MATHEMATICAL ANALYSIS 1 **HOMEWORK 2**

(1) Prove Newton's binomial formula. Hint: prove by induction. In your proof you may also use the formula:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

- (2) Let $f: X \to Y$ be a function between two sets X and Y.
 - (a) Prove that $A \subseteq f^{-1}(f(A))$ for any $A \subseteq X$.
 - (b) Give an example of when $A \neq f^{-1}(f(A))$.
- (3) Describe the following subsets of \mathbb{R} , specify what are their infimum and supremum, and determine whether their minimum and maximum are attained (explain your answers).
 - (a) $A = \{x \in \mathbb{R} \mid (x+1)(x-1)(x-5) < 0\} \cap \{x \in \mathbb{R} \mid \frac{3x+1}{x-2} \ge 0\}$
 - (b) $B = \{x \in \mathbb{R} \mid x 4 \ge \sqrt{x^2 6x + 5}\} \cup \{x \in \mathbb{R} \mid x + 2 > \sqrt{x 1}\}$ (c) $C = \{x \in \mathbb{R} \mid x = \frac{1}{n-2}, n = 3, 4, 5, \dots\}$
- (4) Describe and sketch the following subsets of \mathbb{R}^2 :
 - (a) $A = \{(x, y) \in \mathbb{R}^2$ | xy > 0

 - (a) $A = \{(x, y) \in \mathbb{R} \mid xy \ge 0\}$ (b) $B = \{(x, y) \in \mathbb{R}^2 \mid 1 + xy > 0\}$ (c) $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 > 0\}$ (d) $D = \{(x, y) \in \mathbb{R}^2 \mid x y \ne 0\}$ (e) $E = \{(x, y) \in \mathbb{R}^2 \mid |x y| < 2\}$ (f) $F = \{(x, y) \in \mathbb{R}^2 \mid |x y| < -2\}$
- (5) Describe the following sets: (explain your answers)
 - (a) dom (f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{\sin x}$.
 - (b) im (f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{\sin x}$. (c) dom (f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{2 + \sin x}$.

 - (d) dom(f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = 10^x$.
 - (e) $\operatorname{im}(f)$ where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = 10^x$.
 - (f) dom(f) where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \log_{10}(x)$.
 - (g) $\operatorname{im}(f)$ where $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \log_{10}(x)$.
- (6) For the following functions f and subsets $B \subseteq \mathbb{R}$, describe $f^{-1}(B)$.
 - (a) $f: \{3, 4, 5, \dots\} \to \mathbb{R}$ defined by $f(n) = \frac{1}{n-2}$, and B = (0, 1).
 - (b) In the previous question, what if B = [0, 1]?
 - (c) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^4$, B = [1, 16].
 - (d) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + 1$, B = (-26, -7].
 - (e) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \cos x$, $B = \{0\}$.
- (7) Compute $\frac{100!}{98!}$. Explain your answer.