Section 2.3 QH: Generaler He alifusion eq.
$$
u_t = u_{xx}
$$
 in
\n $(x, t) \in (0, 0) \times (0, \infty)$ with $u(0, t) = u(1, t) = 0$ and
\n $u(x, 0) = u(x(1-x))$.
\na) Show the $u(x, t) = u(-x, t)$ $u(x, 0) = 0 \Rightarrow x \le 1$.
\nb) Show the $u(x, 0) = u(-x, t)$ $u(x, 0) = 0 \Rightarrow x \le 1$.
\nc) Use the energy method to show the $\int_{0}^{t} u(x, 0)^{2} dx$
\nis a third, denoted to the other, $\int_{0}^{t} u(x, 0)^{2} dx$
\nis a third, u to the second, $\int_{0}^{t} u(x, 0)^{2} dx$
\n
\nDenote Re [0,1] × [0,0]
\n Re Im $u(x, t) = 1$ Re
\n Im Im $u(x, 0) = 4x(1-x)$
\n Im $(x, 0) = 4x(1-x)$
\n Im $(x, 0) = 4x(1-x)$
\n Im Im

b) Let $V(x,t) = u(-x,t)$. Then: $V_t = U_t$, $V_x = -U_x$, $V_{xx} = -(-u_x)_x = \nu_{xx}$. Hence $V_t - V_{xx} = W_t - u_{xx} = 0$ Moreover: $V(G,t) = W(I,t) = 0$ $V($ ₁ $) = u(0, 0) = 0$ $V(x,0) = U(-x,0) = Y(-x)x$ So v solves the same problem like n. We know that solutions are migue ("Unigueuess of Solutions" theorem) so that i and i runst be the same: $u(x,t) = v(x,t) = u(-x,t)$ for all $t\geq 0$ and $0\leq x\leq 1$,

c) The energy method is the method where we
\nmultiply the eq, by u and integrate:
\n
$$
Tw = u_x = 0
$$
\n
$$
Mu \pm i\pi/2
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} u_x dx - \int_{0}^{1} u(x)u_x dx - \int_{0}^{1} u(x)u_x dx
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} u_x^2 dx + \int_{0}^{1} u_x^2 dx - \frac{1}{2} \int_{0}^{1} u_x dx - \int_{0}^{1} u_x dx
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} u_x^2 dx - \frac{1}{2} \int_{0}^{1} u_x^2 dx
$$
\n
$$
= 2 \int_{0}^{1} u_x^2 dx
$$
\n
$$
= 2 \int_{0}^{1} u_x^2 dx
$$
\n
$$
= 2 \int_{0}^{1} u_x^2 dx
$$
\n
$$
= 0
$$
\nBut we know that $\rightarrow \infty$ slightly (i.e. it is not 0).
\nThus, we know that $\rightarrow \infty$ is the sum that
\n0 $\leq u \leq 1$ and $\frac{1}{2} \int_{0}^{1} u_x dx$

This means that it is impossible for u_x to always be 0 along lives of constant t. Hene S'it de strictly decreases in time.

Section 2.3 26: Prove the comparison principle for the diffusion $eg:$ if u and v are two solutions and if $u \le v$ for $t = 0$, $x = 0$, $x = 1$, then $u \le v$ for $t \ge 0$ and $x \in [0, l]$. Define $U = u - v$. Then $W \leq 0$ on Want to
show that $u \leq v$ $\Gamma = \{\text{bottom} \} \cup \{\text{night} \} \cup \{\text{left} \}$ ($\text{left} \}$ war \rightarrow in here \mathcal{L} By linearity of the diffusion eg., $w = \frac{1}{\sqrt{1 + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2}$ is also a solution.

 B_3 the maximum principle, $w \in o$ within the infinite rectangle $R = [0, 1] \times [0, \infty)$.

 S_0 $u - v = w \le 0$ \longrightarrow $u \le v$ in R.

We know What the forunda is $u(x,t) = \sqrt{\frac{1}{4\pi kt}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4kt}} f(y) dy$

In our case this simplifies to $n(k,t) = \frac{1}{\sqrt{4\pi kt}} \int_{0}^{l} e^{-\frac{(x-y)^2}{4kt}} dy$

To express in teams of the error function, make the change
\nof variables
$$
p = \frac{dy}{\sqrt{nkt}}
$$
 so that
\n
$$
dp = \frac{dy}{\sqrt{nkt}} \longrightarrow dy = \sqrt{4kt} dp
$$
\n
$$
\implies u(x,t) = \frac{1}{\sqrt{\pi}} \int_{\frac{-L}{\sqrt{nkt}}}^{\frac{L}{\sqrt{nkt}}} e^{-\rho^2} dp
$$
\n
$$
= \frac{1}{\sqrt{\pi}} \int_{0}^{\frac{L}{\sqrt{nkt}}} e^{-\rho^2} dp - \frac{1}{\sqrt{\pi}} \int_{0}^{\frac{L}{\sqrt{nkt}}} e^{-\rho^2} dp
$$
\n
$$
= \frac{1}{2} Erf \left(\frac{\frac{L}{\sqrt{nkt}}}{\sqrt{nkt}} \right) - \frac{1}{2} Erf \left(\frac{-L \times}{\sqrt{nkt}} \right)
$$

 $\int_{-\infty}^{\infty} e^{-\beta} d\rho = \sqrt{\pi}$ and Section 2.4 Q7: Show that that $\int_{-\infty}^{\infty} \zeta(x,t) dx = 1$. We've done this in class too!

Section 2.4
$$
\alpha 18
$$
: Solve the heat e_1 with curvethon:
\n
$$
\begin{cases}\nu_t - k v_{xx} + v_{xx} = 0 & t > 0 \quad -\infty < x < \infty \\
u(x, 0) = \phi(x) & -\infty < x < \infty\n\end{cases}
$$
\nwhere V is a constant.

Make the substitution
$$
y = x - \sqrt{t}
$$
, $x = y + \sqrt{t}$:

\nDefine $\forall (y, t) = u(y + \sqrt{t}, t)$.

\nThen $\forall t = u_x \cdot \sqrt{t} + u_t$

\n $\forall x = u_x$

\n $\forall x = u_{xx}$

So:
$$
0 = u_t + V u_x - k u_{xx} = v_t - k v_{xx}
$$

$$
V_t = v_{xx}
$$

So V satisfies the nunal diffusion eq. with the initial condition $V(y, 0) = W(y, 0) = \phi(y)$. Hence

$$
\mathbf{y}(\mathbf{y}_1t) = \int_{-\infty}^{\infty} \mathbf{S}(\mathbf{y}-\mathbf{v},t) \phi(\mathbf{w}) d\mathbf{w}
$$

 $u(x,t) = v(x-v+1,t) = \int_{-\infty}^{\infty} S(x-v+1-v,t) \phi(v) dw$