MATHEMATICAL ANALYSIS 1 HOMEWORK 3

(1) Prove the following lemma:

Lemma. Let $f,g:\mathbb{R}\to\mathbb{R}$ be monotonically increasing on some $A\subseteq\mathbb{R}$. Then f+g is also monotonically increasing on A. If either f or g are strictly increasing on A, then so is f + g. The same statements hold if we replace everywhere the word 'increasing' with the word 'decreasing'.

(2) Prove the following lemma:

Lemma. Let $f, g : \mathbb{R} \to \mathbb{R}$. Then:

```
\Rightarrow g \circ f is monotone increasing.
  f, g are both monotone increasing
  f, g are both monotone decreasing
                                             \Rightarrow g \circ f is monotone increasing.
f,g are monotone of different kinds
                                             \Rightarrow g \circ f is monotone decreasing.
```

- (3) Show that if $f: A \subseteq \mathbb{R} \to \mathbb{R}$ is monotone increasing on A, then -f is monotone decreasing on A.
- (4) Let t_c and s_c be the translation and scaling functions, respectively. Let r be the reflection function. Consider the function $f(x) = x^3$ restricted to the interval [-1,1]. Sketch the following:
 - (a) $f \circ t_c$ for c = -1, 0, 1
 - (b) $t_c \circ f$ for c = -1, 0, 1
 - (c) $f \circ s_c$ for $c = \frac{1}{2}, 2$
 - (d) $s_c \circ f$ for $c = \frac{1}{2}, 2$
 - (e) The difference $f \circ r r \circ f$.
- (5) Sketch the graphs of the following functions (choose a relevant part of the graph to sketch):
 - (a) $\sin(x)$, $\sin(2x)$, $\sin(-x)$
 - (b) $\log_{\frac{1}{2}} x$, $\log_5 x$, $\log_5(x^2)$
 - (c) $\cos(x)$, $\cos(2x)$, $\cos(x-\frac{\pi}{2})$
- (6) For the following pairs of functions f and g, compute $f \circ g$ and $g \circ f$, and determine their domains:
 - (a) $f(x) = x^2$, g(x) = x + 1
 - (b) $f(x) = \sqrt{x}$, g(x) = x 2(c) $f(x) = \frac{1}{x}$, $g(x) = x^2 + 1$

 - (d) $f(x) = \sin(x), g(x) = 2x$
- (7) For the following functions f and subsets $A \subseteq \text{dom}(f)$, determine $\sup_A f$, $\inf_A f$, and whether the maximum and minimum are attained on A:

 - (a) $f(x) = x^2$, A = [0, 2](b) $f(x) = x^2$, A = (0, 2)
 - (c) $f(x) = x^3 + x^2 + 2x + 1$, A = [0, 2]

 - (d) $f(x) = \frac{1}{x}, A = (0, 1]$ (e) $f(x) = \frac{1}{x}, A = [1, +\infty)$
 - (f) $f(x) = e^x$, A = [-1, 1]
- (8) Using trigonometric identities, simplify the following expressions:
 - (a) $\frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)}$
 - (b) $(\sin(x) + \cos(x))^2 + (\sin(x) \cos(x))^2$
 - (c) $\frac{1-\cos(2x)}{\cos(2x)}$ $\sin(2x)$
- (9) Prove the following equalities:
 - (a) $\tan(x) + \cot(x) = \frac{2}{\sin(2x)}$
 - (b) $\cos(3x) = 4\cos^3(x) 3\cos(x)$

Additional Practice Problems

** These problems are for you to practice **

** They are not part of the homework assignment **

- (1) Sketch the graphs of the following functions (choose a relevant part of the graph to sketch):
 - (a) $\sin(x + \frac{\pi}{2})$, $\sin(x) + 1$
 - (b) $\log_{10}(\frac{2}{x})$, $\ln(-x)$, $\ln(x^{-1})$
 - (c) $-\cos(x)$, $\cos(-x)$
 - (d) $\tan(x)$, $\tan(2x)$, $\tan(x + \frac{\pi}{4})$, $-\tan(x)$
 - (e) $\arcsin(x)$, $\arcsin(2x)$, $\arcsin(-x)$, $\arcsin(x) + \frac{\pi}{2}$
 - (f) $\arctan(x)$, $\arctan(2x)$, $\arctan(-x)$, $-\arctan(x)$
- (2) Sketch the graphs of the following power functions:
 - (a) $x^{1/2}$, $x^{1/3}$, $x^{1/4}$ (b) x^{-1} , x^{-2} , x^{-3}

 - (c) $x^{2/3}$, $x^{3/2}$, $x^{-1/2}$
 - (d) $(x-1)^{1/2}$, $(x+2)^{-1}$, $2x^3$
- (3) For the following pairs of functions f and g, compute $f \circ g$ and $g \circ f$, and determine their domains:
 - (a) $f(x) = e^x$, $g(x) = \ln(x)$
 - (b) f(x) = |x|, g(x) = x 3

 - (c) $f(x) = \sqrt{x}$, $g(x) = x^2$ (d) $f(x) = \frac{1}{x-1}$, $g(x) = \frac{1}{x}$

 - (e) $f(x) = x^{1/3}$, $g(x) = x^3$ (f) $f(x) = x^2 + 1$, $g(x) = \sqrt{x 1}$
- (4) For the following functions f and subsets $A \subseteq \text{dom}(f)$, determine $\sup_A f$, $\inf_A f$, and whether the maximum and minimum are attained on A:
 - (a) $f(x) = e^x$, A = (-1, 1)
 - (b) $f(x) = \sqrt{4 x^2}$, A = (-2, 2)
 - (c) $f(x) = \arctan(x), A = \mathbb{R}$
 - (d) $f(x) = \frac{1}{1-x}$, A = [0,1)
 - (e) f(x) = x(2-x), A = (0,2)
 - (f) $f(x) = x^{1/3}$, A = [-8, 8]
 - (g) $f(x) = x^{-2}$, $A = [1, +\infty)$
- (5) Determine whether the following functions are even, odd, or neither:
 - (a) $f(x) = x^4 + x^2$
 - (b) $f(x) = x^5 x^3$
 - (c) $f(x) = x^3 + x^2$
 - (d) $f(x) = \frac{x}{x^2+1}$ (e) $f(x) = x^{-2}$

 - (f) f(x) = |x| + x
- (6) Using trigonometric identities, simplify the following expressions:
 - (a) $\sin(x+y)\sin(x-y)$
 - (b) $\cos^4(x) \sin^4(x)$
 - $(c) \frac{1+\tan^2(x)}{1+\cot^2(x)}$
- (7) Prove the following equality:
 - (a) $\frac{\sin(x) + \sin(3x)}{\cos(x) + \cos(3x)} = \tan(2x)$
- (8) Simplify the following expressions involving powers:
 - (a) $(x^3)^{1/2} \cdot x^{-1/2}$

 - (a) $(x)^{1/2}$ (b) $\frac{x^{2/3} \cdot x^{1/2}}{x^{-1/6}}$ (c) $(x^{-2}y^3)^{-1/2}$ (d) $\left(\frac{x^{1/3}}{x^{-2/3}}\right)^3$