
1.6 Factorials and binomial coe�cients

Here we briefly discuss notions that arise in mathematical fields such as Discrete Math-

ematics, Combinatorics and Probability. The most basic problem is as follows. Consider
the set X of n students

X = {Andrea,Marta, Jim,Victoria, . . . ,Caterina
|                                                  {z                                                  }

n students

}

As this is a set, there is no importance for the ordering of the students. We could
express X also as

X = {Caterina,Marta,Victoria,Andrea, . . . , Jim.}

However, the elements of X (the n students) are all distinct, and we often care about
their ordering. can ask two natural questions:

1. In how many ways can we order the n students? Above we have seen two
examples of how to order (or permute) the students. There is a simple formula that
gives us the number of permutations:

• We start by choosing the first student. There are n students in total, hence we
have n students to choose from.

• Next, we want to choose the second student to appear in our ordering. We have
already chosen one student, so there are only n � 1 students left to choose from.

• For the third student we have n � 2 students to choose from.

• And so on.....

• For the (n � 1)st student we have two students to choose from.

• For the nth student we no longer have a choice.

Hence, we find that the number of possible permutations of n elements is

n · (n � 1) · (n � 2) · · · · · · 2 · 1.

Since this is an important formula, it has its own special symbol:

n! = n · (n � 1) · (n � 2) · · · · · · 2 · 1

which is called n factorial. We also define

0! = 1.

n factorial
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2. In how many ways can we choose k students of the n students? Repeating the
same argument as above, we have

• n options for the first student,

• n � 1 options for the second student,

• n � 2 options for the third student,

• and so on....

• n � (k � 1) = n � k + 1 options for the kth student.

So we get
n · (n � 1) · (n � 2) · · · · · · (n � k + 2) · (n � k + 1).

We observe that this expression can be simplified:

n · (n � 1) · (n � 2) · · · (n � k + 1) =
n · (n � 1) · (n � 2) · · · 2 · 1

(n � k) · (n � k � 1) · (n � k � 2) · · · 2 · 1 =
n!

(n � k)!

Now we make an important observation: the ordering of the k students does not matter

for us. So, for example if k = 2, there is no di↵erence for us between {Jim, Victoria}
and {Victoria, Jim}. So we need to eliminate such repetitions. But these repetitions are
precisely the number of possible permutations of k elements, which we have seen: it
is k!. Hence we need to divide the above formula by this number.

The number of possible ways to choose k elements from a total of n elements
(where 0  k  n) is called n choose k and is denoted

 
n

k

!
=

n!
k!(n � k)!

This is also called the binomial coe�cient.

n choose k

It turns out that these coe�cient satisfy certain recursive relations (that is, one can
compute

�
n

k

�
from knowledge of

�
n�1

j

�
for all 0  j  n� 1). The simple way to visualize

this is through Pascal’s triangle, whose first eight lines look as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
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If we let n denote the line number (starting from 0) and k denote the position of a given
number (also, starting from 0) within a line, then the number appearing in the triangle
is precisely

�
n

k

�
. Hence, for instance,

1 =
 
0
0

!
=

 
n

0

!
=

 
n

n

!

for all n 2N, and

n =

 
n

1

!
=

 
n

n � 1

!

for all n 2N+. Some other specific examples are

6 =
 
4
2

!
, 10 =

 
5
2

!
=

 
5
3

!
, 35 =

 
7
3

!
=

 
7
4

!
.

Exercise 1.1: Can you see the pattern?

For any n 2N and a, b 2 R, there holds Newton’s binomial formula:

(a + b)n = a
n + na

n�1
b + · · · +

 
n

k

!
a

n�k
b

k + · · · + nab
n�1 + b

n

Newton’s binomial formula

Exercise 1.2: Prove Newton’s binomial formula.
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Let n,N 2 Zwith N � n. Let cn, . . . , cN 2 R. Then the expression

NX

k=n

ck

is a concise way to write the sum

cn + · · · + cN.

The integers n and N are known as the lower and upper limits of summation,
respectively. The subscripts n, . . . ,N are called the indices. The numbers ck

(k = n, . . . ,N) are called the summands. The summation can also be denoted:

NX

k=n

=
X

k2{n,...,N}

indicating that the summation is over the set of integer indices {n, . . . ,N}. The
symbol k is known as the summation index and it is a dummy variable:
this means that it can be replaced by any other symbol without changing the
meaning of the expression:

NX

k=n

ck =
NX

j=n

cj =
NX

m=n

cm =
NX

?=n

c? =
NX

|=n

c|

Summation notation

The summation notation allows us to simplify the expression for Newton’s binomial
formula:

(a + b)n =
nX

k=0

 
n

k

!
a

n�k
b

k.
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