
MATHEMATICAL ANALYSIS 1

HOMEWORK 4

(1) Prove De Moivre’s formula (without using the exponential form of complex numbers): for any com-
plex number z = r(cos θ + i sin θ), where r > 0 and θ ∈ R, and any n ∈ N,

zn = rn(cos(nθ) + i sin(nθ)).

Hint: by induction.
(2) Let z = 2− 2i and w = −1 + i

√
3.

(a) Write z and w in exponential form.
(b) Compute z · w and express the result in both Cartesian and exponential forms.
(c) Compute z

w and express the result in both Cartesian and exponential forms.
(d) Find the complex conjugate z and compute z · z.

(3) Let z = 3
(
cos π3 + i sin π

3

)
and w = 2

(
cos π6 + i sin π

6

)
.

(a) Write z and w in Cartesian form.
(b) Compute z2 and w3 using both De Moivre’s formula and direct multiplication.
(c) Verify that |z · w| = |z| · |w| and arg(z · w) = arg(z) + arg(w).

(4) Find all complex numbers z that satisfy:
(a) z2 = −4
(b) z3 = 8i
(c) z4 = −16

Express your answers in both Cartesian and exponential forms.
(5) Let z = 1 + i

√
3.

(a) Write z in exponential form.
(b) Compute z4 and express the result in both exponential and Cartesian forms.
(c) Find all complex solutions to w3 = z.

(6) Let z = 1+i
1−i .

(a) Simplify z to Cartesian form.
(b) Write z in exponential form.
(c) Compute z2023 (hint: use the exponential form).

(7) Let {an}n∈N be a real-valued sequence. Prove that it can have at most one limit as n → ∞ (hint:
by contradiction).

(8) We proved that a monotone increasing sequence {an}n∈N has a limit (which can be finite or infinite)
and that it is equal to the supremum of the sequence (see the lecture notes for the precise statement).
State and prove the analogous result for a monotone decreasing sequence.

(9) Let {an}n∈N be a real-valued sequence. Suppose that the limit limn→∞ |an| exists. Does limn→∞ an
exist? If so, prove it. If not, give a counterexample.

(10) Let x0 ∈ R.
(a) Let ε > 0. Define the ε-neighborhood of x0 (this is another name for the neighborhood of x0 of

size ε).
(b) Prove that the intersection of two neighborhoods of x0 is also a neighborhood of x0.

(11) Consider the sequence {an}n∈N defined by an = n2+(−1)nn
n2+1 .

(a) Determine whether the sequence has a finite limit, infinite limit, or is indeterminate.
(b) Prove your answer using the definition of limit.

(12) Let f(x) = 2x2−3x+1
x2+4 . Find limx→∞ f(x) and limx→−∞ f(x). Prove your answers.
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Homework 4 Solutions

(1) Proof. We prove De Moivre’s formula by induction on n.
Base case (n = 1): z1 = r1(cos(1θ) + i sin(1θ)), which is true by definition of z. (The base case

n = 0 is also trivially true, but n = 1 is often preferred for multiplication-based induction.)
Inductive step: Assume the formula holds for some n ∈ N. Then for n+ 1:

zn+1 = zn · z
= rn(cos(nθ) + i sin(nθ)) · r(cos θ + i sin θ)

= rn+1[(cos(nθ) cos θ − sin(nθ) sin θ) + i(sin(nθ) cos θ + cos(nθ) sin θ)]

= rn+1[cos((n+ 1)θ) + i sin((n+ 1)θ)]

where we used the trigonometric identities:

cos(A+B) = cosA cosB − sinA sinB

sin(A+B) = sinA cosB + cosA sinB

Thus the formula holds for n+ 1, completing the induction. �
(2) (a) For z = 2− 2i:

|z| =
√

22 + (−2)2 = 2
√

2, arg(z) = −π
4

Exponential form: z = 2
√

2e−iπ/4

For w = −1 + i
√

3:

|w| =
√

(−1)2 + (
√

3)2 = 2, arg(w) =
2π

3

Exponential form: w = 2ei2π/3

(b) z · w: Exponential form: z · w = (2
√

2e−iπ/4)(2ei2π/3) = 4
√

2ei(2π/3−π/4) = 4
√

2ei5π/12

Cartesian form: 4
√

2(cos 5π
12 + i sin 5π

12 )

(c) z
w : Exponential form: z

w = 2
√
2e−iπ/4

2ei2π/3
=
√

2e−i(π/4+2π/3) =
√

2e−i11π/12

Cartesian form:
√

2(cos(− 11π
12 ) + i sin(− 11π

12 ))

(d) z = 2 + 2i, and z · z = (2− 2i)(2 + 2i) = 4 + 4 = 8 = |z|2

(3) (a) z = 3( 1
2 + i

√
3
2 ) = 3

2 + i 3
√
3

2

w = 2(
√
3
2 + i 12 ) =

√
3 + i

(b) Using De Moivre: z2 = 32(cos 2π
3 + i sin 2π

3 ) = 9(− 1
2 + i

√
3
2 ) = − 9

2 + i 9
√
3

2

Direct: z2 = ( 3
2 + i 3

√
3

2 )2 = 9
4 +2 · 32 · i

3
√
3

2 +(i 3
√
3

2 )2 = 9
4 + i 9

√
3

2 −
27
4 = − 18

4 + i 9
√
3

2 = − 9
2 + i 9

√
3

2

Using De Moivre: w3 = 23(cos 3π
6 + i sin 3π

6 ) = 8(cos π2 + i sin π
2 ) = 8(0 + i) = 8i

Direct: w3 = (
√

3 + i)3 = 3
√

3 + 9i− 3
√

3− i = 8i
(c) z · w = (3 · 2)(cos(π3 + π

6 ) + i sin(π3 + π
6 )) = 6(cos π2 + i sin π

2 ) = 6i
|z · w| = |6i| = 6 |z| · |w| = 3 · 2 = 6 (Verification holds)
arg(z · w) = π

2 arg(z) + arg(w) = π
3 + π

6 = π
2 (Verification holds)

(4) (a) z2 = −4. In polar form: −4 = 4(cosπ + i sinπ) = 4eiπ.

The roots are zk =
√

4ei
π+2kπ

2 for k = 0, 1.
• k = 0: z0 = 2eiπ/2 = 2i
• k = 1: z1 = 2ei3π/2 = −2i

(b) z3 = 8i. In polar form: 8i = 8(cos π2 + i sin π
2 ) = 8eiπ/2.

The roots are zk = 3
√

8ei
π/2+2kπ

3 for k = 0, 1, 2.
• k = 0: z0 = 2eiπ/6 = 2(cos π6 + i sin π

6 ) =
√

3 + i

• k = 1: z1 = 2ei5π/6 = 2(cos 5π
6 + i sin 5π

6 ) = −
√

3 + i

• k = 2: z2 = 2ei3π/2 = 2(cos 3π
2 + i sin 3π

2 ) = −2i

(c) z4 = −16. In polar form: −16 = 16(cosπ + i sinπ) = 16eiπ.

The roots are zk = 4
√

16ei
π+2kπ

4 for k = 0, 1, 2, 3.
• k = 0: z0 = 2eiπ/4 = 2(cos π4 + i sin π

4 ) =
√

2 + i
√

2
2



• k = 1: z1 = 2ei3π/4 = 2(cos 3π
4 + i sin 3π

4 ) = −
√

2 + i
√

2

• k = 2: z2 = 2ei5π/4 = 2(cos 5π
4 + i sin 5π

4 ) = −
√

2− i
√

2

• k = 3: z3 = 2ei7π/4 = 2(cos 7π
4 + i sin 7π

4 ) =
√

2− i
√

2

(5) (a) |z| =
√

12 + (
√

3)2 = 2, arg(z) = π
3 . Exponential form: z = 2eiπ/3

(b) z4: Exponential form: z4 = (2eiπ/3)4 = 16ei4π/3

Cartesian form: z4 = 16(cos 4π
3 + i sin 4π

3 ) = 16(− 1
2 − i

√
3
2 ) = −8− 8i

√
3

(c) w3 = z = 2eiπ/3. The roots are wk = 3
√

2ei
π/3+2kπ

3 for k = 0, 1, 2.

• k = 0: w0 = 3
√

2eiπ/9

• k = 1: w1 = 3
√

2ei(π/9+2π/3) = 3
√

2ei7π/9

• k = 2: w2 = 3
√

2ei(π/9+4π/3) = 3
√

2ei13π/9

(6) (a) z = 1+i
1−i = (1+i)2

(1−i)(1+i) = 1+2i−1
1+1 = 2i

2 = i

(b) |z| = 1, arg(z) = π
2 . Exponential form: z = eiπ/2

(c) z2023 = (eiπ/2)2023 = ei2023π/2 2023π/2 = (1011 ·2π)+π/2 is not quite right. 2023 = 4×505+3.
z2023 = ei(4·505+3)π/2 = ei(1010π+3π/2) = ei3π/2 = −i. (The original solution’s logic is sound too:
ei2023π/2 = ei(1011π+π/2) = eiπ/2 · (eiπ)1011 = i · (−1)1011 = i · (−1) = −i)

(7) Proof. By contradiction, assume that {an}n∈N has two distinct limits `1 and `2 with `1 6= `2. Let

ε = |`1−`2|
2 > 0.

Since limn→∞ an = `1, there exists N1 such that for all n > N1, |an − `1| < ε.
Since limn→∞ an = `2, there exists N2 such that for all n > N2, |an − `2| < ε.
Let N = max{N1, N2}. Then for n > N , by the triangle inequality:

|`1 − `2| = |(`1 − an) + (an − `2)| ≤ |`1 − an|+ |an − `2| < ε+ ε = 2ε = |`1 − `2|
This gives the contradiction |`1−`2| < |`1−`2|. Therefore, the limit (if it exists) must be unique. �

(8)

Theorem. A monotone decreasing sequence {an}n∈N has a limit (finite or infinite) equal to the
infimum of the sequence. Specifically:
• If {an}n∈N is bounded below, then limn→∞ an = infn∈N{an}
• If {an}n∈N is unbounded below, then limn→∞ an = −∞

Proof. Let m = infn∈N{an}.
Case 1: m > −∞ (bounded below). For any ε > 0, m + ε is not a lower bound. Therefore, by

the definition of infimum, there exists N such that aN < m+ ε. Since the sequence is decreasing, for
all n > N , we have m ≤ an ≤ aN < m+ ε. This implies |an −m| < ε for all n > N , so by definition
limn→∞ an = m.

Case 2: m = −∞ (unbounded below). For any M > 0, since the sequence is unbounded below,
there exists N such that aN < −M . Since the sequence is decreasing, for all n > N , we have
an ≤ aN < −M . Thus, by definition, limn→∞ an = −∞. �

(9) No, the limit of an may not exist. Counterexample: Let an = (−1)n. Then |an| = 1 for all n, so
limn→∞ |an| = 1 exists. However, limn→∞ an does not exist because the sequence oscillates between
−1 and 1 and does not converge to a single value.

(10) (a) The ε-neighborhood of x0 is the open interval centered at x0 with radius ε:

Nε(x0) = {x ∈ R : |x− x0| < ε} = (x0 − ε, x0 + ε)

(b) Let Nε1(x0) and Nε2(x0) be two neighborhoods of x0. Let ε = min{ε1, ε2}. Since ε > 0, Nε(x0)
is a neighborhood of x0. For any x ∈ Nε(x0), we have |x − x0| < ε. Since ε ≤ ε1 and ε ≤ ε2,
we have |x − x0| < ε1 and |x − x0| < ε2. Thus x ∈ Nε1(x0) and x ∈ Nε2(x0), which means
x ∈ Nε1(x0) ∩Nε2(x0). Since Nε(x0) is contained in the intersection, the intersection contains
a neighborhood of x0 and is therefore also a neighborhood of x0.

(11) (a) The sequence has a **finite limit**: limn→∞ an = 1.
(b) Proof. We want to prove limn→∞ an = 1. Let ε > 0 be given. We seek N ∈ N such that for all

n > N , |an − 1| < ε.
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First, simplify |an − 1|:

|an − 1| =
∣∣∣∣n2 + (−1)nn

n2 + 1
− 1

∣∣∣∣ =

∣∣∣∣n2 + (−1)nn− (n2 + 1)

n2 + 1

∣∣∣∣ =

∣∣∣∣ (−1)nn− 1

n2 + 1

∣∣∣∣
Using the triangle inequality on the numerator and the fact that n2 + 1 > 0:

|an − 1| ≤ |(−1)nn|+ | − 1|
n2 + 1

=
n+ 1

n2 + 1

For n ≥ 1, we can simplify the upper bound:

n+ 1

n2 + 1
≤ n+ n

n2
=

2n

n2
=

2

n

We want 2
n < ε, which means n > 2

ε .

Choose N = d 2εe. Then for all n > N :

|an − 1| ≤ n+ 1

n2 + 1
≤ 2

n
<

2

N
≤ ε

Since ε > 0 was arbitrary, we conclude that limn→∞ an = 1. �
(12) Claim: We have limx→∞ f(x) = 2 and limx→−∞ f(x) = 2.

Proof. For x→∞: We want to find A > 0 such that for x > A, |f(x)− 2| < ε.

|f(x)− 2| =
∣∣∣∣2x2 − 3x+ 1

x2 + 4
− 2

∣∣∣∣ =

∣∣∣∣2x2 − 3x+ 1− 2(x2 + 4)

x2 + 4

∣∣∣∣ =

∣∣∣∣−3x− 7

x2 + 4

∣∣∣∣
For x > 1, we have 3x+ 7 > 0, so | − 3x− 7| = 3x+ 7.

|f(x)− 2| = 3x+ 7

x2 + 4
≤ 3x+ 7

x2

For x > 1, 7 < 7x, so 3x+ 7 < 3x+ 7x = 10x. Thus:

|f(x)− 2| < 10x

x2
=

10

x

We want 10
x < ε, which means x > 10

ε . Choose A = max{1, 10ε }. Then for x > A, |f(x)− 2| < 10
x <

10
A ≤ ε. Thus, limx→+∞ f(x) = 2.

For x → −∞: We want to find A > 0 such that for x < −A, |f(x) − 2| < ε. Let x < −1. Then
|x| = −x. The expression is:

|f(x)− 2| =
∣∣∣∣−3x− 7

x2 + 4

∣∣∣∣ =
| − 3x− 7|
x2 + 4

For x sufficiently large negative (e.g., x < −3, so −3x > 9), the numerator −3x− 7 is positive, and
we can use the same bound as for x→ +∞ by noting x2 = |x|2:

|f(x)− 2| = −3x− 7

x2 + 4
≤ −3x− 7

x2
<
−3x

x2
=

3

|x|
We want 3

|x| < ε, so |x| > 3
ε . Choose A′ = max{3, 3ε}. Then for x < −A′, |f(x)− 2| < 3

|x| <
3
A′ ≤ ε.

Thus, limx→−∞ f(x) = 2. �
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