
 Section 4.1 Q1 a Use the Fourier expansion to explainwhy
the note produced by a violin string rises sharply by an octave

when the string is clamped exactly at its midpoint
b Explainwhy the note rises when the string is tightened

Suppose that our violin has a string of length l density y
and tension T Then it behaves according to the wave eq
with Dirichlet BCS boundary conditions
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We have seen that the solution to this problem has theform
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The frequencies of the harmonics are given by
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a If the string is clamped at themidpoint it would be equivalent
to solving the above problem with l replaced by f everywhere
so the frequencies become net
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That is the frequencies of all harmonics double
means an
octavehigher



b If the string is tightened say instead of T we

have T T then the frequencies become

nett net
That is the frequencies of all harmonics grow i.e the

notes rise

Section 4.1 Q2 consider a metal rod oke insulated

along its sides but not at its ends which is initially at
temperature 1 Suddenly both ends are plunged into a

bath of temp O Write the PDE Bct IC Write the formula

for the temp next at later times You can assume the

infinite series expansion 1 I EIant sin Een D x
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The solution is given by as we've seen in class

u x t ZI An e CFP since x
Now we need to use the IC to determine the An s
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This can only be true if all the even An s are 0 and
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Alternatively this can be written as
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section 4.1 23 A quantum mechanical particle on the
line with an infinitepotential outside the interval o e is

given by Schrodinger's eq WE in xx on Jl with

Dirichlet conditions at the ends Separate the variables
and represent the solution as a series

We face the problem Myx
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Separate variables next Xx TA andplay intoeq
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Divide by it I I
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These can equal only if they are both constant Call it X



Then we have I x pz

X part As in class we get
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The Dirichlet BCS just like in class require
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So we get the eigenfunctions Xna Sin Ex
and eigenvalues In E

T part We now have T it Th
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Section 4.2 Ql Solve the diffusion problem
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Separation of variables a G X Th leads
to the expression we've seen for the diffusion eq
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As before the X part gives solutions of the form
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We should check if O can be an eigenvalue
If it is then the eq for X gives us X 0

which becomes X X D t Cx

Check the BCS
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O X let C which means that
the solution is trivial X 0

O is not an eigenvalue

So we can proceed with the temporalpart as

in class it gives Tn E e
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In conclusion we find solutions of the four
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Show that the eigenfunctions are

cos att Ex
Write the series expansion solution

As before separation of variables gives
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Is O an eigenvalue If so then X D 1C x

O X D C
C D O xx is trivial

O X e D o not an eigenvalue



The T part is as before Cin class for the wave

eq Tn Ancos Bst BasinBet

So we get
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Section 4.2 23 Solve the Schrodinger eq
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Separation of variables gives
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