties:
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Example 2.1: Some notable examples for f : R! R include:

1. Linear functions: f (x) = ax where a 2 R, a , 0. The graph is a straight line through
the origin with slope a (the line cannot be vertical).

2. A�ne functions: f (x) = ax + b where a, b 2 R, a , 0. The graph is a straight line
through the point (0, b) with slope a (the line cannot be vertical).

3. Quadratic functions: f (x) = ax
2 + bx + c where a, b, c 2 R, a , 0. The graph is a

parabola.

4. Square root: f (x) =
p

x. This is the first function mentioned here whose domain
is not R: dom(p ) = {x 2 R | x � 0}.

5. Absolute value:

f : R! R, f (x) = |x| =
8>><>>:

x if x � 0
�x if x < 0

6. Sign function:

f : R! Z, f (x) = sign(x) =

8>>>><>>>>:

1 if x > 0
0 if x = 0
�1 if x < 0

7. Ceiling (‘rounding up’):

f : R! Z, f (x) = dxe = smallest n 2 Z s.t. n � x.

8. Floor (‘rounding down’):

f : R! Z, f (x) = bxc = greatest n 2 Z s.t. n  x.
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Sequences

A sequence of real numbers a0, a1, a2, . . . can be viewed as a function f : dom( f ) ✓N!
R, where f (n) = an for all n 2 dom( f ).

We start with the graph of the sequence an = (�1)n, n 2N. This sequence is simply

given by (�1)n =

8>><>>:
1 when n is even
�1 when n is odd

and looks as follows:

n

an = (�1)n

0 1 2 3 4 5 6 7

-1

1

Here is the graph of an =
n

n+1 , n 2N:

n
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n
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1

Here is the graph of an =
1
n

, with the smaller domain n 2N+:

n
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3

We normally denote a sequence a0, a1, . . . as

{an}1n=0 = a0, a1, . . .

If the sequence has a lower index n1 and an upper index n2 > n1, this becomes

{an}n2
n=n1
= an1 , an1+1, . . . , an2�1, an2

2 – 24



2.2 Range and pre-image

Let f : X! Y and let A ✓ X. The image of A under f is the subset of Y

f (A) = { f (x) | x 2 A} ✓ im( f ) ✓ Y.

Let y 2 Y. The pre-image of y under f is the subset of X

f
�1(y) = {x 2 X | f (x) = y} ✓ dom( f ) ✓ X.

Let B ✓ Y. The pre-image of B under f is the subset of X

f
�1(B) = {x 2 X | f (x) 2 B} ✓ dom( f ) ✓ X.

Definitions

Notice that

• f (X) = im( f ).

• It is possible that f
�1(y) or that f

�1(B) are empty. For example, for f (x) = x
2,

f
�1(�5) = ; and f

�1([�4,�2]) = ;.

Example 2.2: Here are some examples of functions R! R:

1. Let f be given by f (x) = 2x. Let A = (a, b), where a < b. Then f (A) = (2a, 2b). For
any y 2 R, f

�1(y) = y

2 .

2. Let f be given by f (x) = 4. Then for any non-empty A ✓ R, f (A) = {4}. Moreover,
f
�1(4) = R, while f

�1(y) = ; for any y , 4.

3. Let f (x) = sign(x). Then f ([0, 1]) = {0, 1}, and f
�1(�1) = R�. Note that f (0) = 0,

and f ({0}) = {0}.

4. Let f (x) =
p

x. Then f ((1, 4)) = (1, 2), f
�1([1, 2]) = [1, 4], f

�1(�1) = ;.

x

y
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1

2

f (x) =
p

x

(1, 1)

(4, 2)

5. For f (x) = sin x, we can see that f
�1([1

3 ,
2
3]) is the union of infinitely many intervals.
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1 y = sin x

We can now talk about the supremum, infimum, maximum and minimum of the
image of various sets under a real-valued function f :

Let f : X ! R be a real-valued function. Let A ✓ dom( f ). The supremum of

f on A is the supremum of the image of A under f :

sup
A

f = sup
x2A

f (x) = sup{ f (x) | x 2 A}.

Similarly, the infimum of f on A is the infimum of the image of A under f :

inf
A

f = inf
x2A

f (x) = inf{ f (x) | x 2 A}.

Supremum and infimum of a real-valued function

As we have already seen, the supremum can be an element of R [ {+1} and the
infimum can be an element of {�1} [R.

If sup
x2A

f (x) < +1 (i.e. it is a real number), we say that f is bounded from

above on A. If infx2A f (x) > �1 (i.e. it is a real number), we say that f is
bounded from below on A. If f is bounded from above and below on A, we
say that it is bounded on A.

Boundedness of a real-valued function

If sup
x2A

f (x) < +1 and it belongs to f (A) then it is the maximum of f on A.
It is denoted

max
A

f or max
x2A

f (x).

If infx2A f (x) > �1 and it belongs to f (A) then it is the minimum of f on A. It
is denoted

min
A

f or min
x2A

f (x).

Maximum and minimum of a real-valued function

Since the minimum and the maximum of f on A belong to f (A), there exist xm 2 A and
xM 2 A such that

f (xM) = max
A

f and f (xm) = min
A

f .
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