Section 5.4 QZ: Consider any series of functions on any finite interval. Show that if it converges uniformly there it also converges in the L² sense and in the pointwise sense.

On some interval [a,b], let $\{X_n(x)\}_{n=1}^{\infty}$ and f(x) be functions such that the partial sums $S_N(x) = \sum_{n=1}^{N} A_n X_n(x)$ converge to f(x) imigorizing for some constants $\{A_n\}_{n=1}^{\infty}$. That is: we know that $\max_{a \le x \le b} |f(x) - S_N(x)| \longrightarrow 0$ as $N \to +\infty$.

(i) Let's start with the simple case: pointified convergence. For
any
$$y \in (a,b)$$
, $|f(y) - S_N(y)| \leq \max_{a \le x \le b} |f(w - S_N(x)| \rightarrow 0$.
This proves peintifie convergence.
(ii) To show L^2 -convergence we need to show that
 $\int_a^b |f(x) - S_N(x)|^2 dx$ tendo to $a = N \rightarrow +\infty$.
 $\int_a^b |f(x) - S_N(x)|^2 dx \leq \int_a^b \max_{a \le x \le b} |f(x) - S_N(x)|^2 dx$
 $= \max_{a \le x \le b} |f(x) - S_N(x)|^2 \int_a^b dx = \max_{a \le x \le b} |f(w) - S_N(x)|^2 (b-a)$
 $\max_{a \le x \le b} |f(w) - S_N(x)|^2 \int_a^b dx = \max_{a \le x \le b} |f(w) - S_N(x)| \rightarrow 0$ in
perfection eventually, $\max_{a \le x \le b} |f(w) - S_N(x)| \leq 1$ for that
 $\max_{a \le x \le b} |f(w) - S_N(x)|^2 \leq \max_{a \le x \le b} |f(w) - S_N(x)| \leq 1$ for that
 $\max_{a \le x \le b} |f(w) - S_N(x)|^2 (b-a) \rightarrow 0$ as $N \rightarrow +\infty$.
This implies that $\int_a^b |f(w) - S_N(x)|^2 dx$ tendo to 0 as $N \rightarrow +\infty$.
The implies that $\int_a^b |f(w) - S_N(x)|^2 dx$ tendo to 0 as $N \rightarrow +\infty$.

Section 5.4 Q3: Let In be a sequence of constants tending
to +
$$\infty$$
. Let $f_n(x)$ be the sequence of functions defined as
 $f_n(x) = \begin{cases} v_n & x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}] \\ 0 & x = \frac{1}{2} \\ 0 & 0 \\ -v_n & x \in (\frac{1}{2}, \frac{1}{2} + \frac{1}{n}] \\ 0 & 0 \\ 0 & 0 \\ \end{array}$
Show that: (a) f_n(b) = 0 pointwise.
(b) The convergence is not uniform.
(c) $f_n(x) \rightarrow 0$ in the L² sense if $\gamma_n = n^{\frac{1}{3}}$.
(d) $f_n(x)$ does not converge in the L² sense if $\gamma_n = n$.

(a) There are two cases:
$$X = \frac{1}{2} O_2 X \neq \frac{1}{2}$$
. If $X = \frac{1}{2}$, then $f_n(\frac{1}{2}) = 0$ th.
If $X \neq \frac{1}{2}$, then for $n > \frac{1}{|\frac{1}{2}-x|}$ we have that $|\frac{1}{2}-x| > \frac{1}{n}$ so that
 $f_n(x) = 0$. Hence, for any x , $f_n(x) \neq 0$ for only finitely using n's,
so that $f_n(x) \to 0$ for every x .

Section 5.4 Q12: Start with the Fourier series f(x) = x on (0, l). Apply Parsevel's equality. Find the sem $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

In Section 5.1 we worked out both the towner since
series and the torvier casive series for
$$f(x) = x$$
 or $(0,0)$.
Since $f(x) = x$ is an odd function, it makes more sence
to take the towner since series (as sines are also odd).
So we have: $x = \int_{n=1}^{\infty} (-1)^{n+1} \frac{2l}{n\pi} \sin\left(\frac{n\pi}{l}x\right) \otimes$
Parseval's equality is:
 $\int_{a}^{b} |f(x)|^{2} dx = \int_{n=1}^{\infty} |A_{n}|^{2} \int_{a}^{b} |X_{n}(x)|^{2} dx$
Applying this to \bigotimes leads to:
 $\int_{0}^{c} x^{2} dx = \int_{n=1}^{\infty} \frac{4l^{2}}{n^{2}\pi^{2}} \int_{0}^{l} \sin^{2} \left(\frac{n\pi}{l}x\right) dx$
 $\Rightarrow \quad \frac{x^{2}}{3}\Big|_{x=0}^{l} = \int_{n=1}^{\infty} \frac{4l^{2}}{n^{2}\pi^{2}} = \frac{1}{2l} \qquad \text{we seew this in section SI}$
 $\Rightarrow \quad \frac{1}{3}\int_{0}^{3} = \int_{n=1}^{\infty} \frac{2l^{3}}{n^{2}\pi^{2}} \rightarrow \int_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6}$

Section 6.1 Q2' Find the solutions that depend only on r of the eq. ux+ uyy+ uzz= k=u, where k>0.

Since
$$u$$
 is only a function of r , Au in spherical coordinates becomes: $\Delta u = u_{rr} + \frac{2}{r}u_{r} \otimes$
Following the hint, let $v = ur$. Then:

 $V_{rr} = (\mathcal{W})_{rr} = (\mathcal{W}_{r} + \mathcal{W})_{r} = \mathcal{W}_{rr} + 2\mathcal{W}_{r}$ Dividing this by r gives the RHS of , so we have:

$$\frac{V_{rr}}{r} = N_{rr} + \frac{2}{r}N_{r} = \Delta N = k^{2}N$$

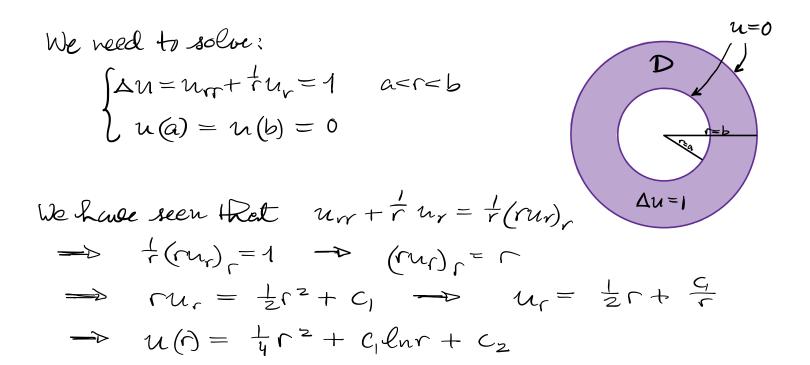
$$\rightarrow$$
 $\gamma_{rr} = k^2 ru = k^2 V$

 \rightarrow

$$\Rightarrow V_{rr} = k^{2} ru = k^{2} V.$$
The solutions of $V_{rr} = k^{2} V$ are
$$V(r) = A \operatorname{Cash}(kr) + B \operatorname{Sinh}(kr)$$

$$\Rightarrow u(t) = \frac{A}{r} \operatorname{Cash}(kr) + \frac{B}{r} \operatorname{Sinh}(kr)$$

Section 6.1 QG: Solve Uxx+Uzz=1 in the annulus a<r
b with u vanishing on both ends.



Now we apply the BCS:
$$0 = u(G) = \frac{a^2}{4} + c_1 l_n a + c_2$$

 $0 = u(b) = \frac{b^2}{4} + c_1 l_n b + c_2$

Subtracting these we have $C_1 = \frac{b^2 - a^2}{4(\ln a - \ln b)}$

which allows us to find: $C_2 = \frac{a^2 \ln b - b^2 \ln a}{4(\ln a - \ln b)}$.

<u>Section 6.1 Q9</u>: A spherical shell with inner radius 1 and outer radius 2 has a steady-state temperature distribution. Its inner boundary is held at 100°C. The outer below satisfies u_r = -r < 0, where r = const.
(a) Find the temp.
(b) what are the hottest and eithest temperatures?
(c) Can you choose r so that the temp. on the enter boundary is 20°C?

As a steady-state of the Reat/diffusion eq. we have the simple eq.
$$\Delta h = 0$$
, Written in 3D spherical coordinates
for a function that only depends on r , this becomes;
 $\Delta u = u_{rr} + \frac{2}{r}u_{r} = 0$ $1 = r = 2$
with RCs; $(D = 100)$
 $u_{r}(2) = -\gamma$

We know that the solution of the eq. is $u(r) = -\frac{c_1}{r} + C_2$. Flug in the BC at r=1: $100 = -\frac{c_1}{1} + C_2 = C_2 - C_1$ BC at r=2: $-r = u_r(2) = \frac{c_1}{2^2} = \frac{1}{4}C_1 \implies q=-4r$ and $C_2 = 100 + C_1 = 100 - 4r$.

(a)
$$u(r) = \frac{4r}{r} + 100 - 4r$$

(b) In (c) we found a function that is decreasing in r, so that the holtest temp is u(1) = 100. The coldest: u(z) = 100 - 2V,

(C) Clock $\gamma = 40$.