
Lemma 1.1: For some set X and subsets A,B ✓ X, if A ✓ B and B ✓ A then A = B.

Proof. By contradiction, assume that A , B. Then, without loss of generality, there
exists x 2 X such that x 2 A and x < B. But then it is not true that A ✓ B. The
contradiction assumption must therefore be false, i.e. A = B. ⇤

The elements of a subset A ✓ X can often be characterized by a mathematical
property that they satisfy. This property is denoted p(x), and we write

A = {x 2 X | p(x)}.

For example, if p(x) = ’x is even’, then

A = {x 2N | x is even} = {0, 2, 4, . . . } ✓N.

Characteristic property

• Complement: if A ✓ X then we define its complement to be

A
C = CA = {x 2 X | x < A}.

• Union: for two sets A ✓ X and B ✓ X we define their union to be

A [ B = {x 2 X | x 2 A or x 2 B}

• Intersection: for two sets A ✓ X and B ✓ X we define their intersection

to be
A \ B = {x 2 X | x 2 A and x 2 B}

• Di↵erence: for two sets A ✓ X and B ✓ X we define their di↵erence to be

A \ B = {x 2 X | x 2 A and x < B}

• Symmetric Di↵erence: for two sets A ✓ X and B ✓ X we define their
symmetric di↵erence to be

A�B = (A [ B) \ (A \ B)

• Disjoint Union: for two sets A ✓ X and B ✓ X whose intersection is
empty, we often replace the symbol [ by

A t B or A[̇B

Operations on sets

Lemma 1.2 (Properties of \ and [): For some set X and subsets A,B,C ✓ X the
operations \ and [ satisfy:

1 – 6



1. Boolean properties: A \ A
C = ; and A [ A

C = X.

2. Commutativity: A \ B = B \ A and A [ B = B [ A.

3. Associativity: (A \ B) \ C = A \ (B \ C) and (A [ B) [ C = A [ (B [ C).

4. Distributivity: (A\B)[C = (A[C)\ (B[C) and (A[B)\C = (A\C)[ (B\C).

5. De Morgan laws: (A \ B)C = A
C [ B

C and (A [ B)C = A
C \ B

C.

Proof. We prove the first of the De Morgan laws. The rest is an exercise.
We want to show that two sets are the same: (A \ B)C = A

C [ B
C. To do this, we

will show that the set on the left is contained in (or equal to) the set on the right, and
vice versa. I.e., we shall show that (A \ B)C ✓ A

C [ B
C and (A \ B)C ◆ A

C [ B
C.

(i) To show that (A \ B)C ✓ A
C [ B

C, we note the following implications:

x 2 (A \ B)C

+
x < A \ B = {y 2 X | y 2 A and y 2 B}
+

x < A or x < B

+
x 2 A

C or x 2 B
C.

Since A
C ✓ A

C[B
C and B

C ✓ A
C[B

C, we conclude that necessarily x 2 A
C[B

C. Hence
(A \ B)C ✓ A

C [ B
C.

(ii) Conversely, we can show (A \ B)C ◆ A
C [ B

C. Assume that x 2 A
C [ B

C and by

contradiction, assume that x < (A \ B)C. Then we have the implications:

x < (A \ B)C

+
x 2 A \ B = {y 2 X | y 2 A and y 2 B}
+

x 2 A and x 2 B

+
x < A

C and x < B
C.

But this is in contradiction to the assumption that x 2 A
C [ B

C. Therefore the contra-
diction assumption x < (A \ B)C is not true, hence x 2 (A \ B)C.

We have shown that (A\ B)C ✓ A
C [ B

C and that (A\ B)C ◆ A
C [ B

C, so by Lemma
1.1 the two sets must be equal, completing the proof. ⇤

For a given set X, we define its power set P(X) to be the set of all subsets of X:

P(X) = {A | A ✓ X}.

In particular, ; 2 P(X) and X 2 P(X).

Power set
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1.2 Elements of mathematical logic

The building blocks of mathematical logic are formulas, which can be either true or
false. Here are some examples:

p = ‘Blue is a color’
q = ‘15 is the square of a natural number’
r = ‘the number 3 belongs to the set X

0

Then p is true, q is false, and we have no way of knowing whether r is true or false
without knowing something about the set X.

1.2.1 Connectives
Connectives are the tools to build new formulas from existing ones. We briefly mention
them:

Logical negation ¬p (‘not p’) is the negation of the formula p

Logical conjunction p ^ q (‘p and q’)

Logical disjunction p _ q (‘p or q’)

Logical implication p) q (‘p implies q’ or ‘if p, then q’)

Logical equivalence p, q (‘p is logically equivalent to q’)

This formalism allows us to understand the notion of a proof by contradiction,
which is summed up by the logical equivalence:

(p) q) , (p ^ ¬q) ¬p)

Proof by contradiction

1.2.2 Predicates
A predicate is a formula that depends on one or more variables. In fact, we have seen
predicates before, when we called them ‘characteristic properties’. Here are some more
examples:

p(x) = ‘x is a prime number’
q(y) = ‘y is the square of a natural number’

r(x, y) = ‘x is divisible by y
0

1.2.3 Quantifiers
In a set X, for a given predicate p(x) with x 2 X, we can ask whether p is always true,
or perhaps only sometimes. This is expressed mathematically as follows:

Universal quantifier: 8x, p(x) (we say ‘for every x, p(x) holds’)
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Existential quantifier: 9x, p(x) (we say ‘there exists x, such that p(x) holds’)
Unique existential quantifier: 9!x, p(x) (we say ‘there exists one and only one x, such

that p(x) holds’)

Example 1.1: Suppose that, as above, p(x) = ‘x is a prime number’. If X = N, then it
is true that there exists x 2 X that is a prime number, i.e. 9x, p(x). However, it is not true

that every x 2 X is a prime number. That is, ¬(8x, p(x)).

Example 1.2: Consider the predicate p(x) = ‘x2 = x’. If X = {1, 2, 3, . . . }, then 1 2 X

is the unique element in X for which p(x) is true. That is, 9!x, p(x). On the set
Y = {2, 3, 4, . . . } the predicate p(x) is never true, i.e. ¬(9x, p(x)).

The notions of predicates and quantifiers allow us to formalize the idea of induction:

Theorem 1.3 (Principle of Induction): Let N 2 N and denote by p(n) a predicate
defined for every n � N, n 2N. Suppose that the following hold:

1. p(N) is true,

2. 8n � N, p(n)) p(n + 1).

Then p(n) is true for all integers n � N.

Proof. By contradiction, assume that 9n � N for which p(n) is false. Then the set

F = {n 2N | n � N and p(n) is false}
is not empty. Define m 2 F to be the smallest number in F. Then p(m) is false. Therefore
m , N (recall that we know that p(N) is true). So necessarily m > N, and it follows that
m � 1 � N. By our definition of the number m, p(m � 1) must be true (otherwise m � 1
would have been the smallest number in F). But we know that 8n � N, p(n)) p(n+1).
Taking n = m� 1 we get that p(m� 1)) p(m). But this is not true, since p(m� 1) is true
while p(m) is false. We have therefore reached a contradiction, so that ¬(9n � N for
which p(n) is false), i.e. 8n � N, p(n) is true. ⇤

Example 1.3 (Bernoulli inequality): We claim that 8r � �1, the Bernoulli inequality

(1 + r)n � 1 + nr, 8n 2N,
holds. We prove this by induction. Here

p(n) = ‘(1 + r)n � 1 + nr
0.

1. For n = 0, we have (1 + r)0 = 1 and 1 + 0 · r = 1 so that (1 + r)0 � 1 + 0 · r and
therefore p(0) is true.

2. Now assume that p(n) is true. This is called the induction assumption. Let us
show that p(n + 1) is true. Using the fact that 1 + r � 0, we have

(1 + r)n+1 = (1 + r)(1 + r)n

� (1 + r)(1 + nr) (here we use the induction assumption and that 1 + r � 0)

= 1 + (n + 1)r + nr
2

� 1 + (n + 1)r. (since nr
2 � 0)

Hence p(n + 1) is true, and by the Principle of Induction (we usually just say ‘by

induction’) the Bernoulli inequality holds for all n 2N.
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