Section 2.3 QY: Consider the diffusion of
$$U_{t-1}$$
 with in
 $(x,t) \in (0,1) \times (0,\infty)$ with $u(0,t) = u(1,t) = 0$ and
 $u(x,0) = 4x(1-x)$.
a) Show that $0 < u(x,t) < 1$ $\forall t > 0$, $0 < x < 1$.
b) Shar that $0 < u(x,t) < 1$ $\forall t > 0$, $0 < x < 1$.
c) Use the energy method to show that $\int_0^1 u(x,0)^2 dx$
is a strictly diversating function of t .
Denote $R = [0,1] \times [0,\infty)$,
 $T = [bottom] \cup [left side] \cup [right side]$
a) By the strong maximum principle
the max of $u(x,t)$ in R and
is achieved on the boundary Γ .
On the sides $u = 0$. On the
bottom $u(x,0) = 4x(1-x)$, $t = 0$
 $u(\frac{1}{2},0) = 4 \cdot \frac{1}{2} \cdot \frac{1}{2} = 1$.
It is easy to see that this is the wax.
So $u(x,t) < 1$ (strict <) incide R , i.e. for
 $x \in (0,1)$, $t > 0$.
Straitards, by the throug minimum principle, u achieves its
Winimum on Γ . Since $u > 0$ or Γ , it must hold that
 $u(x,0) > 0$ (strict >) inside R . So inside R

b) Let $V(X_1t) = n(1-x_1t)$. Then: $V_t = u_t$, $V_x = -u_x$, $V_{xx} = -(tu_x)_x = u_{xx}$. Hence $V_t - V_{xx} = u_t - u_{xx} = 0$. Moreover: V(0,t) = u(1,t) = 0 V(t,t) = u(0,t) = 0 V(x,0) = u(1-x,0) = 4(1-x)xSo V solves the same problem like u. We know that solves the same problem like u. We know that solves one unique ("Uniqueness of Solutions" theorem) so that u and v runst be the same: u(x,t) = V(x,t) = u(1-x,t)for all $t \ge 0$ and $0 \le x \le 1$.

This means that it is impossible for 21x to always be 0 along lives of constant t. Hence Sond x strictly decreases in time,

Section 2.3 QG: Pour de comparison principle for the diffusion eq: if n and V are two solutions and if $n \leq v$ for t=0, x=0, x=1, then $n \leq v$ for $t \geq 0$ and $x \in [0, l]$. Define U=u-v. Want to chow that Then W < 0 on u≦v u≤v → r = 2 bottom 3 U [right 3 U { left 3. in here R By linearity of the diffusion eq., w n ≤ v 0 is also a solution.

By the maximum principle, $W \leq 0$ within the infinite rectangle $R = [0, 1] \times [0, \infty)$.

So $u-v=w\leq 0 \longrightarrow u\leq v$ in R.

Section 2.4 Q1:	Solve the diffusion eq.	with the initial
condition	$\varphi(x) = \begin{array}{c} 1 & x < l \\ 0 & x > l \end{array}$	

We know that the formula is $u(x,t) = \sqrt{4\pi kt} \int_{-\infty}^{\infty} e^{-\frac{(k-3)^2}{4kt}} \phi(3) dy$

In our case this simplifies to $n(x,t) = \sqrt{\frac{1}{4\pi kt}} \int_{-\ell}^{\ell} e^{-\frac{(x-y)^2}{4kt}} dy$

To express in terms of the error function, make the change
of variables
$$P = \frac{y_{ikt}}{y_{ikt}}$$
 so that
 $dp = \frac{d2}{v_{ikt}} \longrightarrow dy = \sqrt{4kt} dp$
 $\longrightarrow n(x,t) = \sqrt{\pi t} \int_{-\frac{t-x}{V_{ikt}}}^{\frac{t}{V_{ikt}}} e^{-p^2} dp$
 $= \frac{1}{\sqrt{\pi t}} \int_{0}^{\frac{t-x}{V_{ikt}}} e^{-p^2} dp - \frac{1}{\sqrt{\pi}} \int_{0}^{-\frac{t-x}{V_{ikt}}} e^{-p^2} dp$
 $= \frac{1}{2} \operatorname{Erf}\left(\frac{t-x}{v_{ikt}}\right) - \frac{1}{2} \operatorname{Erf}\left(-\frac{t-x}{v_{ikt}}\right)$

Section	2.4	Q6	;	Compute	$\int_{0}^{\infty} e^{-x^2} dx$
Weire	dore	Ris	ù	clase!	

Section 2.4 Q7: Show that $\int_{-\infty}^{\infty} e^{-p^2} dp = \sqrt{\pi}$ and that $\int_{-\infty}^{\infty} S(x,t) dx = 1$. We've done this in class tos!

Section 2.4 Q18: Solve the heat eq with convection:

$$\begin{cases}
u_t - ku_{xx} + Vu_x = 0 & t > 0 & -\infty < x < \infty \\
u(x, 0) = \phi(x) & -\infty < x < \infty
\end{cases}$$
where V is a constant.

Make the substitution
$$y = x - Vt$$
, $x = y + Vt$:
Define $V(y_1t) = U(y_tVt,t)$.
Then $V_t = u_x \cdot V + u_t$
 $V_x = u_x$
 $V_{xx} = u_{xx}$

So:
$$0 = \underbrace{n_t + Vn_x}_{V_t} - k \underbrace{n_{xx}}_{V_{xx}} = V_t - k V_{xx}$$

So V satisfies the neual diffusion eq. with the initial condition $V(y,0) = n(y,0) = \phi(y)$. Hence

$$V(y_1t) = \int_{-\infty}^{\infty} S(y_-w_1t) \phi(w) dw$$