Lemma 1.1: For some set *X* and subsets $A, B \subseteq X$, if $A \subseteq B$ and $B \subseteq A$ then A = B.

Proof. By contradiction, assume that $A \neq B$. Then, without loss of generality, there exists $x \in X$ such that $x \in A$ and $x \notin B$. But then it is not true that $A \subseteq B$. The contradiction assumption must therefore be false, i.e. A = B.

Characteristic property

The elements of a subset $A \subseteq X$ can often be characterized by a mathematical property that they satisfy. This property is denoted p(x), and we write

$$A = \{x \in X \mid p(x)\}.$$

For example, if p(x) = 'x is even', then

$$A = \{x \in \mathbb{N} \mid x \text{ is even}\} = \{0, 2, 4, ...\} \subseteq \mathbb{N}.$$

Operations on sets

• **Complement**: if $A \subseteq X$ then we define its *complement* to be

$$A^C = CA = \{x \in X \mid x \notin A\}.$$

• **Union**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *union* to be

$$A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$$

• **Intersection**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *intersection* to be

$$A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$$

• **Difference**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *difference* to be

$$A \setminus B = \{x \in X \mid x \in A \text{ and } x \notin B\}$$

• **Symmetric Difference**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *symmetric difference* to be

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

• **Disjoint Union**: for two sets $A \subseteq X$ and $B \subseteq X$ whose intersection is empty, we often replace the symbol \cup by

$$A \sqcup B$$
 or $A \dot{\cup} B$

Lemma 1.2 (Properties of \cap and \cup): For some set X and subsets $A, B, C \subseteq X$ the operations \cap and \cup satisfy:

- 1. Boolean properties: $A \cap A^C = \emptyset$ and $A \cup A^C = X$.
- 2. Commutativity: $A \cap B = B \cap A$ and $A \cup B = B \cup A$.
- 3. Associativity: $(A \cap B) \cap C = A \cap (B \cap C)$ and $(A \cup B) \cup C = A \cup (B \cup C)$.
- 4. Distributivity: $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ and $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
- 5. De Morgan laws: $(A \cap B)^C = A^C \cup B^C$ and $(A \cup B)^C = A^C \cap B^C$.

Proof. We prove the first of the De Morgan laws. The rest is an exercise.

We want to show that two sets are the same: $(A \cap B)^C = A^C \cup B^C$. To do this, we will show that the set on the left is contained in (or equal to) the set on the right, and vice versa. I.e., we shall show that $(A \cap B)^C \subseteq A^C \cup B^C$ and $(A \cap B)^C \supseteq A^C \cup B^C$.

(i) To show that $(A \cap B)^C \subseteq A^C \cup B^C$, we note the following implications:

$$x \in (A \cap B)^{C}$$
 \downarrow
 $x \notin A \cap B = \{y \in X \mid y \in A \text{ and } y \in B\}$
 \downarrow
 $x \notin A \text{ or } x \notin B$
 \downarrow
 $x \in A^{C} \text{ or } x \in B^{C}.$

Since $A^C \subseteq A^C \cup B^C$ and $B^C \subseteq A^C \cup B^C$, we conclude that necessarily $x \in A^C \cup B^C$. Hence $(A \cap B)^C \subset A^C \cup B^C$.

(ii) Conversely, we can show $(A \cap B)^C \supseteq A^C \cup B^C$. Assume that $x \in A^C \cup B^C$ and by *contradiction*, assume that $x \notin (A \cap B)^C$. Then we have the implications:

$$x \notin (A \cap B)^{C}$$
 $\downarrow \downarrow$
 $x \in A \cap B = \{y \in X \mid y \in A \text{ and } y \in B\}$
 $\downarrow \downarrow$
 $x \in A \text{ and } x \in B$
 $\downarrow \downarrow$
 $x \notin A^{C} \text{ and } x \notin B^{C}.$

But this is in contradiction to the assumption that $x \in A^C \cup B^C$. Therefore the contradiction assumption $x \notin (A \cap B)^C$ is not true, hence $x \in (A \cap B)^C$. We have shown that $(A \cap B)^C \subseteq A^C \cup B^C$ and that $(A \cap B)^C \supseteq A^C \cup B^C$, so by Lemma

1.1 the two sets must be equal, completing the proof.

Power set

For a given set X, we define its power set $\mathcal{P}(X)$ to be the set of all subsets of X:

$$\mathcal{P}(X) = \{A \mid A \subseteq X\}.$$

In particular, $\emptyset \in \mathcal{P}(X)$ and $X \in \mathcal{P}(X)$.

1.2 Elements of mathematical logic

The building blocks of mathematical logic are **formulas**, which can be either *true* or *false*. Here are some examples:

p = 'Blue is a color' q = '15 is the square of a natural number' r = 'the number 3 belongs to the set X'

Then p is true, q is false, and we have no way of knowing whether r is true or false without knowing something about the set X.

1.2.1 Connectives

Connectives are the tools to build new formulas from existing ones. We briefly mention them:

Logical negation $\neg p$ ('not p') is the negation of the formula p

Logical conjunction $p \land q$ ('p and q')

Logical disjunction $p \lor q$ ('p or q')

Logical implication $p \Rightarrow q$ ('p implies q' or 'if p, then q')

Logical equivalence $p \Leftrightarrow q$ ('p is logically equivalent to q')

Proof by contradiction

This formalism allows us to understand the notion of a proof by contradiction, which is summed up by the logical equivalence:

$$(p \Rightarrow q) \qquad \Leftrightarrow \qquad (p \land \neg q \Rightarrow \neg p)$$

1.2.2 Predicates

A **predicate** is a formula that depends on one or more variables. In fact, we have seen predicates before, when we called them 'characteristic properties'. Here are some more examples:

```
p(x) = 'x is a prime number'

q(y) = 'y is the square of a natural number'

r(x, y) = 'x is divisible by y'
```

1.2.3 Quantifiers

In a set X, for a given predicate p(x) with $x \in X$, we can ask whether p is always true, or perhaps only sometimes. This is expressed mathematically as follows:

Universal quantifier: $\forall x, p(x)$ (we say 'for every x, p(x) holds')

Existential quantifier: $\exists x$, p(x) (we say 'there exists x, such that p(x) holds')

Unique existential quantifier: $\exists !x$, p(x) (we say 'there exists one and *only one x*, such that p(x) holds')

Example 1.1: Suppose that, as above, p(x) = 'x is a prime number'. If $X = \mathbb{N}$, then it is true that *there exists* $x \in X$ that is a prime number, i.e. $\exists x$, p(x). However, it is *not true* that *every* $x \in X$ is a prime number. That is, $\neg(\forall x, p(x))$.

Example 1.2: Consider the predicate $p(x) = {}'x^2 = x'$. If $X = \{1, 2, 3, ...\}$, then $1 \in X$ is the unique element in X for which p(x) is true. That is, $\exists !x$, p(x). On the set $Y = \{2, 3, 4, ...\}$ the predicate p(x) is never true, i.e. $\neg(\exists x, p(x))$.

The notions of predicates and quantifiers allow us to formalize the idea of induction:

Theorem 1.3 (Principle of Induction): Let $N \in \mathbb{N}$ and denote by p(n) a predicate defined for every $n \ge N$, $n \in \mathbb{N}$. Suppose that the following hold:

- 1. p(N) is true,
- 2. $\forall n \geq N, p(n) \Rightarrow p(n+1)$.

Then p(n) is true for all integers $n \ge N$.

Proof. By contradiction, assume that $\exists n \geq N$ for which p(n) is false. Then the set

$$F = \{n \in \mathbb{N} \mid n \ge N \text{ and } p(n) \text{ is false}\}\$$

is not empty. Define $m \in F$ to be the smallest number in F. Then p(m) is false. Therefore $m \ne N$ (recall that we know that p(N) is true). So necessarily m > N, and it follows that $m-1 \ge N$. By our definition of the number m, p(m-1) must be true (otherwise m-1 would have been the smallest number in F). But we know that $\forall n \ge N$, $p(n) \Rightarrow p(n+1)$. Taking n = m-1 we get that $p(m-1) \Rightarrow p(m)$. But this is not true, since p(m-1) is true while p(m) is false. We have therefore reached a contradiction, so that $\neg (\exists n \ge N \text{ for which } p(n) \text{ is false})$, i.e. $\forall n \ge N$, p(n) is true.

Example 1.3 (Bernoulli inequality): We claim that $\forall r \geq -1$, the Bernoulli inequality

$$(1+r)^n \ge 1 + nr, \quad \forall n \in \mathbb{N},$$

holds. We prove this by induction. Here

$$p(n) = '(1+r)^n \ge 1 + nr'.$$

- 1. For n = 0, we have $(1 + r)^0 = 1$ and $1 + 0 \cdot r = 1$ so that $(1 + r)^0 \ge 1 + 0 \cdot r$ and therefore p(0) is true.
- 2. Now assume that p(n) is true. This is called the **induction assumption**. Let us show that p(n + 1) is true. Using the fact that $1 + r \ge 0$, we have

$$(1+r)^{n+1} = (1+r)(1+r)^n$$

$$\geq (1+r)(1+nr) \qquad (here we use the induction assumption and that 1+r \geq 0)$$

$$= 1+(n+1)r+nr^2$$

$$\geq 1+(n+1)r. \qquad (since nr^2 \geq 0)$$

Hence p(n + 1) is true, and by the Principle of Induction (we usually just say 'by induction') the Bernoulli inequality holds for all $n \in \mathbb{N}$.