
Note that in the above definition, we defined the supremum and the infimum, implying
that these two numbers are unique. A priori, that is not obvious (even though it is true).
It requires a proof.

Proposition 1.7: For any subset A ✓ R, there are unique elements `, s 2 {�1} [ R [
{+1} such that ` = inf A and s = sup A.

Proof. Exercise. Hint: prove it by contradiction. ⇤

It is very important to remember that for a subset A ✓ R, its supremum and
its infimum might not belong to it. We have seen it with A4 above: its infimum
is 0, yet 0 < A4. For A2 = N, the supremum is +1, which isn’t a number, and
in particular isn’t an element of A2.

The supremum and the infimum might not belong to the set!

Keeping in mind the preceding comment, in the case that the supremum and/or
infimum do belong to the set we give them another name:

Let A ⇢ R be a subset. If sup A 2 A then we say that the supremum is attained,
and it is called the maximum of A and denoted

max A.

Similarly, if inf A 2 A then we say that the infimum is attained, and it is called
the minimum of A and denoted

min A.

Maximum and minimum

1.3.3 The cardinality of subsets of R
The cardinalty of a set A is a measure of its size. The cardinality of a set containing finitely
many elements is simply the number of elements: the cardinality of A = {�11, 600,

p
17}

is 3. The cardinality of the set B = {Giulia, Sam, Amelia} is also 3. The concept of
cardinality becomes more delicate when dealing with sets containing infinitely many
elements.

A subset A ✓ R is said to be countable if it is possible to enumerate all its
elements.

Countable sets

Example 1.5: 1. Any set with finitely many elements is countable.
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2. The setN+ = {1, 2, 3, . . . } is trivially countable: we assign to the element 1 2 N+
the number 1, to the element 2 2N+ the number 2, and so on.

3. The setsN,Z are also countable. The set of even natural numbers is also count-
able. Can you prove it?

Proposition 1.8: The set Q of rational numbers is countable.

Proof. To prove that a set is countable we need to demonstrate that we can enumerate
its elements. All non-zero rational numbers are of the form ±p

q
where p, q 2N+. These

can be organized in a table as follows:

±1
1 ±2

1 ±3
1 ±4

1 · · ·

±1
2 ±2

2 ±3
2 ±4

2 · · ·

±1
3 ±2

3 ±3
3 ±4

3 · · ·

±1
4 ±2

4 ±3
4 ±4

4 · · ·

...
...

...
...

. . .

The first row contains all rationals with q = 1, the second row contains all rationals
with q = 2, and so on. At the same time, the first column contains all rationals with
p = 1, the second column contains all rationals with p = 2, and so on. Thus every
non-zero rational appears within this table. In fact, every non-zero rational appears
infinitely many times in this table, because for every ±p

q
, the table also contains ±2p

2q
,

±3p

3q
, and so on.
The arrows in the table demonstrate a strategy for enumerating the rationals. Since

0 doesn’t appear in the table, we start by counting it: we assign to it the number 1.
Then we enumerate the elements ±1

1 to which the numbers 2 and 3 are assigned. Next
we move on to ±2

1 to which the numbers 4 and 5 are assigned. Then ±1
2 , to which 6 and

7 are assigned, ±1
3 to which 8 and 9 are assigned, ±2

2 to which 10 and 11 are assigned,
and so on. Eventually to every rational will be assigned a natural number, completing
the proof. ⇤

Theorem 1.9: The set R of real numbers if not countable.

Proof. The following proof, by contradiction, due to Georg Cantor, goes back to the late
19th century. It’s enough to just look at the real numbers between 0 and 1. Each
x 2 (0, 1) has a decimal representation:

x = 0. a1 a2 a3 a4 a5 . . . . . . where ai 2 {0, 1, . . . , 9} for every i 2N+.

Suppose, by contradiction, that the real numbers in (0, 1) were countable. Then we can
enumerate all x 2 (0, 1). Let’s enumerate them as r1, r2, . . . , rn, . . . . Each of these has a
decimal representation: rn = 0 . cn,1 cn,2 cn,3 cn,4 . . . . . . Let’s write the following table,
with r1 on the first line, r2 on the second, and so on:
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r1 = 0. c1,1 c1,2 c1,3 c1,4 c1,5

r2 = 0. c2,1 c2,2 c2,3 c2,4 c2,5

r3 = 0. c3,1 c3,2 c3,3 c3,4 c3,5

r4 = 0. c4,1 c4,2 c4,3 c4,4 c4,5

r5 = 0. c5,1 c5,2 c5,3 c5,4 c5,5

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
. . .

c1,1

c2,2

c3,3

c4,4

c5,5

Remember that each digit ci, j is an integer between 0 and 9. Let’s now look at the
numbers ci,i on the diagonal. Consider a real number between 0 and 1 defined as:

r = 0. d1 d2 d3 d4 d5 . . . . . . where di , ci,i 8i 2N+.
Then

r , r1 since the first digit in their expansions is di↵erent
r , r2 since the second digit in their expansions is di↵erent
r , r3 since the third digit in their expansions is di↵erent

...

r , rn since the nth digit in their expansions is di↵erent
...

Hence r isn’t equal to any of the reals that have been enumerated. However, that is a
contradiction to the assumption that all reals in (0, 1) have been enumerated. ⇤

This method of proof is called a diagonal argument, and has become an important
technique for proving various results in the years since Cantor introduced it.

1.4 Cartesian product

Let X and Y be two nonempty sets. Then we define an ordered pair to be

(x, y)

where x 2 X and y 2 Y. The set of all ordered pairs from X and Y is called the
Cartesian product of X and Y and is denoted X ⇥ Y:

X ⇥ Y = {(x, y) | x 2 X, y 2 Y}.

When X = Y we often write X
2 rather than X ⇥ X.

Ordered pairs and Cartesian product
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The order of elements in an ordered pair is important: the first component belongs to X

and the second component belongs to Y. Thus, the ordered pair (x, y) is fundamentally

di↵erent from the set {x, y}.
Example 1.6: 1. One of the most important examples of a Cartesian product, which

we will often use, is that of the plane R2. This is the set of all ordered pairs of
real numbers:

R2 = R ⇥R = {(x, y) | x, y 2 R}.
This is called the Cartesian plane.

2. A practical example is that of latitude and longitude: we can describe points on
Earth in terms of their angle north/south of the equator, and east/west relative
to a chosen Prime Meridian (a big circle connecting the North and South poles).
Normally this is chosen to be the Greenwich Meridian, passing through the
Royal Observatory in Greenwich, England (this choice dates back to 1851). In
this system, the Colosseum, for instance, is located at (41.8902�N, 12.4922�E).

An ordered pair need not be limited to two components. One can have n elements
from n sets, where n 2N:

(x1, x2, . . . , xn), xi 2 Xi, i = 1, . . . ,n.

This is called an n-tuple. Then the Cartesian product involves the sets X1, . . . ,Xn:

X1 ⇥ X2 ⇥ · · · ⇥ Xn.

If Xi = X for all i = 1, . . . ,n, then we simply write X ⇥ X ⇥ · · · ⇥ X = X
n.

1.5 Relations in the Cartesian plane

In the Cartesian plane (we will simply call it the plane) R2 we typically denote the first
coordinate by x and the second by y. We can describe subsets of R2 by equations and
inequalities involving x and y. This is best understood using some examples:

Example 1.7: Sets described by equations:

1. The equation y = 0 describes the x-axis.

2. The equation x = 0 describes the y-axis.

3. The equation x = y describes the line through the origin with slope 1.

4. The equation x
2 + y

2 = 1 describes the circle of radius 1 around the origin.

Example 1.8: Sets described by inequalities:

1. The inequality y < 0 describes the lower half plane excluding the x axis.

2. The inequality x � 0 describes the right half plane including the y axis.

3. The inequality x < y describes the half plane to the left of the line through the
origin with slope 1.

4. The inequality x
2 + y

2  1 describes the interior of the circle of radius 1 around
the origin, including its boundary.
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