Chapter 1

Basic Notions

1.1 Sets

A **set** is a collection of elements. We denote sets with curly brackets $\{\cdots\}$, with the elements listed within the brackets. As an example, consider the set of students in the class *Mathematical Analysis* 1. This set can either be written explicitly,

$$X = \{Bob, Lucy, Andrew, Giulia\}$$

or it can be defined using a rule:

 $X = \{all \text{ people who are students of } Mathematical Analysis 1\}.$

Some important sets of numbers that we will often encounter are

 \mathbb{N} = set of natural numbers = $\{0, 1, 2, ...\}$

 \mathbb{Z} = set of integer numbers = $\{0, \pm 1, \pm 2, \dots\}$

 \mathbb{Q} = set of rational numbers = {can you think how to define?}

 \mathbb{R} = set of real numbers = {can you think how to define?}

 \mathbb{C} = set of complex numbers = {can you think how to define?}

Another important set is the **empty set** which contains no elements. It is denoted \emptyset .

Basic notation

• **Element of**: if *x* is an element of *X* we write

 $x \in X$

• **Not element of**: if *x* is *not* an element of *X* we write

 $x \notin X$

• **Subset**: if *A* is a subset of *X* (i.e. any element of *A* is also an element of *X*) we write $A \subseteq X$ or $X \supseteq A$

In this case it is possible that A = X.

• **Proper subset**: if *A* is a *proper* subset of *X* we write $A \subset X$ or $X \supset A$ In this case $A \neq X$ (i.e. there exists $x \in X$ and $x \notin A$).

Lemma 1.1: For some set *X* and subsets $A, B \subseteq X$, if $A \subseteq B$ and $B \subseteq A$ then A = B.

Proof. By contradiction, assume that $A \neq B$. Then, without loss of generality, there exists $x \in X$ such that $x \in A$ and $x \notin B$. But then it is not true that $A \subseteq B$. The contradiction assumption must therefore be false, i.e. A = B.

Characteristic property

The elements of a subset $A \subseteq X$ can often be characterized by a mathematical property that they satisfy. This property is denoted p(x), and we write

$$A = \{x \in X \mid p(x)\}.$$

For example, if p(x) = 'x is even', then

$$A = \{x \in \mathbb{N} \mid x \text{ is even}\} = \{0, 2, 4, ...\} \subseteq \mathbb{N}.$$

Operations on sets

• **Complement**: if $A \subseteq X$ then we define its *complement* to be

$$A^C = CA = \{x \in X \mid x \notin A\}.$$

• **Union**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *union* to be

$$A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$$

• **Intersection**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *intersection* to be

$$A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$$

• **Difference**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *difference* to be

$$A \setminus B = \{x \in X \mid x \in A \text{ and } x \notin B\}$$

• **Symmetric Difference**: for two sets $A \subseteq X$ and $B \subseteq X$ we define their *symmetric difference* to be

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

• **Disjoint Union**: for two sets $A \subseteq X$ and $B \subseteq X$ whose intersection is empty, we often replace the symbol \cup by

$$A \sqcup B$$
 or $A \dot{\cup} B$

Lemma 1.2 (Properties of \cap and \cup): For some set X and subsets $A, B, C \subseteq X$ the operations \cap and \cup satisfy: