Section 5.2 28 ^a Prove that differentiation switches even to add and odd to even ^b Prove the same forintegration ignoring the const ofint

Theother direction is similar

(b) Suppose
$$
\int_{0}^{x} f(x) = f(x)
$$
. Define $g(x) = \int_{0}^{x} f(s) ds$. Then:
\n
$$
g(-x) = \int_{0}^{-x} f(s) ds = -\int_{x}^{0} f(s) ds = \int_{x}^{0} f(t) dt
$$
\n
$$
= -\int_{0}^{x} f(t) dt = -\int_{0}^{x} f(t) dt = -g(x)
$$

The other direction is similar

Section 52 210: (a) Let ϕ k be cont. on $(0,0)$. Under what conditions is its odd extension also a cont. function? (b) Let $\phi(\vec{x})$ be a differentiable function or $(0, l)$. Under what conditions is its odd extension also a differentiable function? (c) Sanc as (a) for even, (d) same as (b) for even.

First let's see graphically how an odd/are extension looks like:

(a) We have to require continuity at $x=0$. So we need the limits from the left and the right to agree: $E_{s,0}$ $\phi(0+\epsilon) = E_{s,0}$ $\phi(0-\epsilon) = E_{s,0}$
This is This is
what we require from aldress Su ve require that $\phi(0+)= -\phi(0-)$ Emit From Linit $\Rightarrow \phi(0+) + \phi(0-) = 0$ Since we want ϕ to be continuous, ϕ (0-) = ϕ (0+) = ϕ (0). So we have: $2\phi(0)=0$ \implies $\phi(0)=0$

(b) He need for
$$
\phi
$$
 to be continuous (i.e., $\phi(0)=0$ from (a))
\nbut we also need the derivatives from the right and left
\nat 0 to equal one another.
\n
$$
\lim_{\epsilon \to 0} \frac{\phi(0+9-\phi(0))}{\epsilon} = \lim_{\epsilon \to 0} \frac{\phi(0)-\phi(0-\epsilon)}{\epsilon} \le \lim_{\epsilon \to 0} \frac{\phi(0)}{\epsilon}
$$
\n
$$
\implies \lim_{\epsilon \to 0} \frac{\phi(\epsilon)}{\epsilon} = \lim_{\epsilon \to 0} \frac{\phi(\epsilon)}{\epsilon} \quad \text{while is a tautology. So there's}
$$

no condition to impose.

(c) We require:
$$
\phi(0+)=\phi(0-)
$$

\nThis will always hold, since ϕ is assumed to be continuous, as that $\phi(0+)=\phi(0-)=\phi(0)$.
\nSo that $\phi(0+)=\phi(0-)=\phi(0)$.
\nSo that $\phi(0+)=\phi(0-)=\phi(0)$.
\n(d) We require: $\frac{\sin \phi(0+0)-\phi(0)}{\varepsilon}=\lim_{\varepsilon \to 0} \frac{\phi(0)-\phi(0-\varepsilon)}{\varepsilon}$
\n $\Rightarrow 2 \lim_{\varepsilon} \frac{\phi(\varepsilon)-\phi(0)}{\varepsilon}=0$

$$
-\epsilon_{00} \qquad \epsilon_{01} \qquad \text{lim} \qquad \frac{\phi(\epsilon) - \phi(0)}{\epsilon} = 0
$$

 \Rightarrow The right derivative of $\phi(x)$ at $x=0$ is 0.

Section 5.2 Q17: Show that a complex-valued function f(x) is real-valued if and only if its souplex Fourier coefficients satisfy $C_n = C_{-n}$.

Write
$$
f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}
$$
 (for simplicity take $l = \pi$).

in this step we
swap na -n Assume that $f(x)$ is real-valued. So $f(x) = \overline{f(x)}$.
 $\sum_{n \in \mathbb{Z}} c_n e^{inx} = f(x) = \overline{f(x)} = \sum_{n \in \mathbb{Z}} c_n e^{inx} = \sum_{n \in \mathbb{Z}} c_n^* e^{inx} = \sum_{n \in \mathbb{Z}} c_n^* e^{-inx} = \sum_{n \in \mathbb{Z}} c_n^* e^{inx}$ So we find that $\sum_{n\in\mathbb{Z}}c_ne^{inx}=\sum_{n\in\mathbb{Z}}c^*_{-n}e^{inx}$. Since $\{e^{inx}\}_{n\in\mathbb{Z}}$ is an orthogonal basis, any expansion of a function in these basis functions is unique, i.e. the coefficients must be the same: $C_n = C_{-n}$.

Conversely, a given that
$$
C_n = C_m^*
$$
.
\n
$$
\hat{f}(x) = \frac{1}{n\epsilon} C_n e^{inx} = \frac{1}{n\epsilon} C_m^* e^{inx} = \frac{1}{n\epsilon} C_m^* e^{-inx} = \frac{1}{n\epsilon} C_m^* e^{inx} = \frac{1}{n\epsilon} C_m e^{inx} = \frac{1}{n\epsilon} C_m e^{inx}
$$

Section 5.3 Q1: (a) Find the real vectors that are orthogonal to the given $vectors (1,1,1)$ and $(1,-1,0)$. (L) Chrasing an anover to (c), expand the vector (2,-3,5) as a linear combination of these three mutually orthogoial vectors.

(a) We look for a vector
$$
(x,y,z)
$$
 that is orthogonal to $(1,1)$ and $(1-1,0)$.
\n1. $(x,y,z) \cdot (1,1,1) = 0 \implies x+y+z=0 \implies z=-(x+y)$
\n2. $(x,y,z) \cdot (1,-1,0) = 0 \implies x-y=0 \implies x=y$
\nChoose $x=1 \implies y=1 \implies z=-2$: multiples $f(\frac{1}{2},\frac{1}{2})$
\nare orthogonal to both given vectors.

(b) Denote
$$
V_1 = (J_1, J_2) = (I_1 - I_1, 0)
$$
 $V_2 = (I_1 - I_2)$

\n $V = (2, -3, 5)$. Writing $V = \sum_{i=1}^{3} a_i V_i$, we seek a_i . The formula for a_i and a_i is $a_i = \frac{1}{\|V_i\|_2} \times (V_i V_i)$.

 $||V_1||^2 = |^2 + |^2 + |^2 = 3$ $(V_1V_1) = 2 - 3 + 5 = 3 \implies Q_1 = \frac{3}{3} = 1$ $||v_2||^2 = i^2 + (i)^2 + 0^2 = 2$, $((jv_2)^2 + 3 = 5 \implies a_2 = \frac{5}{2}$ $||V_3||^2 = |^2 + |^2 + (-2)^2 = 6$. $(V_1V_3) = 2 - 3 - 10 = -1$ $\Rightarrow Q_3 = -\frac{11}{6}$

 $V = 1 \cdot V_1 + \frac{5}{2}V_2 - \frac{11}{6}V_3$. \Rightarrow

Section 5.3 Q2: (a) On the internal [5,1], show that the function
$$
\frac{1}{1}(x) = x
$$
 is orthogonal to the constant function. (b) Find a quadratic polynomial that is orthogonal to both 1 and x. (c) Find a cubic polynomial that is orthogonal to all quadratic.

(a) Let
$$
g(x) = c
$$
 where c is a constant. Then:
\n $(f,g) = \int_{-1}^{1} x \cdot c \, dx = c \left[\frac{x^2}{2} \right]_{x=-1}^{1} = c \left(\frac{1}{2} - \frac{1}{2} \right) = 0$
\n \implies by definition f and g are orthogonal.

(b) Let
$$
h(x) = Ax^2 + Bx + C
$$
. We first compute (h, f) and (k, g) .
\n
$$
(h, f) = \int_{-1}^{1} (hx^2 + Bx + C) \times dx = \int_{-1}^{1} (hx^3 + Bx^2 + Cx) \times dx
$$
\n
$$
= \left[\frac{A}{4}x^4 + \frac{B}{3}x^3 + \frac{C}{2}x^2 \right]_{x=1}^{1} = \frac{A}{4} + \frac{B}{3} + \frac{C}{2} - \left[\frac{A}{4} - \frac{B}{3} + \frac{C}{2} \right] = \frac{2}{3}B
$$
\n
$$
(h, g) = \int_{-1}^{1} [hx^2 + Bx + C] \times dx = \left[\frac{A}{3}x^3 + \frac{B}{2}x^2 + Cx \right]_{x=-1}^{1}
$$
\n
$$
= \frac{2}{3}A + 2C \qquad \text{where } \frac{1}{3}R = 1 \text{ and } \frac{1}{3}R = 0, \quad A = -3C.
$$
\nWe have the feedback in the above A is the absolute value of the formula.

(c) Let
$$
k(x) = Ax^3 + Bx^2 + Cx + D
$$
, We first compute:
\n
$$
(k,f) = \int_{-1}^{1} (Ax^3 + Bx^2 + Cx + D)x dx = \left[\frac{A}{5}x^5 + \frac{B}{4}x^4 + \frac{C}{3}x^3 + \frac{D}{2}x^3\right]_{x=x}^{1}
$$
\n
$$
= \frac{24}{5} + \frac{25}{3}
$$
\n
$$
(k,g) = \int_{-1}^{1} (Ax^3 + Bx^2 + Cx + D) dx = \frac{25}{3} + 2D
$$

$$
(k, k) = \int_{1}^{1} (A x^{3} + B x^{2} - C x + D) (3x^{2} - 1) dx =
$$
\n
$$
= \int_{-1}^{1} (3Ax^{5} + 3Bx^{4} + (3C - A)x^{3} + (3D - B)x^{2} - Cx - D) dx
$$
\n
$$
= \frac{6}{5}B + \frac{2(3D - B)}{3} - 2D = (\frac{6}{5} - \frac{2}{3})B + 20D - 2D
$$
\n
$$
= (\frac{6}{5} - \frac{2}{3})B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D - 2D = 0
$$
\n
$$
= \frac{6}{5}B + 20D -
$$

 $k(x) = 5x^3 - 3x$.

Section 5.3
$$
Q4
$$
: *Consider* FL problem
\n(a) Find the solutions in series form.
\n(b) Show that the series columns are equivalent to the following a time is required for $u(t)$ to the
\nthe approximation by U by which $et = U$ and $u(t) = 0$ for $u(t)$ to the
\nthe approximation by U by which $et = end$.

(a) Define
$$
v(x,t) = u(x,t) - U
$$
.
\nThen v satisfies the problem:
\nWe have seen this problem class
\n $v(x, t) = 0$
\n $v(x, t) = 0$

$$
V(k,t) = \sum_{n=0}^{\infty} C_n e^{-k \frac{\pi^2}{\ell^2} (n+\frac{1}{2})^2 t} \sin(\frac{\pi}{\ell} (n+\frac{1}{2})x).
$$

We need to use the initial condition $V(x, 0) = -\tilde{U}$.

$$
-U = \sqrt{(x,0)} = \sum_{n=0}^{\infty} C_n \sin(\frac{\pi}{\ell}(n+\frac{1}{2})x)
$$

\n
$$
\Rightarrow C_n = \frac{2}{\ell} \int_{0}^{\ell} (U) \sin(\frac{\pi}{\ell}(n+\frac{1}{2})x) dx = \frac{2U}{(n+\frac{1}{2})\pi} \left[\cos(\frac{\pi}{\ell}(n+\frac{1}{2})x) \right]_{x=0}^{\ell}
$$

\n
$$
= -\frac{4U}{(2n+\ell)\pi} - k\frac{\pi}{\ell^2} (n+\frac{1}{2})^2 t
$$

\n
$$
\Rightarrow \sqrt{(x,0)} = -\sum_{n=0}^{\infty} \frac{4U}{(2n+\ell)\pi} e^{-k\frac{\pi}{\ell^2} (n+\frac{1}{2})^2 t} \sin(\frac{\pi}{\ell}(n+\frac{1}{2})x).
$$

$$
u(x,t) = \overline{U} - \frac{\sum_{n=0}^{\infty} \frac{4U}{(2n+1)\pi}}{2n+1}\sum_{n=0}^{-k\frac{\pi^2}{l^2}(n+\frac{1}{2})^2} \sin\left(\frac{\pi}{l}(n+\frac{1}{2})x\right)
$$

(b) The terms in this series are:
\n
$$
a_{n} = \frac{4U}{(2n+1)\pi} e^{-k\frac{\pi^{2}}{l^{2}}(n+\frac{1}{2})^{2}t} \sin(\frac{\pi}{l}(n+\frac{1}{2})x)
$$
\n
$$
= \frac{A}{2n+1} e^{-[B_{1}^{2}+C_{1}+D]} \sin(E(n+\frac{1}{2}))
$$
\n
$$
= \frac{A}{2n+1} e^{-[B_{1}^{2}+C_{1}+D]} \sin(E(n+\frac{1}{2}))
$$
\n
$$
= \frac{A}{4} e^{-B_{1}^{2}+C_{1}^{2}+C_{1}^{2}}
$$

 $\widetilde{A} = A \cdot e^{-D}$ We bound $|a_n| \le b_n = \frac{1}{2n+1} e$ e We now shou that $\sum_{n=0}^{\infty} b_n$ converges, thereby implying that $\sum_{n=0}^{\infty} a_n$ converges abodutely. To show that $\sum_{n=0}^{\infty} b_n$ converges we use the ratio test:

$$
\frac{b_{n+1}}{b_n} = \frac{2ntl}{2n+3} \mathcal{L}^{-\beta[(ntl)^2 - n^2]} \mathcal{L}^{-\alpha[(ntl) - n]} = \frac{2 + \frac{1}{n}}{2 + \frac{3}{n}} \mathcal{L}^{-2\beta n} \mathcal{L}^{-\beta - \mathcal{L}}
$$

$$
\Rightarrow \lim_{n \to \infty} \frac{b_{n+1}}{b_n} = 0, \qquad \text{then } \sum_{n=0}^{\infty} b_n < +\infty, \text{ for } n \neq 0
$$

(c) The expansion for
$$
u(l, t)
$$
 is
\n
$$
u(l,t) = U - \sum_{n=0}^{\infty} \frac{4U}{(2n+1)\pi} e^{-k\frac{\pi^2}{l^2}k + \frac{1}{2}k} \sin(\pi (n+\frac{1}{2}))
$$
\n
$$
\Rightarrow u(l,t) = U - d_0 + d_1 - d_2 + d_3 - + \cdots
$$

$$
\Rightarrow u(l,\theta) = U - d_0 + d_1 - d_2 + d_3 - + \cdots
$$

where we already know that $\sum_{n=0}^{\infty} |d_n| < +\infty$ from (b).

Since this is an alternating series,
$$
|u(t_0) - U| < |d_0| = \frac{4|U|}{\pi} e^{-kt \frac{\pi^2}{4t^2}}
$$

\nTo get $|d_0| < \varepsilon$ we need $\frac{4|U|}{\pi} e^{-kt \frac{\pi^2}{4t^2}} < \varepsilon$
\n $\Rightarrow e^{-kt \frac{\pi^2}{4t^2}} < \frac{\varepsilon \pi}{4|U|} \Rightarrow -kt \frac{\pi^2}{4t^2} < \ln(\frac{\varepsilon \pi}{4|U|})$
\n $\Rightarrow \frac{4t^2}{k \pi^2} \ln(\frac{4|U|}{\varepsilon \pi})$.

Section 5.3 Q6: Find the complex eigenvalues of dx subject + the BCs $X(0) = X(1)$. Are the eigenfuctions orthogonal on $(0, D$?

We need to solve
$$
X'(x) = \lambda X(x)
$$
, $X(0) = X(1)$.
\nThe eq. has solution $X(x) = e^{\lambda x}$. Requiring $X(0) = X(1)$
\nleads $h = e^{\lambda} \Rightarrow \lambda_n = 2n\pi i$, $n \in \mathbb{Z}$
\nIn the eigenfunctions are $X_n(x) = e^{2n\pi i x}$, which satisfy:
\n $(X_n, X_m) = \int_0^1 e^{2n\pi i x} e^{-2m\pi i x} dx = \int_0^1 e^{2\pi i x (n-m)} dx =$
\n $= \frac{1}{2\pi i (n-m)} [e^{2\pi i x (n-m)}]_{x=0}^1 = 0$ whenever $n \neq m$.
\nSo for $n \neq m$, X_n and X_m are orthogonal.

<u>Section 5.3 Q12:</u> Prove Green's First Identity:
 $\int_{a}^{b} f'(x) g(x) dx = -\int_{a}^{b} f'(x) g'(x) dx + f'(g)\Big|_{x=a}^{b}$

This is just integration by parts with: $u(x) = g(x)$, $v'(x) = f''(x)$.