Euler's Formula

MA 6 Problems

Due Wednesday, April 22

Recall that Euler's formula is given by

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

1. In the following problems you are given a complex number. Using Euler's formula, write this number as $e^{i\theta}$ for an appropriate angle θ . For example, given the number 1 + 0i, you should sketch the unit circle, show that this number corresponds to the point (1,0) which has angle 0, and thus you get e^{i0} .

(a)
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$

(b) $-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$
(c) $\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$
(d) $-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$
(e) $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$
(f) -1
(g) $-i$

2. For the following problems you should do the opposite – given an angle, determine the corresponding complex number.

(a) $\theta = \frac{\pi}{3}$

- (b) $\theta = \frac{\pi}{6}$
- (c) $\theta = \pi$
- (d) $\theta = -60^{\circ}$
- (e) $\theta = 120^{\circ}$
- (f) $\theta = 2\pi$
- (g) $\theta = 270^{\circ}$
- (h) $\theta = \frac{5\pi}{4}$