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MATHEMATICAL ANALYSIS 1
HOMEWORK 4

Prove De Moivre’s formula (without using the exponential form of complex numbers): for any com-
plex number z = r(cosf + isin ), where r > 0 and 6 € R, and any n € N,

2™ = r"(cos(nf) + isin(nd)).

Hint: by induction.
Let z=2— 2 and w = —1 + iv/3.

(a) Write z and w in exponential form.

(b) Compute z - w and express the result in both Cartesian and exponential forms.
(c) Compute Z and express the result in both Cartesian and exponential forms.
(d) Find the complex conjugate zZ and compute z - Z.
Let z =3 (cos% +isin§) and w =2 (cos% + isin%).
(a) Write z and w in Cartesian form.

(b) Compute 22 and w?® using both De Moivre’s formula and direct multiplication.
(¢) Verify that |z - w| = |2| - |w| and arg(z - w) = arg(z) + arg(w).
Find all complex numbers z that satisfy:

(a) 22 =—4
(b) 23 =8i
(c) 2*=—16

Express your answers in both Cartesian and exponential forms.

Let z =14 V3.

(a) Write z in exponential form.

(b) Compute z* and express the result in both exponential and Cartesian forms.

(c) Find all complex solutions to w? = z.

Let z = %

(a) Simplify z to Cartesian form.

(b) Write z in exponential form.

(c) Compute 22023 (hint: use the exponential form).

Let {an}nen be a real-valued sequence. Prove that it can have at most one limit as n — oo (hint:

by contradiction).

We proved that a monotone increasing sequence {ay, }nen has a limit (which can be finite or infinite)

and that it is equal to the supremum of the sequence (see the lecture notes for the precise statement).

State and prove the analogous result for a monotone decreasing sequence.

Let {an }nen be a real-valued sequence. Suppose that the limit lim,, o |a,,| exists. Does lim,,— o ay,

exist? If so, prove it. If not, give a counterexample.

Let zg € R.

(a) Let € > 0. Define the e-neighborhood of x( (this is another name for the neighborhood of zy of
size ).

(b) Prove that the intersection of two neighborhoods of xg is also a neighborhood of zg.

n?4(=1)"n

n2+1
(a) Determine whether the sequence has a finite limit, infinite limit, or is indeterminate.
(b) Prove your answer using the definition of limit.

Consider the sequence {a, }nen defined by a, =

Let f(z) = %ﬁ“. Find lim, o f(z) and lim,_, . f(x). Prove your answers.



HOMEWORK 4 SOLUTIONS

(1) Proof. We prove De Moivre’s formula by induction on n.
Base case (n = 1): z! = r!(cos(10) + isin(16)), which is true by definition of 2. (The base case
n = 0 is also trivially true, but n = 1 is often preferred for multiplication-based induction.)
Inductive step: Assume the formula holds for some n € N. Then for n + 1:
n+1 _ Zn .z
= r"(cos(nf) + isin(nd)) - r(cos O + i sin 9)
= 1" [(cos(nh) cos @ — sin(nd) sin #) + i(sin(nd) cos @ + cos(nd) sin )]
=" cos((n + 1)8) + isin((n + 1)6)]
where we used the trigonometric identities:
cos(A + B) = cos Acos B — sin Asin B
sin(A + B) = sin A cos B + cos Asin B

Thus the formula holds for n + 1, completing the induction. O
(2) (a) For z =2 —2i:

z

2] = V22 F (<202 = 2V2, arg(z) = _%
Exponential form: z = 2y/2e~ /4
For w = —1 4 iV/3:
2
lw) =/(-1)2 + (V3)2 =2, arg(w) = ?77

Exponential form: w = 2¢%27/3

(b) z-w: Exponential form: z-w = (2¢/2e~7/4)(2e127/3) = 4/2e!7/3=7/4) = 4,/2¢157/12
Cartesian form: 4v/2(cos 32 15 +isin %)

(c) Z: Exponential form: = = /2R f5o—iln/A42/3) — | /9e—illn/12

2ei2m/3

Cartesian form: v/2(cos(—1X) + isin(—1X))

(d) z=2+2i,and z2-2=(2—-2))(2+2i) =4+ 4=8=|2|2
3) (a) z=3(1+iL) =3 +i33
w=2(L + 'l)*\qui

(b) Using De Moivre: 2% = 3%(cos 2 —|—zsm—): 9(—1%+ ): 2+ %
Dircts < — (14 1007 4 13§40 (O~ § 8 ap g gy
Using De Moivre: w3 —23(cos—+zsm 37) :8(c osZ +ising) =8(0+14) =8

Direct: w® = (V3 +1i)? =3v3+9i —3V3 —i =
(¢) z-w=(3-2)(cos(5 + §) +isin(§ +F)) = 6(cos g +isin %) = 6i
|z -w| =16i] =6 |z| - |w| =3-2 =6 (Verification holds)
arg(z - w) = § arg(z) +arg(w) = § + § = 5 (Verification holds)
(4) (a) 22 = —4. In polar form: —4 = 4(cosm + isinm) = 4e'™.
The roots are zp = \/Zeiﬂgkfr for k=0,1.
o k=0: zg=2e"/2 =2
o k=12 =2e¥"/2 = -2
(b) 2% = 8i. In polar form: 8i = 8(cos % +isin Z) = 8e'™/2.
/24 2k
The roots are z;, = /8¢~ 3 for k=0,1,2.
o k=0: 2 =2¢"/%=2(cos T +isinf) =3 +i
e k=1: zl—2615”/6—2(0055“+zsm—) —V/3+i
o k=2 25 =2e""/2 = 2(cos 3 + isin 3T) = —2i
(c) z* = —16. In polar form: —16 = 16(cos7r +isinm) = 16"
The roots are zp = \/>e'7r+2k7r =0,1,2,3.
o k=0: zg=2e""/* =2(cos T T+Hising) = V2 +iV2
2




(5)

(6)

(7)

(8)

(9)

(10)

o k=1: 2 =2e¥/* = 2(cos I +isin ) = —/2 +iV/2
o k=2 25 =2e®"/* =2(cos I +isin ) = —/2 —iV/2
o k=3: z3 =2e"/4 = Q(COS— + 7sin 74”) =2 —-iV2
a) |z| =1/12 + (v/3)2 = 2, arg(z) = Z. Exponential form: z = 2e
3
(b) z*: Exponential form: z? = (2¢7/3)* = 16e7/3
Cartesian form: z* = 16(cos &F + isin &%) = 16(—3 — zf) —8 — 8iV/3
(¢) w® = z = 2¢™/3. The roots are wy, = Y26 for k= 0,1,2.
o k=0: wy = /279
e k=1 w = e/iei(ﬂ/9+27r/3) _ \?/iei77r/9

o k=2 wy = J2n/9H4T/3) — 3/9¢il3m/9
(a) 5= 1+4 __ (1+’i)2 _142i—1 _ 2§

im/3

=15 T 000ty - 1+1 2 1!

(b) |z| =1, arg(z) = 5. Exponential form: z = e

(c) 22023 = (im/2)2028 = i20237/2 90237 /2 = (1011-27) +7/2 is not quite right. 2023 = 4 x 505+ 3.
22023 — i(4:50543)m/2 ei(1010”+3”/2) =eBm/2 = i. (The original solution’s logic is sound too:
£i20237/2 — (i(1011m+7/2) — gin/2 . (gim)1011 — . (_ 1)1011 i (—1) = —i)

im/2

Proof. By contradiction, assume that {a, }nen has two distinct limits ¢; and ¢o with ¢; # £5. Let
€= @ > 0.

Since limy,—, o0 an, = €1, there exists Ny such that for all n > Ny, |a, — 1] < e.

Since lim,,—, o0 ay, = £o, there exists Ny such that for all n > Na, |a, — la| < e.

Let N = max{Ny, No}. Then for n > N, by the triangle inequality:

|€1 —€2| = |(£1 — an) + (an —62)| < |€1 — an| + |an — €2| <eg+te=2= |€1 —€2|
This gives the contradiction |¢1 —fa| < |[¢1 —£3]. Therefore, the limit (if it exists) must be unique. O

Theorem. A monotone decreasing sequence {an}nen has a limit (finite or infinite) equal to the
infimum of the sequence. Specifically:

e If{an}tnen is bounded below, then lim,, . a, = inf,en{an}

o If {an}nen s unbounded below, then lim, o a, = —00

Proof. Let m = inf,en{an}.

Case 1: m > —oo (bounded below). For any € > 0, m + ¢ is not a lower bound. Therefore, by
the definition of infimum, there exists IV such that ay < m+e€. Since the sequence is decreasing, for
all n > N, we have m < a,, < ay < m+e. This implies |a,, — m| < € for all n > N, so by definition
lim, 00 @p, = M.

Case 2: m = —oo (unbounded below). For any M > 0, since the sequence is unbounded below,
there exists NV such that ay < —M. Since the sequence is decreasing, for all n > N, we have
an < ay < —M. Thus, by definition, lim,, ;o a, = —00. O

No, the limit of a, may not exist. Counterexample: Let a,, = (—1)". Then |a,| = 1 for all n, so
lim,, -, o0 |an| = 1 exists. However, lim,,_, @, does not exist because the sequence oscillates between
—1 and 1 and does not converge to a single value.

(a) The e-neighborhood of zg is the open interval centered at xo with radius e:

N(xo) ={z eR: |z —xo| <e} = (xg—e,20 +¢)

(b) Let N¢, (x0) and N, (zo) be two neighborhoods of zg. Let & = min{e1,e2}. Since € > 0, N(z0)
is a neighborhood of zy. For any x € N.(x), we have |z — x¢| < €. Since € < g1 and € < &5,
we have |z — x| < €1 and |x — xg| < €. Thus z € N, (z9) and = € N,,(xp), which means
x € Ng, (x9) N Ne,(z0). Since Ne(zp) is contained in the intersection, the intersection contains
a neighborhood of zy and is therefore also a neighborhood of .

(a) The sequence has a **finite limit**: lim, . a, = 1.

(b) Proof. We want to prove lim,_, . a, = 1. Let € > 0 be given. We seek N € N such that for all
n>N,la, — 1| <e.



First, simplify |a,, — 1]:
n?+ (=1)"n
n?+1

lan, — 1] =

1 = n?+ (-1)"n—(n*+1)| [(-1)"n—1
B n?+1 | on?41

Using the triangle inequality on the numerator and the fact that n2 +1 > 0:

[(=1)"™n| +] —1] n+1
1l < —
lan =11 < T—75 n?+1
For n > 1, we can simplify the upper bound:

n+1 <n+n 2n 2

n2+1~ n2 n2 n
We want % < g, which means n > %
Choose N = [2]. Then for all n > N:
n+1 2 2
S e
Since € > 0 was arbitrary, we conclude that lim,,_, -, a, = 1. O
(12) Claim: We have lim, o f(z) = 2 and lim,—, _, f(z) = 2.

Proof. For x — co: We want to find A > 0 such that for x > A, |f(x) — 2| <e.
222 — 3z +1 222 — 3z +1—2(22 + 4) 3z -7
NORE AR 2 ==
2 +4 % +4 2 +4
For x > 1, we have 3t +7 >0,s0 | -3z — 7| =3z + 7.
3a:+7<333—|—7

la, — 1] <

_ 9 =

fw) -2 = S < 2

For x > 1,7 < 7x,s0 3z 4+ 7 < 3z + 7z = 10z. Thus:
10z 10

\f(l“)—2|<?= -

We want X2 < ¢, which means z > 2. Choose A = max{1, 12}. Then for z > 4, |f(z) — 2| < L <
% <e. Thus, lim, 1 f(z) = 2.
For x — —oo: We want to find A > 0 such that for x < —A, |f(z) — 2| < e. Let x < —1. Then
|z| = —z. The expression is:
—3x—7‘ =327

—_9| =
For z sufficiently large negative (e.g., x < —3, so —3z > 9), the numerator —3z — 7 is positive, and
we can use the same bound as for + — +o0o by noting 2?2 = |z|*:
—3z—-7 _ -3x-7 -3z 3
— 2 — < < —_
|£(=) | 244 - x2 2 |z
We want % <e,s0 |z] > 2. Choose A’ = max{3,2}. Then for z < —A’, |f(z) —2| < % <3 <e
Thus, lim,—,_ f(x) = 2. O




