Absolute value. An important operation that we will frequently encounter is the **absolute value** of a real number *x*:

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

That is, |x| measures the distance of x from 0, regardless of the sign of x. Consequently, we can define the **distance** between $x, y \in \mathbb{R}$ as:

$$|x - y| = \begin{cases} x - y & \text{if } x - y \ge 0 \text{ (i.e., if } x \ge y), \\ -(x - y) = y - x & \text{if } x - y < 0 \text{ (i.e., if } x < y). \end{cases}$$

1.3.2 Bounded sets

The notion of a bounded set is an extension of the notion of an interval:

Bounded sets

• A subset $A \subseteq \mathbb{R}$ is said to be **bounded from above** if $\exists b \in \mathbb{R}$ such that

$$x \le b$$
, for all $x \in A$.

Such a real number *b* is called an **upper bound** for *A*.

• $A \subseteq \mathbb{R}$ is said to be **bounded from below** if $\exists a \in \mathbb{R}$ such that

$$x > a$$
, for all $x \in A$.

Such a real number *a* is called a **lower bound** for *A*.

- *A* is called **bounded** if it is bounded from below and from above.
- If *A* is not bounded from above and not bounded from below, we say that *A* is **unbounded**.

Lower and upper bounds are not unique

It is very important to observe that both lower and upper bounds are not unique: if a is a lower bound for a subset $A \subseteq \mathbb{R}$, then any $y \le a$ is also a lower bound. Similarly, if b is an upper bound for A, then any $z \ge b$ is also an upper bound.

- **Example 1.4:** 1. The subset $A_1 = \{-2, 0.5, 7\}$ is bounded. Any number $a \le -2$ is a lower bound and any number $b \ge 7$ is an upper bound.
 - 2. The subset $A_2 = \mathbb{N}$ is bounded from below but not from above. Any number $a \le 0$ is a lower bound.

- 3. The subset $A_3 = \mathbb{Z}$ is unbounded.
- 4. The subset $A_4 = \{\frac{1}{n} \mid n \in \mathbb{N}_+\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ is bounded. Why? We see that a possible upper bound is 1, which belongs to A_4 . What about a lower bound? The number 0 is a lower bound, however 0 does not belong to A_4 . Below we will see that there is no lower bound that belongs to A_4 .
- 5. The subset $A_5 = \{x \mid |x| > 100\}$ is unbounded.

Let us take a closer look at the lower bound of $A_4 = \{\frac{1}{n} \mid n \in \mathbb{N}_+\}$:

Lemma 1.5: Any lower bound of the set $A_4 = \{\frac{1}{n} \mid n \in \mathbb{N}_+\}$ does not belong to A_4 .

Proof. By contradiction, suppose that $\exists a \in A_4$ such that $a \leq x$ for all $x \in A_4$. Since $a \in A_4$, there exists $N \in \mathbb{N}$ such that $a = \frac{1}{N}$. Observe that $\frac{1}{N+1}$ is also an element of A_4 and $\frac{1}{N+1} < \frac{1}{N} = a$. But this contradicts our assumption that a is a lower bound for A_4 . Hence no element in A_4 can be a lower bound of A_4 . □

In fact, we can prove a stronger statement:

Lemma 1.6: The set $A_4 = \{\frac{1}{n} \mid n \in \mathbb{N}_+\}$ does not have a positive lower bound.

Proof. By contradiction, assume that there exists r > 0 that is a lower bound for A_4 . Define $N = \lceil \frac{1}{r} \rceil$ to be the first integer greater than or equal to $\frac{1}{r}$. Then $N+1>\frac{1}{r}$ and consequently $\frac{1}{N+1} < r$. But $\frac{1}{N+1} \in A_4$, in contradiction to the assumption that r is a lower bound. Hence there is no positive lower bound, and 0 is the *greatest lower bound*. \square

Supremum and infimum

Let $A \subset \mathbb{R}$ be a subset.

• The **supremum** (if exists) of *A* (also called the **least upper bound, l.u.b.**) is the smallest of all upper bounds of *A*. It is denoted

$$s = \sup A$$

and it fulfils the following two conditions:

- 1. $\forall x \in A, x \leq s$
- 2. $\forall r < s \,\exists x \in A \text{ s.t. } x > r.$

If there is no such number, we define $\sup A = +\infty$.

• The **infimum** (if exists) of *A* (also called the **greatest lower bound**, **g.l.b.**) is the largest of all lower bounds of *A*. It is denoted

$$\ell = \inf A$$

and it fulfils the following two conditions:

- 1. $\forall x \in A, x \geq \ell$
- 2. $\forall r > \ell \exists x \in A \text{ s.t. } x < r.$

If there is no such number, we define $\inf A = -\infty$.

Note that in the above definition, we defined *the* supremum and *the* infimum, implying that these two numbers are unique. *A priori*, that is not obvious (even though it is true). It requires a proof.

Proposition 1.7: For any subset $A \subseteq \mathbb{R}$, there are unique elements $\ell, s \in \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$ such that $\ell = \inf A$ and $s = \sup A$.

П

Proof. Exercise. *Hint: prove it by contradiction.*

The supremum and the infimum might not belong to the set!

It is very important to remember that for a subset $A \subseteq \mathbb{R}$, its supremum and its infimum might *not* belong to it. We have seen it with A_4 above: its infimum is 0, yet $0 \notin A_4$. For $A_2 = \mathbb{N}$, the supremum is $+\infty$, which isn't a number, and in particular isn't an element of A_2 .

Keeping in mind the preceding comment, in the case that the supremum and/or infimum *do* belong to the set we give them another name:

Maximum and minimum

Let $A \subset \mathbb{R}$ be a subset. If sup $A \in A$ then we say that the supremum is *attained*, and it is called the **maximum** of A and denoted

 $\max A$.

Similarly, if $\inf A \in A$ then we say that the infimum is *attained*, and it is called the **minimum** of A and denoted

 $\min A$.

1.4 Cartesian product

Ordered pairs and Cartesian product

Let *X* and *Y* be two nonempty sets. Then we define an **ordered pair** to be

where $x \in X$ and $y \in Y$. The set of all ordered pairs from X and Y is called the Cartesian product of X and Y and is denoted $X \times Y$:

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}.$$

When X = Y we often write X^2 rather than $X \times X$.