MATHEMATICAL ANALYSIS 1 HOMEWORK 3

(1) Prove the following lemma:

Lemma. Let $f,g:\mathbb{R}\to\mathbb{R}$ be monotonically increasing on some $A\subseteq\mathbb{R}$. Then f+g is also monotonically increasing on A. If either f or g are strictly increasing on A, then so is f + g. The same statements hold if we replace everywhere the word 'increasing' with the word 'decreasing'.

(2) Prove the following lemma:

Lemma. Let $f, g : \mathbb{R} \to \mathbb{R}$. Then:

```
\Rightarrow g \circ f is monotone increasing.
  f, g are both monotone increasing
  f, g are both monotone decreasing
                                             \Rightarrow g \circ f is monotone increasing.
f,g are monotone of different kinds
                                             \Rightarrow g \circ f is monotone decreasing.
```

- (3) Show that if $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is monotone increasing on A, then -f is monotone decreasing on A.
- (4) Let t_c and s_c be the translation and scaling functions, respectively. Let r be the reflection function. Consider the function $f(x) = x^3$ restricted to the interval [-1,1]. Sketch the following:
 - (a) $f \circ t_c$ for c = -1, 0, 1
 - (b) $t_c \circ f$ for c = -1, 0, 1
 - (c) $f \circ s_c$ for $c = \frac{1}{2}, 2$
 - (d) $s_c \circ f$ for $c = \frac{1}{2}, 2$
 - (e) The difference $f \circ r r \circ f$.
- (5) Sketch the graphs of the following functions (choose a relevant part of the graph to sketch):
 - (a) $\sin(x)$, $\sin(2x)$, $\sin(-x)$
 - (b) $\log_{\frac{1}{2}} x$, $\log_5 x$, $\log_5(x^2)$
 - (c) $\cos(x)$, $\cos(2x)$, $\cos(x-\frac{\pi}{2})$
- (6) For the following pairs of functions f and g, compute $f \circ g$ and $g \circ f$, and determine their domains:
 - (a) $f(x) = x^2$, g(x) = x + 1
 - (b) $f(x) = \sqrt{x}$, g(x) = x 2(c) $f(x) = \frac{1}{x}$, $g(x) = x^2 + 1$

 - (d) $f(x) = \sin(x), g(x) = 2x$
- (7) For the following functions f and subsets $A \subseteq \text{dom}(f)$, determine $\sup_A f$, $\inf_A f$, and whether the maximum and minimum are attained on A:

 - (a) $f(x) = x^2$, A = [0, 2](b) $f(x) = x^2$, A = (0, 2)
 - (c) $f(x) = x^3 + x^2 + 2x + 1$, A = [0, 2]

 - (d) $f(x) = \frac{1}{x}, A = (0, 1]$ (e) $f(x) = \frac{1}{x}, A = [1, +\infty)$
 - (f) $f(x) = e^x$, A = [-1, 1]
- (8) Using trigonometric identities, simplify the following expressions:
 - (a) $\frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)}$
 - (b) $(\sin(x) + \cos(x))^2 + (\sin(x) \cos(x))^2$
 - (c) $\frac{1-\cos(2x)}{\cos(2x)}$ $\sin(2x)$
- (9) Prove the following equalities:
 - (a) $\tan(x) + \cot(x) = \frac{2}{\sin(2x)}$
 - (b) $\cos(3x) = 4\cos^3(x) 3\cos(x)$

Additional Practice Problems

** These problems are for you to practice ** ** They are not part of the homework assignment **

- (1) Sketch the graphs of the following functions (choose a relevant part of the graph to sketch):
 - (a) $\sin(x + \frac{\pi}{2})$, $\sin(x) + 1$
 - (b) $\log_{10}(\frac{2}{x})$, $\ln(-x)$, $\ln(x^{-1})$
 - (c) $-\cos(x)$, $\cos(-x)$
 - (d) $\tan(x)$, $\tan(2x)$, $\tan(x + \frac{\pi}{4})$, $-\tan(x)$
 - (e) $\arcsin(x)$, $\arcsin(2x)$, $\arcsin(-x)$, $\arcsin(x) + \frac{\pi}{2}$
 - (f) $\arctan(x)$, $\arctan(2x)$, $\arctan(-x)$, $-\arctan(x)$
- (2) Sketch the graphs of the following power functions:
 - (a) $x^{1/2}$, $x^{1/3}$, $x^{1/4}$ (b) x^{-1} , x^{-2} , x^{-3}

 - (c) $x^{2/3}$, $x^{3/2}$, $x^{-1/2}$
 - (d) $(x-1)^{1/2}$, $(x+2)^{-1}$, $2x^3$
- (3) For the following pairs of functions f and g, compute $f \circ g$ and $g \circ f$, and determine their domains:
 - (a) $f(x) = e^x$, $g(x) = \ln(x)$
 - (b) f(x) = |x|, g(x) = x 3
 - (c) $f(x) = \sqrt{x}$, $g(x) = x^2$
 - (d) $f(x) = \frac{1}{x-1}, g(x) = \frac{1}{x}$

 - (e) $f(x) = x^{1/3}$, $g(x) = x^3$ (f) $f(x) = x^2 + 1$, $g(x) = \sqrt{x 1}$
- (4) For the following functions f and subsets $A \subseteq \text{dom}(f)$, determine $\sup_A f$, $\inf_A f$, and whether the maximum and minimum are attained on A:
 - (a) $f(x) = e^x$, A = (-1, 1)
 - (b) $f(x) = \sqrt{4 x^2}$, A = (-2, 2)
 - (c) $f(x) = \arctan(x), A = \mathbb{R}$
 - (d) $f(x) = \frac{1}{1-x}$, A = [0,1)
 - (e) f(x) = x(2-x), A = (0,2)
 - (f) $f(x) = x^{1/3}$, A = [-8, 8]
 - (g) $f(x) = x^{-2}$, $A = [1, +\infty)$
- (5) Determine whether the following functions are even, odd, or neither:
 - (a) $f(x) = x^4 + x^2$
 - (b) $f(x) = x^5 x^3$
 - (c) $f(x) = x^3 + x^2$
 - (d) $f(x) = \frac{x}{x^2+1}$ (e) $f(x) = x^{-2}$

 - (f) f(x) = |x| + x
- (6) Using trigonometric identities, simplify the following expressions:
 - (a) $\sin(x+y)\sin(x-y)$
 - (b) $\cos^4(x) \sin^4(x)$
 - $(c) \frac{1+\tan^2(x)}{1+\cot^2(x)}$
- (7) Prove the following equality:
 - (a) $\frac{\sin(x) + \sin(3x)}{\cos(x) + \cos(3x)} = \tan(2x)$
- (8) Simplify the following expressions involving powers:
 - (a) $(x^3)^{1/2} \cdot x^{-1/2}$

 - (a) $(x)^{1/2}$ (b) $\frac{x^{2/3} \cdot x^{1/2}}{x^{-1/6}}$ (c) $(x^{-2}y^3)^{-1/2}$ (d) $\left(\frac{x^{1/3}}{x^{-2/3}}\right)^3$

Homework 3 Solutions

(1) Proof. Let $x, y \in A$ with x < y. Since f and g are monotonically increasing:

$$f(x) \le f(y)$$

$$g(x) \le g(y)$$

Adding: $(f+g)(x) = f(x) + g(x) \le f(y) + g(y) = (f+g)(y)$.

If either is strictly increasing, the corresponding inequality is strict, so f + g is strictly increasing. The decreasing case follows similarly.

(2) Proof. Let x < y.

Case 1: Both increasing

$$\begin{split} f(x) &\leq f(y) \\ g(f(x)) &\leq g(f(y)) \quad \text{(since g increasing)} \end{split}$$

So $g \circ f$ is increasing.

Case 2: Both decreasing

$$f(x) \ge f(y)$$

 $g(f(x)) \le g(f(y))$ (since g decreasing)

So $g \circ f$ is increasing.

Case 3: Different types

$$f(x) \le f(y)$$
 (if f increasing)
 $g(f(x)) \ge g(f(y))$ (since g decreasing)

So $g \circ f$ is decreasing.

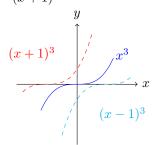
(3) Proof. Let $x, y \in A$ with x < y. Since f is increasing:

$$f(x) \le f(y) \Rightarrow -f(x) \ge -f(y)$$

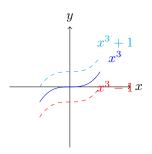
So -f is decreasing.

- (4) (a) $f \circ t_c$ for c = -1, 0, 1:
 - c = -1: $f \circ t_{-1}(x) = f(x-1) = (x-1)^3$

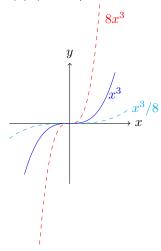
 - c = 0: $f \circ t_0(x) = f(x) = x^3$ c = 1: $f \circ t_1(x) = f(x+1) = (x+1)^3$



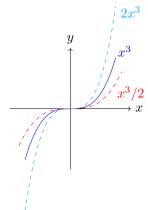
- (b) $t_c \circ f$ for c = -1, 0, 1:
 - c = -1: $t_{-1} \circ f(x) = f(x) 1 = x^3 1$
 - c = 0: $t_0 \circ f(x) = f(x) = x^3$
 - c = 1: $t_1 \circ f(x) = f(x) + 1 = x^3 + 1$



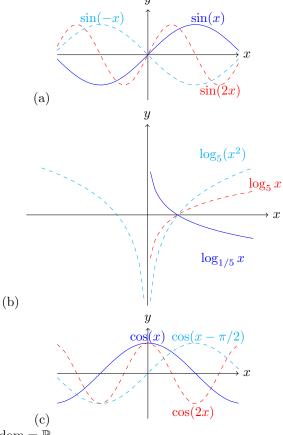
- (c) $f \circ s_c$ for $c = \frac{1}{2}, 2$: $c = \frac{1}{2}$: $f \circ s_{1/2}(x) = f(2x) = (2x)^3 = 8x^3$ c = 2: $f \circ s_2(x) = f(x/2) = (x/2)^3 = x^3/8$



- (d) $s_c \circ f$ for $c = \frac{1}{2}, 2$: $c = \frac{1}{2}$: $s_{1/2} \circ f(x) = \frac{1}{2}f(x) = \frac{1}{2}x^3 = x^3/2$ c = 2: $s_2 \circ f(x) = 2f(x) = 2x^3$



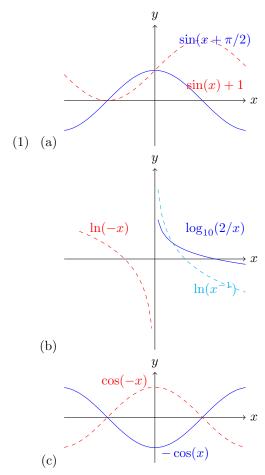
- (e) $f \circ r r \circ f = x^3 (-x)^3 = x^3 + x^3 = 2x^3$
- (5)

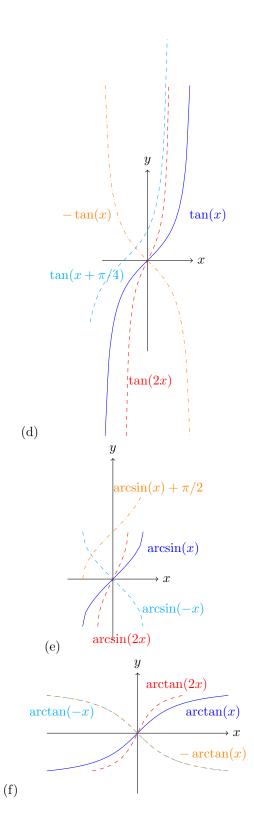


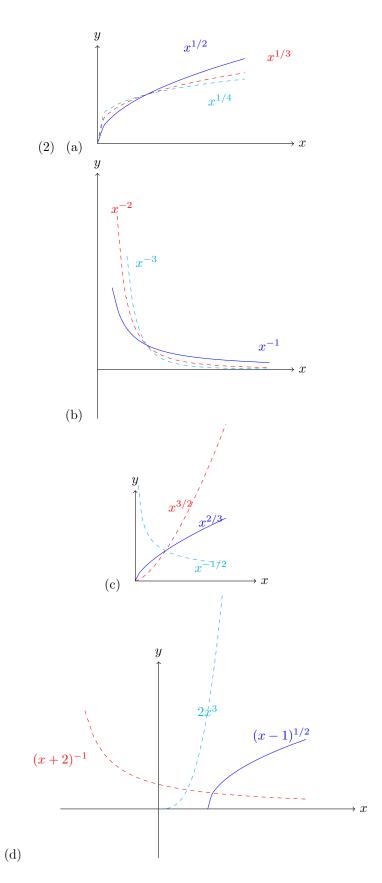
- (6) (a) $f \circ g(x) = (x+1)^2$, dom = \mathbb{R} $g \circ f(x) = x^2 + 1$, dom = \mathbb{R}
 - (b) $f \circ g(x) = \sqrt{x-2}$, dom = $[2, \infty)$
 - $g \circ f(x) = \sqrt{x} 2, \text{ dom } = [0, \infty)$ (c) $f \circ g(x) = \frac{1}{x^2 + 1}, \text{ dom } = \mathbb{R}$ $g \circ f(x) = \frac{1}{x^2} + 1$, dom = $\mathbb{R} \setminus \{0\}$
 - (d) $f \circ g(x) = \sin(2x)$, $dom = \mathbb{R}$ $g \circ f(x) = 2\sin(x), \text{ dom } = \mathbb{R}$
- (7) (a) $\sup = 4$, $\inf = 0$, \max attained at x = 2, \min at x = 0
 - (b) $\sup = 4$, $\inf = 0$, neither attained
 - (c) sup = 17, inf = 1, max at x = 2, min at x = 0
 - (d) $\sup = \infty$, $\inf = 1$, \min attained at x = 1, no \max
 - (e) $\sup = 1$, $\inf = 0$, \max attained at x = 1, no \min
 - (f) $\sup = e$, $\inf = e^{-1}$, $\max \text{ at } x = 1$, $\min \text{ at } x = -1$
- (8) (a) $\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \tan x + \cot x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{1}{\sin x \cos x} = \frac{2}{\sin 2x}$ (b) $(\sin x + \cos x)^2 + (\sin x \cos x)^2 = (1 + 2\sin x \cos x) + (1 2\sin x \cos x) = 2$
- (b) $(\sin x + \cos x) + (\sin x + \cos x) = (1 + 2\sin x \cos x) + (1 + 2\sin x \cos x) + (1 + 2\sin x \cos x) = (1 + 2\sin x \cos x) + (1 + 2$
 - - $= (2\cos^2 x 1)\cos x 2\sin^2 x \cos x$ = $2\cos^3 x \cos x 2(1 \cos^2 x)\cos x$

 - $= 2\cos^3 x \cos x 2\cos x + 2\cos^3 x = 4\cos^3 x 3\cos x$

Additional Practice Problems Solutions







(3) (a)
$$f \circ g(x) = e^{\ln x} = x$$
, dom = $(0, +\infty)$
 $g \circ f(x) = \ln(e^x) = x$, dom = \mathbb{R}

(b)
$$f \circ g(x) = |x - 3|$$
, $dom = \mathbb{R}$
 $g \circ f(x) = |x| - 3$, $dom = \mathbb{R}$

(c)
$$f \circ g(x) = \sqrt{x^2} = |x|$$
, dom = \mathbb{R}

$$g \circ f(x) = (\sqrt{x})^2 = x$$
, dom = $[0, +\infty)$

(c)
$$f \circ g(x) = \sqrt{x^2} = |x|$$
, $\dim = \mathbb{R}$
 $g \circ f(x) = (\sqrt{x})^2 = x$, $\dim = [0, +\infty)$
(d) $f \circ g(x) = \frac{1}{\frac{1}{x-1}} = \frac{x}{1-x}$, $\dim = \mathbb{R} \setminus \{0, 1\}$
 $g \circ f(x) = \frac{1}{\frac{1}{x-1}} = x - 1$, $\dim = \mathbb{R} \setminus \{1\}$

(e)
$$f \circ g(x) = (x^3)^{1/3} = x$$
, dom = \mathbb{R}
 $g \circ f(x) = (x^{1/3})^3 = x$, dom = \mathbb{R}

(f)
$$f \circ g(x) = (\sqrt{x-1})^2 + 1 = x$$
, dom = $[1, +\infty)$
 $g \circ f(x) = \sqrt{(x^2+1)-1} = |x|$, dom = \mathbb{R}

- (4) (a) $\sup = e$, $\inf = e^{-1}$, neither attained
 - (b) $\sup = 2$, $\inf = 0$, neither attained
 - (c) $\sup = \pi/2$, $\inf = -\pi/2$, neither attained
 - (d) $\sup = \infty$, $\inf = 1$, \min attained at x = 0, no \max
 - (e) $\sup = 1$, $\inf = 0$, neither attained
 - (f) $\sup = 2$, $\inf = -2$, both attained
 - (g) $\sup = 1$, $\inf = 0$, \max attained at x = 1, no \min

(5) (a) Even:
$$f(-x) = (-x)^4 + (-x)^2 = x^4 + x^2 = f(x)$$

(b) Odd:
$$f(-x) = (-x)^5 - (-x)^3 = -x^5 + x^3 = -f(x)$$

(b) Odd:
$$f(-x) = (-x)^5 - (-x)^3 = -x^5 + x^3 = -f(x)$$

(c) Neither: $f(-x) = (-x)^3 + (-x)^2 = -x^3 + x^2 \neq \pm f(x)$

(d) Odd:
$$f(-x) = \frac{-x}{(-x)^2 + 1} = \frac{-x}{x^2 + 1} = -f(x)$$

(e) Even: $f(-x) = (-x)^{-2} = x^{-2} = f(x)$

(e) Even:
$$f(-x) = (-x)^{-2} = x^{-2} = f(x)$$

(f) Neither:
$$f(-x) = |-x| + (-x) = |x| - x \neq \pm f(x)$$

(6) (a)
$$\sin(x+y)\sin(x-y) = \frac{1}{2}[\cos(2y) - \cos(2x)] = \sin^2 y - \sin^2 x$$

(b)
$$\cos^4 x - \sin^4 x = (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) = \cos 2x$$

(c)
$$\frac{1+\tan^2 x}{1+\cot^2 x} = \frac{\sec^2 x}{\csc^2 x} = \frac{\sin^2 x}{\cos^2 x} = \tan^2 x$$

(7) Proof. Using sum-to-product identities:

$$\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \frac{2\sin(2x)\cos x}{2\cos(2x)\cos x}$$
$$= \frac{\sin 2x}{\cos 2x} = \tan 2x$$

(8) (a)
$$(x^3)^{1/2} \cdot x^{-1/2} = x^{3/2} \cdot x^{-1/2} = x^1 = x$$

(b)
$$\frac{x^{2/3} \cdot x^{1/2}}{x^{-1/6}} = x^{2/3+1/2-(-1/6)} = x^{2/3+1/2+1/6} = x^{4/3}$$

(c) $(x^{-2}y^3)^{-1/2} = x^1y^{-3/2} = \frac{x}{y^{3/2}}$

(c)
$$(x^{-2}y^3)^{-1/2} = x^1y^{-3/2} = \frac{x}{y^{3/2}}$$

(d)
$$\left(\frac{x^{1/3}}{x^{-2/3}}\right)^3 = (x^{1/3 - (-2/3)})^3 = (x^1)^3 = x^3$$