Teoreun:	Uniqueness	Solutions	
The Dirichlet problem for the difluesen equation			
Has a unique solution is specified	+		
That is, if u is specified	+		
on the blue edges	+		
if is uniquely determined	+		
if is uniquely determined	+		
negion	+
negion	x	x	x
Int underneurated method, statement is Ris			

There is at mest one solution to

 $\label{eq:22} \left\{ \begin{array}{lll} \displaystyle u_t - k \, u_{xx} = f(x,t) & x_s x \leq x, & t > t, \\ \displaystyle u(x,t_s) = \phi(x) & x_s x \leq x, \\ \displaystyle u(x,t) = g(t) & u(x,y) = k(t) & t > t, \end{array} \right.$

where f, p, g, h are given functions.

Since
$$
u_1
$$
 and u_2 have the same boundary
and initial conditions, their different
 $u = u_1 - u_2$ has homogeneous Dirichlet
boundary + initial conditions, i.e. O:

$$
\begin{cases}\n\omega_{t} - k \omega_{xx} = 0 & x_{0} \le x \le x_{1} & t \ge t_{0} \\
\omega_{t} (x_{0}, t_{0}) = 0 & x_{0} \le x \le x_{1} \\
\omega_{t} (x_{0}, t_{1}) = \omega_{t} (x_{1}, t_{1}) = 0 & t \ge t_{0}\n\end{cases}
$$

Part 2:	Define	so before.	Then
$W_t - kW_{xx} = 0$	$W_{\text{tr}} = W_{\text{tr}} \times \frac{1}{2}$	$W_{\text{tr}} = \frac{1}{2} (W^2)_t - k(W_{\text{tr}} W)_{\text{tr}} + kW_{\text{tr}}^2$	$W_{\text{tr}} = \frac{1}{2} (W^2)_t - k(W_{\text{tr}} W)_{\text{tr}} + kW_{\text{tr}}^2$

$$
0 = \int_{x_{0}}^{x_{1}} \left[\frac{1}{2} (u(x,t)^{2})_{t} - k (w_{x}(x,t)w(x,t))_{x} + k w_{x}(x,t)^{2} \right] dx
$$

=
$$
\int_{x_{0}}^{x_{1}} \frac{1}{2} (w(x,t)^{2})_{t} dx - k [w_{x}(x,t)w(x,t)]_{x=x_{0}}^{x_{1}} + k \int_{x_{0}}^{x_{1}} w_{x}(x,t)^{2} dx
$$

=
$$
\frac{d}{dt} \int_{x_{0}}^{x_{1}} \frac{1}{2} w(x,t)^{2} dx = k [w_{x}(x_{1},t)w(x_{1},t)^{2} - w_{x}(x_{0},t)w(x_{0},t)]
$$

So we have: $O = \frac{d}{dt} \int_{x_a}^{x_1} \frac{1}{2} W(kt) dt + k \int_{x_a}^{x_1} W_k(kt)^2 dx$

So this term is 0

Hence: $\frac{d}{dt}\int_{x_0}^{x_1} \frac{1}{2}u(x,t)^2 dx = -k\int_{x_1}^{x_1} w_x(x,t)^2 dx \le 0$

 $S_{\scriptscriptstyle G}$ $\int_{x_{\scriptscriptstyle G}}^{x_{\scriptscriptstyle \parallel}}\frac{1}{2}w(x,t)^2dx$ is a decreasing function of time.

But $\int_{x_0}^{x_1} \frac{1}{2} \omega(x_1 t_0)^2 dx = \int_{x_0}^{x_1} \frac{1}{2} \cdot 0^2 dx = 0$ $\searrow W \equiv 0$ identically.

Stability of solutions In addition to uniqueness we can show another intuitive aspectof solutions stability That is solutions that are close initially remain close at later times

$$
W = \text{mod} \quad \text{con} \quad \text{side} \quad \text{if} \quad \text{true} = 0 \quad \text{false} \quad \text{true} \quad \text{true}
$$

and want to compare u_{1},u_{2} that have ϕ_{1},ϕ_{2} initially.

Proof: From the energy method we saw that $w=u,-u_2$ s atisfies that $\int_{x_0}^{x_1} w(x,t)^2 dx$ is a decreasing function of time In particular

$$
\int_{x_{0}}^{x_{1}} [\mu_{1}(x, t) - \mu_{2}(x, t)]^{2} = \int_{x_{0}}^{x_{1}} \mu(x, t)^{2} dx
$$

$$
\leq \int_{x_{0}}^{x_{1}} \mu(x, t)^{2} dx = \int_{x_{0}}^{x_{1}} [\phi_{1}(x) - \phi_{2}(x)]^{2} dx.
$$

Theorem:
$$
(L^{\infty}-doseuels, or "uniform" chosenes)
$$

\nFor any $t>t_0$
\n $x \in (x_0,x_1)$ $|u_1(x,t)-u_2(x,t)| \leq \frac{max}{x \in (x_0,x_1)} |\phi_1(x)-\phi_2(x)|$
\n $Proof:$ From the maximum value

1180
\n10. (x, t) - u₂(x, t)
$$
\leq \frac{max}{xe(x, x)}
$$
 | $\phi_1(x) - \phi_2(x)$
\nand from the minimum price mu ?
\n $u_1(x,t) - u_2(x,t) \geq -\frac{min}{xe(x, x)}$ | $\phi_1(x) - \phi_2(x)$ | $u_1(x,t) - u_2(x,t) \geq -\frac{min}{xe(x, x)}$ | $\phi_1(x) - \phi_2(x)$ |

Hence:
$$
\operatorname{Area} \left(\frac{1}{x} \int u_1(x, \theta - u_2(x, t)) \right) \leq \operatorname{max}_{x \in (x_0, x_1)} |\phi_1(x) - \phi_2(x)|
$$

 \bigcap