MATHEMATICAL ANALYSIS 1 HOMEWORK 1

- (1) Prove that there are infinitely many prime numbers (Euclid's Theorem).
- (2) Prove that the solution of the equation $x^2 = 7$ is irrational.
- (3) Prove that for any set X and for any two subsets $A, B \subset X$, we have $(A \cup B)^C = A^C \cap B^C$.
- (4) Solve the inequality: $\sqrt{|x^2-4|} x \ge 0$.
- (5) Let $P \subseteq \mathbb{R}$ be the set of prime numbers.
 - (a) Is P bounded from above? from below? what is its infimum? supremum? do either the supremum or infimum belong to P?
 - (b) Let $Q = \{x \in \mathbb{R} \mid x^{-1} \in P\}$. Is Q bounded from above? from below? what is its infimum? supremum? do either the supremum or infimum belong to Q?
- (6) Consider the following subset of \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} \mid 0 \le x < 1 \quad \text{or} \quad x = \frac{2n-3}{n-1}, \ n \in \mathbb{N} \setminus \{0,1\} \right\}.$$

Is A bounded from above? from below? what is its infimum? supremum? do either the supremum or infimum belong to A?

SOLUTIONS

- (1) We prove by contradiction. Suppose there are finitely many primes p_1, p_2, \dots, p_n . Let N = $p_1p_2\cdots p_n+1$. Then N>1 and N is not divisible by any p_i (since division by p_i leaves remainder 1). Thus either N is prime or has a prime divisor different from all p_i , contradicting the assumption that p_1, \ldots, p_n are all primes.
- (2) We prove by contradiction. Suppose $x^2=7$ has a rational solution $x=\frac{p}{q}$ where $p,q\in\mathbb{N}$ are have no common divisors. Then $p^2 = 7q^2$, so $7 \mid p^2$. Since 7 is prime, $7 \mid p$, say p = 7k. Then $49k^2 = 7q^2$, so $7k^2 = q^2$ and $7 \mid q^2$, hence $7 \mid q$. This contradicts the assumption that p and q have no common
- (3) As in the proof we did in class, to show equality of two sets we show that they both contain one another. Let $x \in (A \cup B)^C$. Then $x \notin A \cup B$, so $x \notin A$ and $x \notin B$. Thus $x \in A^C$ and $x \in B^C$, so $x \in A^C \cap B^C$. Conversely, if $x \in A^C \cap B^C$, then $x \notin A$ and $x \notin B$, so $x \notin A \cup B$, hence $x \in (A \cup B)^C$.
- (4) The inequality is $\sqrt{|x^2-4|} \ge x$. For $x \le 0$, this holds automatically. For x > 0, we require $|x^2-4| \ge x^2$, which gives $x^2-4 \le -x^2$ or $x^2-4 \ge x^2$. The latter is impossible. The former gives $2x^2 \le 4$, so $x^2 \le 2$, i.e., $0 < x \le \sqrt{2}$. Therefore the solution is $x \in (-\infty, \sqrt{2}]$.
- (5) (a) P is not bounded from above (there are infinitely many primes). P is bounded from below by 0 (or by 2). We have $\inf P = 2 \in P$, and $\sup P$ does not exist in \mathbb{R} (or $\sup P = +\infty$).
- (b) Q = {1/p | p ∈ P} is bounded from above by 1/2 and from below by 0. We have sup Q = 1/2 ∈ Q and inf Q = 0 ∉ Q (since Q consists of reciprocals of primes, 0 ∉ Q).
 (6) Note that 2n-3/n-1 = 2(n-1)-1/n-1 = 2 1/n-1. For n ≥ 2, this sequence increases toward 2 from below. Thus A = [0,1) ∪ {1, 3/2, 5/3, 7/4,...} where the sequence approaches 2. We have inf A = 0 ∈ A, and sup A = 2 ∉ A (since all values 2n-3/n-1 < 2 for n ≥ 2). A is bounded both from above and from below.