Proof by induction N

To prove that a statement p(n) is true for all » > N by induction, we need to
demonstrate two things:

1. that p(N) (the base case) is true,

2. that p(n) being true (the induction assumption) implies p(n + 1) being
true for all n > N.

1.3 Sets of numbers

We have already seen the definitions of the set IN of natural numbers and the set Z of
integers. We further define
N+ =N\ {0}

to be the set of positive integers.

The set Q of rational numbers

We now have the tools to define the set Q as:

Q:{rzg ‘ peZ,qe]l\L}

Any rational number r has infinitely many representations. For example

1 2 3

2 46
Therefore, we normally choose the (unique) representative such that p and g have no
common divisors.
We can also write fractions in base 10 (which is the standard base for us), as

r=+( 10 + 1105 + - 10 + o + 1107 + ¢ 1072 + - +)

where all coefficients cg, ck—1,...,co,c-1,... can assume any of the values 0,1,2,...,9.
Here are some examples:

=+0-10F+---+0-10+0+5-1071+0-102+---) = 0.5,

=14 =—(0-10+---+1-10+4+5-1071+0-1072 +---) = —14.5,

E

2

29 1
2 2
E

3:+(0-1o’<+---+o-10+0+3-10—1+3-10—2+---):o.ﬁ,

where the overline means that the expression repeats itself infinitely:

aay -y = (@18 -+ Ay ) (@102 - Ay ) (@102 - Ay) + -+
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Decimal representation of rational numbers N

Using long division is can be verified that the decimal representation of any
rational number is either finite (as in the example for %) or infinitely repeating
(as in the example for 1). The converse is also true: every number that has a
finite or repeating representation is rational.

The set R of real numbers

The world around us is made up of three space dimensions and one time dimension
which are all continuous. We move through space and time in a continuous fashion.
So, a natural question is whether the rational numbers are enough to describe our
world? For instance, as time elapses from 1pm to 2pm, can all intermediate moments
be described by rational numbers?

The answer turns out to be no. Between 1 and 2, for instance, there exists a number
which is the solution of the equation x> = 2 (we call this number the square root of 2 and

denote it by V2) which is not rational; we normally say that it is irrational.
Lemma 1.4 ( V2isirrational): Thenumber x satisfying the equation x? = 2isirrational.

Proof. We prove this by contradiction. Suppose that there is a rational solution x =

I

2
(with p and g having no common divisors). Then Z—z = 2 so that

2 =22,

Hence p? is even (it is divisible by 2). If p? is even then so is p itself. Hence Ik € N such
that p = 2k (observe that, in fact, k must be positive, otherwise x = 0). We therefore
have (2k)? = 2% which implies that

2k% = ¢%.

It follows that g° is even, and consequently so is g itself. But this means that p and g
have the number 2 as a common divisor, a contradiction. Therefore there is no rational
representation for x. i

The real number line. We can write all rational numbers along a single line, placing

bigger numbers to the right. Since 12 = 1 and 22 = 4, it seems obvious that V2 must lie
between 1 and 2. We have thus found an irrational number between 1 and 2,

1< \/§<2.

Since it is irrational, it has an infinite representation that never repeats. Therefore it is
impossible to exactly write its value. The beginning of its expansion is:

V2 = 1.41421356 - - -



It follows that

14<V2<15
141 <V2 <142
1.414 < V2 < 1.415
1.4142 <V2 < 1.4143

These are sequences of rational numbers to the left and to the right of V2, both of which

tend to V2, but never reach it. So V2 fills a certain gap. Indeed, with the irrational
numbers added, we get a continuous line of increasing numbers, called the real number
line. This property of having a continuous line is called completeness and we say that the
real number line is complete (intuitively, it means that there are no gaps).

Actually, there are many irrationals. It turns out that there are infinitely many ratio-
nals and infinitely many irrationals. They are all intertwined:

e between any two rationals 71 < r;, there are infinitely many irrationals,

e between any two irrationals y; < y» there are infinitely many rationals.

However, there are more irrationals than there are rationals. If we write the set of
real numbers (the real number line) as the (disjoint) union of the rationals and the
irrationals

R =QuU(R\Q)

then both Q and R \ Q are infinite, but R \ Q is ‘bigger’ in a certain sense. This
statement is made rigorous using a mathematical theory called measure theory. It can
be understood intuitively as follows: if a number is chosen randomly between, say, 0
and 1, then it is almost surely an irrational number (in other words, the probability of
choosing a rational number is zero). So within the real number line there are ‘more’
irrationals. However there are also rationals everywhere. We say that the rational
numbers Q are dense within the reals R.

1.3.1 The ordering of real numbers

The real numbers are a totally ordered set: Vx,y € R, one (and only one) of the
following properties holds:

x=y or x<y or x>y.
We often use the following symbols for these important subsets of IR:

R_={xeR | x<0}
R.={xeR | x>0} =R, U{0}



Infinity. It is convenient to introduce a symbol to help us express the fact that there
is no greatest number. We thus introduce the symbol for plus infinity

+00,

which is thought of as an object that is greater than any real number. Similarly, minus
infinity

—00

symbolizes an object that is smaller than any real number. Note that these are not
numbers.

Intervals. The notion of an interval — a part of the real number line — will be very
important:

Leta,b € R with a < b. Then the closed interval between a and b is defined as

[a,b] ={xeR | a<x<b}.
Leta, b € Rwith a < b. Then the open interval between 4 and b is defined as
(@ab)={xeR | a<x<b}

That is, closed intervals include all points between a and b, including 2 and b
themselves. Open intervals do not include the endpoints. The points between
a and b (excluding a and b themselves) are called interior points.

\ J

We can also define intervals that are closed on one end and open on the other. Let
a < b, then

[a,b)={xeR | a<x<b},
(@bl={xeR | a<x<b}

Other important sets are half-lines, which are sets that have a lower/upper limit only
on one side. Here the symbols for plus or minus infinity come in handy:

[a,+00)={xeR | a<x},
(@, +0)={xeR | a<x
(—oo,b]={xeR | x<b},
(—o0,b) ={xeR | x<b}.

The entire real line is often represented as the set of all points that are greater than
—oo and less than +oco:
R = (=00, +00).
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