MATHEMATICAL ANALYSIS 1
HOMEWORK 6

(1) In this problem we prove the Squeeze Theorem for a finite point xg, and three functions f,g,h
satisfying f < g < h near g, with f and h having the limit £ as © — xo (you are guided in the steps
below):

(a) State the theorem (and state that you shall prove it only in the case z¢ € R).
(b) Fix e > 0.
(c) With this e write the definition of what it means that lim,_,,, f(z) =
(d) Write the definition of what it means that lim,_,,, h(z) = £.
(e) Using the previous two steps, find a neighborhood of z (depending on ) for which you can
write a condition for convergence to ¢ for the function g.
(f) Conclude that, since e > 0 was arbitrary, the theorem follows by the definition of the limit
(applied to g).
(2) Prove that

1
z—0 x2 5
Hint: multiply both the numerator and denominator by 1 + cosx.
(3) Compute the following limits:

(a) limg—y oo C\O/S; (g) limg_yq COS(ZI) (hint: takey=1—x)
(b) limy s oo % (h) lim,_, VT&“;;W

(c) limy_yo 2=322 () tim, o 257

(d) limg—. lr;l_el (hint: takey =z —e) () lim,_,; 22 = (hint: take y =x —1)
(e) 1lmx~>+oo #—"_34-5 (k) hmm_m ¢ s1_nex -

() hmm_mﬁ (1) limg_s o xes™®

(4) Determine how the following sequences {a, }nen behave for large n:

(a) ap=n—+/n (d) an = (g) 7?3

(b) Ap = (2:’)' (e) ay, = on sin(2 n )
(c) an:% (f) an = ncos (2 . I)

(5) Use the fact that lim,_,4+o0(1+ 2)” = e to prove that for a # 0

lim (1 + g)r = e
x—Foo x
(6) Let f,g: R — R. Show that f ~ g as x — x¢ if and only if f = g+ o(g) as * — zo.
(7) Let f: R — R be infinite or infinitesimal at xg.
(a) State the definition of the order a of f at xy with respect to a function ¢ : R — R.
(b) Prove that the order « is unique.
(8) Determine the order and the principal part with respect to p(z) = % as ¢ — +oo of the function
f(z) =sin(vaz? —1—2x).
(9) As 2 — 400, the function f(z) =In(9+sin 2) — 2In3 can be written as f(z) = & + o(z~%). Find
b and a.
(10) Determine the order and the principal part with respect to ¢(z) = x as * — 0 of the function

fla) =155 - L.



HOMEWORK 6 SOLUTIONS

(1) (a) Squeeze Theorem: Let f,g,h be functions defined on a neighborhood of zy € R (possi-

bly excluding zg itself) such that f(x) < g(x) < h(z) for all z in this neighborhood. If
limg s, f(z) = limy 4, A(x) = ¢, then lim,_,,, g(z) = L.

(b) Let € > 0 be given.

(c) Since lim,_,4, f(z) = ¢, there exists d; > 0 such that for all z with 0 < |z — 2| < d1, we have
|f(z) — €] < &, which implies £ — e < f(z) < {+e¢.

(d) Since limy,_,,, h(x) = £, there exists d2 > 0 such that for all x with 0 < |z — x| < d2, we have
|h(z) — £] < e, which implies £ — e < h(z) < £+ «.

(e) Let 6 = min{dq,d2}. Then for all z with 0 < |z — x¢| < d, we have:

l—e< f(z) <glx)<h(z)<l+e

Thus |g(z) — ] < e.
(f) Since & > 0 was arbitrary, we conclude that lim,_,,, g(z) = £.
(2) Proof. Multiply numerator and denominator by 1 4+ cos z:

l1—cosz (1—cosz)(l+cosz)  1—cos’z sin?
2 22(1 + cosx) ~ 22(1+cosz) 22(1+cosx)

As z — 0, we have:
14cosx - 2
Therefore:

. 1—coszx . sin? z 1 1

im — =lim—— " =1.-1.-==—

a0 g2 =0 22(1 + cos x) 2 2

(3) (a) limyyi0o C‘\’/S; = 0 (bounded numerator, denominator — +00)

(b) limg—s 400 % =1 (using the Squeeze Theorem, since z — 1 < |z] < x)
z—tanx

(C) hmx_m 2
The function f(z) = g”_;# is odd, so we evaluate lim,_,o+ f(z). For 0 < z < 7, the inequality
sinx < x < tanz holds. Subtracting tanz gives sinz — tanz < x — tanz < 0. Dividing by
2
x> 0:

sinz —tanx x —tanx
3 < 3 < 0.
T T
We evaluate the limit of the lower bound:

. : sin z

sinxz — tanx . siny — ===

lim — = lim %
r—0t xT r—0t xT

. sinz(cosz — 1)

= lim ————=

z—0+ z2cosw

. <sinx) < 1 > < l—cosx)
lim . |- —
20+ \ COS T x

1 1
=1.--(-0-2) =0.

By the Squeeze Theorem, since the function is bounded between 0 and a function tending to
0, we conclude that:

. xr —tanz
lim — s = 0.
z—0+ €T

Thus, the required limit is 0.
(d) Let y=2x — e, then z =y +e:

Inz—1 ! -1 Ine+1 1) -1 1 ) 1

lim DO _ g, MO =l gy metinly/et )21 Inly/etD)

e T—e Y=o (0 y—0 Yy y—0 Y e
2




. x+3 . zZ+ 3
lim = lim
z—too g3 — 22 + 5  wodoo L2 _ 2 | 5
3 3
143

T
: 1 3
hmw—)-{-oo =+ *)

= l‘j
lim, 400 (1 - & + )

: 1 : 3
hmm—H—oo z2 + 11mrc—>+oo z3

limggoo 1 — limg oo 2 Mgy oo 5
040
T 1-040

O —=lo

. in2 . i .
(f) limg o *5-F = limgy o ®2% -sinz =1-0=0

(¢) Lety=1—2,thenaz=1—y:
tim 2D _ gy, ©GUAZY) o, o8B W) sin(5y)

cos( ™
=1 1 —x y—0 Y y—0 Y y—=0 Yy 2

(h) Multiply numerator and denominator by the conjugate:

. V1+tanz — /1 —tanz (1+tanz) — (1 — tanz)
m

li = lim
@—0 sinz =0 sinz(y/1 + tanx + /1 — tanx)
. 2tanx . 2 2
= lim — = lim = =1
=0 sinz(y/1+ tanz + /1 —tanx) =0 cosxz(yv/1+tanz ++/1 —tanz) 1-(1+1)
(i) lim,_or 2571 = limy o+ 2= = 1In2
() Lety=2z—1, then z =y + 1:
1 In(1 In(1 1 In(1 1
i 2P gy ROEY) o Oty 1y WOty oy 1
z—1e? —e y—0e¥tl—e yooe(ey —1) ey=0 y e¥—1 e
(k) lim, 0 €55 = lim, o %2:;1) = lim,_,ge 2 32;;1 2.2 =2
() zes® < we™! = zx/e for all z < —1, and lim,, o x/e = (1/e)lim,, oz = —oo hence

limg, oo xe®™% = —c0.

(4) (a) ap=n—+/n = +00
lim a, = lim (n —+/n)

n—oo n— oo

1
li 1-—
s (1= 07)

= lim n(1-0) =+
n— oo

(b) an = 2 5 400 very rapidly (Ratio Test)

n!

. Gn41
L= lim 2+
n—oo @,

. (2n+2)!  n!
= lim —— -

2n+2)(2n+1)

= lim
= lim 2(2n+1) = 400
n— o0
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Since L = 400 > 1, the sequence diverges to +o0.
(¢) an = 57217))2' — 400 (Ratio Test)

. Un41
L= lim 2t

n—o0 (U

(2n+2)!  (n!)?
im .
n—oo ((n+1)!1)2 (2n)!
~ lim (2n+2)(2n+1)
o 4An? 4+ 6n+2
lim ——— =
n—oo N2+ 2n+1

Since L =4 > 1, the sequence diverges to +oc.
(d) an=(3)5 =1

1 3+ 2
n n n2
. 2
lim a, = lim (1——|—2)
n—00 n—oo n n
=1-0+0

(e) ap=2"sin(27"mw) > 7
lim a, = lim 2"sin(27"7)
n— 00

n—o0
= lim (Sm(2_nﬂ-)> . (2" . 2_”7r)

n—o00 2—ng
) sin(27 ")
= (w) (™)
=) 7m=m (using lir% MY 1>
u—r u
(f) ap =ncos (™. 2) - -2

. . m T
lim a, = lim ncos (7 + —)

n—00 n—00 2 2n
. . ™ . ™ .
= nh%ngo —nsin (%) (usmg cos(§ +6) = —sin 9)
L (Smg%)> . (n i)
n— 00 5 2n
— lim — (Smg%)> (5
n—00 5 2
™ ™
= (1)-2=_-=
1)-5=-3



(5) Proof. Let y = £. Then as x — F00, y — +0oo (since a # 0). Then:

(2= ()=

y
Since limy_ 1 oo (1 + i) = e, we have:

lim (1 + E) =e®
r—+oo x

]
(6) Proof. (=) 1If f ~ g as x — xg, then lim,_,,, 58; = 1. Let h(x) = f(z) — g(z). Then:
LG ) N R
glx)  g(z)
So h(zx) = o(g(x)), which means f(z) = g(z) + o(g(x)).
(<) If f(x) =g(x) + o(g(x)), then 58; =1+ % —140=1,s0 f~g. O
(7) (a) The order « of f at xg with respect to ¢ is defined as the number « € R such that:
im L) _ 120

w0 p(z)*

where L is a finite nonzero constant.
(b) Proof. Suppose there exist a, f € R with « # 8 such that:

fim =L A0 ma i S a0

Then:

Taking limits:
L=M- lim ¢(x)’~®

Tr—x0

If 8> a, then ¢(z)?~% — 0 or co depending on whether f is infinitesimal or infinite, so L = 0
or 0o, contradicting L # 0. Similarly if & > . Therefore, o = . ]
(8) Note first of all that

2

I 2 —1—-z -1
m—>+oo( ) r—+00 ﬂ/$2—1+$ T—+00 \/$2—1+$

hence the function f(z) is infinitesimal as x — +o00. In addition,
. sin(vaz? —1—x) .

lim = lim

x——+00 1/:1;‘27171’ y—0 Yy

siny 1

Then

) o ST N o s asin(VaP-1-z) o 5T
ﬂgﬂr_loox sin(va? —1—1x) —zgrfoox (Va2 —1-ux) . —xgrfoox (Va2 —1-—uz).

Computing the right-hand-side limit gives

-1
M (0% 2 _ — 3 [
zhrf z*(Va? -1 I)fzhrf x T iia

. X
= lim
“*C"’x(,/l—%ﬂ)

Choosing o = 1, the order is 1 and the principal part is p(z) = —ﬁ.
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(9) n(9+sin2) —2In3=In9(1 + §sin2) —In9 = In(1 + §sin 2).

For x — 400, %Sin%fv%.

For y — 0, In(1 +y) ~ y.
Hence ) 0 o
. o - ol 2 L 2
if o =1. Soazlandb:%.

(10) Using the relation e* = 1+ z + o(x) for  — 0 we have

. f(x) et —1—2a?
lim =lim ———
z—0 % 20 (1 + 2?)

et —1— g2
=lim ——
z—0 T

v _1
= lim (e —x2_o‘) =1
x—0 e

for @« = 1. The order of f is 1 and the principal part is p(z) = z.
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