
Robin boundary condition:

An example of a Robin BC 10 when on end of a string is free to more up and down on a track,

Other important PDEs:

Wave eg. i higher dimensions:

For a round drumhead we can separate variables $u(q\theta,t) = R(r) \Theta(\theta) T(t) + get$

$$\Rightarrow \frac{T''}{c^2T} = \frac{R''}{R} + \frac{R'}{rR} + \frac{\Theta''}{r^2\Theta} = -\lambda$$
So Ret for $R_1\Theta$ we get:
$$\frac{r^2R''}{R} + \frac{rR'}{R} + \frac{\Theta''}{\Theta} = -\lambda$$

$$\frac{\int \tau'' + c = \lambda T = 0}{\Theta'' + \Upsilon\Theta = 0}$$

$$\frac{\int \Gamma'' + c = \lambda T = 0}{\nabla \Gamma + \Upsilon\Theta = 0}$$

$$\frac{\int \Gamma'' + c = \lambda T = 0}{\nabla \Gamma + \Upsilon\Theta = 0}$$

$$\frac{\partial \Gamma'' + \Gamma \nabla \Theta = 0}{\nabla \Gamma + \Upsilon\Theta}$$

We have an interplay between tub parameters &, V.

Maxwell's equations: These described the behaviour of electric and magnetic fields in the presence of charges and currents.

$$\vec{E}: \mathbb{R}^3 \to \mathbb{R}^3$$
 electric field $\vec{B}: \mathbb{R}^3 \to \mathbb{R}^2$ magnetic field $c =$ speed of light $p: \mathbb{R}^3 \to \mathbb{R}_+$ charge density $\vec{J}: \mathbb{R}^3 \to \mathbb{R}^3$ current density

$$\begin{cases}
\frac{\partial \vec{E}}{\partial t} = c \nabla x \vec{B} - 4\pi j & \nabla \cdot \vec{E} = 4\pi \rho \\
\frac{\partial \vec{B}}{\partial t} = -c \nabla x \vec{E} & \nabla \cdot \vec{B} = 0
\end{cases}$$