MATHEMATICAL ANALYSIS 1 HOMEWORK 5

- (1) For the function $f(x) = \sin \frac{1}{x}$, find all $x_n \in (0,1)$ for which $f(x_n) = 1$ and all $y_n \in (0,1)$ for which $f(y_n) = -1$. Conclude that $\lim_{x\to 0^+} f(x)$ does not exist.
- (2) Prove that the ceiling function f(x) = [x] is left-continuous at every $x_0 \in \mathbb{R}$.
- (3) Prove the following proposition:

Proposition: Let $f: \mathbb{R} \to \mathbb{R}$ be defined in a neighborhood of x_0 (possibly not at x_0 itself). Then

$$\lim_{x \to x_0^-} f(x) = L \qquad \Leftrightarrow \qquad \lim_{x \to x_0^+} f(x) = L \quad \text{and} \quad \lim_{x \to x_0^-} f(x) = I$$

where L can be any number or $\pm \infty$. Moreover, the function is continuous at x_0 if and only if it is both right- and left-continuous at x_0 .

- (4) Let $f(x) = 5 + 2x \sin \frac{1}{x}$. Does the limit $\lim_{x \to +\infty} f(x)$ exist? Prove your answer.
- (5) Let $f: \mathbb{R} \to \mathbb{R}$. Prove that if $\lim_{x \to +\infty} f(x) > 0$ then there exists M > 0 s.t. f > 0 on the set $\{x \in \mathbb{R} : x > M\}$. Hint: we proved a very similar result in class.
- (6) Consider the sequence $a_n = \arctan\left(\frac{5n+6}{n+1}\right), n \in \mathbb{N}$.
 - (a) Is this a monotone sequence?
 - (b) Find its infimum and supremum.
 - (c) Do the minimum and maximum exist? If so, what are they?
 - (d) Does the limit $\lim_{n\to\infty} a_n$ exist? If so, what is it?
- (7) Using the definition of the limit prove the following:

 - (a) $\lim_{x \to 1} (2x^2 + 3) = 5$ (b) $\lim_{n \to \infty} \frac{n^2}{1 2n} = -\infty$
- (8) Determine the values of $\alpha \in \mathbb{R}$ for which the following functions are continuous on their domains. Explain your answers.

(a)
$$f(x) = \begin{cases} \alpha \sin(x + \frac{\pi}{2}) & \text{for } x > 0\\ 2x^2 + 3 & \text{for } x \le 0 \end{cases}$$
(b)
$$f(x) = \begin{cases} 3e^{\alpha x - 1} & \text{for } x \ge 1\\ x + 2 & \text{for } x < 1 \end{cases}$$

- (9) Compute the following limits
 (a) $\lim_{x\to 0} \frac{x^4 2x^3 + 5x}{x^5 x}$ (b) $\lim_{x\to -1} \frac{x+1}{\sqrt{6x^2 + 3} + 3x}$
 - (c) $\lim_{x\to+\infty} (\sqrt{x+1} \sqrt{x})$
 - (d) $\lim_{x\to-\infty} \frac{3^x-3^{-x}}{3^x+3^{-x}}$
- (10) Determine the domain and the behvior at the end-points of the domain of the following functions:

 - (a) $f(x) = \frac{x^3 x^2 + 3}{x^2 + 3x + 2}$ (b) $f(x) = \sqrt[3]{x}e^{-x^2}$ (hint: you may use the fact that $\lim_{x \to +\infty} (\frac{1}{3}\ln x x^2) = -\infty$)