
Absolute value. An important operation that we will frequently encounter is the
absolute value of a real number x:

|x| =
8>><>>:

x if x � 0,
�x if x < 0.

That is, |x|measures the distance of x from 0, regardless of the sign of x. Consequently,
we can define the distance between x, y 2 R as:

|x � y| =
8>><>>:

x � y if x � y � 0 (i.e., if x � y),
�(x � y) = y � x if x � y < 0 (i.e., if x < y).

1.3.2 Bounded sets
The notion of a bounded set is an extension of the notion of an interval:

• A subset A ✓ R is said to be bounded from above if 9b 2 R such that

x  b, for all x 2 A.

Such a real number b is called an upper bound for A.

• A ✓ R is said to be bounded from below if 9a 2 R such that

x � a, for all x 2 A.

Such a real number a is called a lower bound for A.

• A is called bounded if it is bounded from below and from above.

• If A is not bounded from above and not bounded from below, we say
that A is unbounded.

Bounded sets

It is very important to observe that both lower and upper bounds are not
unique: if a is a lower bound for a subset A ✓ R, then any y  a is also a lower
bound. Similarly, if b is an upper bound for A, then any z � b is also an upper
bound.

Lower and upper bounds are not unique

Example 1.4: 1. The subset A1 = {�2, 0.5, 7} is bounded. Any number a  �2 is a
lower bound and any number b � 7 is an upper bound.

2. The subset A2 = N is bounded from below but not from above. Any number
a  0 is a lower bound.
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3. The subset A3 = Z is unbounded.

4. The subset A4 = { 1n | n 2 N+} = {1, 1
2 ,

1
3 ,

1
4 , . . . } is bounded. Why? We see that

a possible upper bound is 1, which belongs to A4. What about a lower bound?
The number 0 is a lower bound, however 0 does not belong to A4. Below we will
see that there is no lower bound that belongs to A4.

5. The subset A5 = {x | |x| > 100} is unbounded.

Let us take a closer look at the lower bound of A4 = { 1n | n 2N+}:
Lemma 1.5: Any lower bound of the set A4 = { 1n | n 2N+} does not belong to A4.

Proof. By contradiction, suppose that 9a 2 A4 such that a  x for all x 2 A4. Since
a 2 A4, there exists N 2 N such that a = 1

N
. Observe that 1

N+1 is also an element of A4
and 1

N+1 <
1
N
= a. But this contradicts our assumption that a is a lower bound for A4.

Hence no element in A4 can be a lower bound of A4. ⇤

In fact, we can prove a stronger statement:

Lemma 1.6: The set A4 = { 1n | n 2N+} does not have a positive lower bound.

Proof. By contradiction, assume that there exists r > 0 that is a lower bound for A4.
Define N = d1

r
e to be the first integer greater than or equal to 1

r
. Then N + 1 > 1

r
and

consequently 1
N+1 < r. But 1

N+1 2 A4, in contradiction to the assumption that r is a lower
bound. Hence there is no positive lower bound, and 0 is the greatest lower bound. ⇤

Let A ⇢ R be a subset.
• The supremum (if exists) of A (also called the least upper bound, l.u.b.)

is the smallest of all upper bounds of A. It is denoted

s = sup A

and it fulfils the following two conditions:

1. 8x 2 A, x  s,

2. 8r < s9x 2 A s.t. x > r.

If there is no such number, we define sup A = +1.

• The infimum (if exists) of A (also called the greatest lower bound, g.l.b.)
is the largest of all lower bounds of A. It is denoted

` = inf A

and it fulfils the following two conditions:

1. 8x 2 A, x � `,
2. 8r > `9x 2 A s.t. x < r.

If there is no such number, we define inf A = �1.

Supremum and infimum
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Note that in the above definition, we defined the supremum and the infimum, implying
that these two numbers are unique. A priori, that is not obvious (even though it is true).
It requires a proof.

Proposition 1.7: For any subset A ✓ R, there are unique elements `, s 2 {�1} [ R [
{+1} such that ` = inf A and s = sup A.

Proof. Exercise. Hint: prove it by contradiction. ⇤

It is very important to remember that for a subset A ✓ R, its supremum and
its infimum might not belong to it. We have seen it with A4 above: its infimum
is 0, yet 0 < A4. For A2 = N, the supremum is +1, which isn’t a number, and
in particular isn’t an element of A2.

The supremum and the infimum might not belong to the set!

Keeping in mind the preceding comment, in the case that the supremum and/or
infimum do belong to the set we give them another name:

Let A ⇢ R be a subset. If sup A 2 A then we say that the supremum is attained,
and it is called the maximum of A and denoted

max A.

Similarly, if inf A 2 A then we say that the infimum is attained, and it is called
the minimum of A and denoted

min A.

Maximum and minimum

1.4 Cartesian product

Let X and Y be two nonempty sets. Then we define an ordered pair to be

(x, y)

where x 2 X and y 2 Y. The set of all ordered pairs from X and Y is called the
Cartesian product of X and Y and is denoted X ⇥ Y:

X ⇥ Y = {(x, y) | x 2 X, y 2 Y}.

When X = Y we often write X
2 rather than X ⇥ X.

Ordered pairs and Cartesian product
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