
Chapter 1

Basic Notions

1.1 Sets

A set is a collection of elements. We denote sets with curly brackets {· · · }, with the
elements listed within the brackets. As an example, consider the set of students in the
class Mathematical Analysis 1. This set can either be written explicitly,

X = {Bob,Lucy,Andrew,Giulia}

or it can be defined using a rule:

X = {all people who are students of Mathematical Analysis 1}.

Some important sets of numbers that we will often encounter are

N = set of natural numbers = {0, 1, 2, . . . }
Z = set of integer numbers = {0,±1,±2, . . . }
Q = set of rational numbers = {can you think how to define?}
R = set of real numbers = {can you think how to define?}
C = set of complex numbers = {can you think how to define?}

Another important set is the empty set which contains no elements. It is denoted ;.

• Element of: if x is an element of X we write x 2 X

• Not element of: if x is not an element of X we write x < X

• Subset: if A is a subset of X (i.e. any element of A is also an element of
X) we write A ✓ X or X ◆ A

In this case it is possible that A = X.

• Proper subset: if A is a proper subset of X we write A ⇢ X or X � A

In this case A , X (i.e. there exists x 2 X and x < A).

Basic notation
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Lemma 1.1: For some set X and subsets A,B ✓ X, if A ✓ B and B ✓ A then A = B.

Proof. By contradiction, assume that A , B. Then, without loss of generality, there
exists x 2 X such that x 2 A and x < B. But then it is not true that A ✓ B. The
contradiction assumption must therefore be false, i.e. A = B. ⇤

The elements of a subset A ✓ X can often be characterized by a mathematical
property that they satisfy. This property is denoted p(x), and we write

A = {x 2 X | p(x)}.

For example, if p(x) = ’x is even’, then

A = {x 2N | x is even} = {0, 2, 4, . . . } ✓N.

Characteristic property

• Complement: if A ✓ X then we define its complement to be

A
C = CA = {x 2 X | x < A}.

• Union: for two sets A ✓ X and B ✓ X we define their union to be

A [ B = {x 2 X | x 2 A or x 2 B}

• Intersection: for two sets A ✓ X and B ✓ X we define their intersection

to be
A \ B = {x 2 X | x 2 A and x 2 B}

• Di↵erence: for two sets A ✓ X and B ✓ X we define their di↵erence to be

A \ B = {x 2 X | x 2 A and x < B}

• Symmetric Di↵erence: for two sets A ✓ X and B ✓ X we define their
symmetric di↵erence to be

A�B = (A [ B) \ (A \ B)

• Disjoint Union: for two sets A ✓ X and B ✓ X whose intersection is
empty, we often replace the symbol [ by

A t B or A[̇B

Operations on sets

Lemma 1.2 (Properties of \ and [): For some set X and subsets A,B,C ✓ X the
operations \ and [ satisfy:
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