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Introduction

m Consider Cauchy problem for nonlinear Schrédinger equations
iotu+ Au = pluP~'u, (t,x) e RxRY,
u(0, x) = up(x),

u(t,x) : RxRY - C, u = +1 corresponding to defocusing/focusing
case. There are three important conserved quantities:

Mass : f lu(t, x)? dx = M(up);

(0.1)

Energy : E(u) = zf IVu(t, x)? dx + T K |u(t,x)|p+1 dx = E(up);

Momentum : P(u) =Im | Vut dx = P(up).
R4

m Equation (0.1) admits a number of symmetries in energy space
H':
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o Space-time translation invariance: if u(t, x) solves (0.1), then so does
u(t+ to, x + xo), (to, Xo) € R x RY;

@ Phase invariance: if u(t, x) solves (0.1), then so does e” u(t, x), y € R;

Q Galilean invariance: if u(t, x) solves (0.1), then for 8 € R, so does
el5 =50yt x — pt);

@ Scaling invariance: if u(t, x) solves (0.1), then so does u, (t, x) defined by

ur(t,x) = APTu(A%t,Ax), A > 0. (0.2)
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m Forse =94 -5, [lua(t, )

Hee (Re) — ||U(/\2 )”ch(]Rd)!

Jigiang Zheng Université de Nice Dynamics of
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u(t+ to, x + xo), (to, Xo) € R x RY;

@ Phase invariance: if u(t, x) solves (0.1), then so does e” u(t, x), y € R;

Q Galilean invariance: if u(t, x) solves (0.1), then for 8 € R, so does
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@ Scaling invariance: if u(t, x) solves (0.1), then so does u, (t, x) defined by
ur(t,x) = APTu(A%t,Ax), A > 0. (0.2)

m Forse =94 -5, [lua(t, )

e ey = IUCAZE e ey

e For s, = 0 we call the problem (0.1) mass critical(p = 1 + %),

e For s, =1, we call the problem (0.1) energy critical(p = 1 + ﬁ),
e Fors;€(0,1), interpolate between mass and energy critical,

e For s, > 1 we call the problem (0.1) energy supercritical(p > 1 + ﬁ).
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Definition 0.1 (Classical, Weak, strong, strong Strichartz solution)

@ Classical solution: A function u is a classical solution of (0.1)
on a time interval / containing 0 if u € C!(I, C2(R?)) and solves
(0.1) in the classical sense.

@ Weak solution: A function u is a weak solution of (0.1) if
(9, Vxu) € LX(R,L2), ue L®(R,H') N LXLE™, and u solves
(0.1) in distribution sense, namely

—Iff uat(pdxdtJrff uA<pdxdt+ff u)p dx
RXIRY RXIRY RxRY

=0, ¥ ¢eDRxRY), (0.3)

and the energy inequality
E(u(t)) < E(u(0)), V teR (0.4)

holds. Here f(u) = +|ulP~'u.

QT
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e Strong solution: u: I x RY — C is a (strong) solution of (0.1) with
data up € H®, s € IR, if u satisfies

t
u(t,") =e™ug —i f =2 (ujuPP~" u)(s) ds (0.5)
0

for t in time interval | containing O.

eStrong Strichartz solution: we say that u is a strong Strichartz so-
lution of (0.1), if uis a strong solution and u belongs to some auxiliary
spaces associated with the Strichartz estimate, such as some spatial-
time space L/(/, L;(RY)).

Classical — Strong Strichartz — Strong — weak
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Basic mathematical problems in Nonlinear PDEs

e Wellposedness: Existence, uniqueness, continuous dependence
on the data, persistence of regularity.
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Basic mathematical problems in Nonlinear PDEs

e Wellposedness: Existence, uniqueness, continuous dependence
on the data, persistence of regularity.

e Scattering theory: If the solutions exist for all t € R, does it
approach a free solution? Critical norm conjecture.

¢ Blow-up dynamics: If the solution breaks down in finite time, can
we describe the mechanism by which it dose so? For example, via
energy concentration at the tip of a light cone? Usually, symmetries
play a crucial role. How about the qualitative description of
singularity formation and blowup rate? Solitary wave conjecture.

Jigiang Zheng Université de Nice Dynamics of NLS



¢ Special solution: If the solution does not approach a free
solution, does it scatter to something else? A stationary nonzero
solution, for example? Some physical equations exhibit nonlinear
bound states, which represent elementary particles.

o Stability theory: If special solutions exist such as stationary or
time-periodic solutions, are they orbitally stable? are they
asymptotically stable?

e Multi-bump solutions: Is it possible to construct solutions which
asymptotically split into moving “ solitons ” plus radiation? Lorentz
invariant dictates the dynamics of single solitons. , solitary
resolution conjecture

¢ Resolution into Multi-bumps: Do all solutions decompose in this
fashion ? suppose solutions exist for all t > 0:  Either scatter to a
free wave, or the energy collects in “pockets” formed by such
“soltons” ? Quantization of energy.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Gaussian kernel for heat equation

Let e!2 be the free heat operator, given by

[€21](x) = Gi(x) +f, Gi(x) = (4nt) Fe 5, t>0. (1.1)
Theorem 1

Let¢p € L'(RY), and [, ¢(x) dx =1, (x) = supy o (Y], ¢e(x) = 9P (x/e). If
W(x) € L'(RY), then for any f € LP(RY), 1 < p < +o0, we have

Ijrr(])cpé +f=1f(x), Vxely

where L := {x : lim,_q r‘—d f\y\ér If(x — y) — f(x)| dy = 0}, Lebesgue point. Moreover, by
the fact that (Lebesgue differentiation theorem), for any f € LP, almost every point x is a
Lebesgue point! Thus,

Ijrrz) ¢e+f=1f(x), a.e xeRY

limisot Ge(x) =6(x),  in D'(RY).

Jigiang Zheng Université de Nice Dynamics of NLS



Linear theory Mass-critical
Dynamics of mass-critical NLS

Dispersive estimate

m Let e be the free Schrédinger propagator, given by

1

[e™Af](x) = @ntyz

f eYE/4tf(yydy, fort 0. (1.2)
From this explicit formula we can read off the dispersive estimate

6" ll ooy < 12 1Ifll g ey fOr £ # 0.
Interpolating with [|e"2 |, 2(e) = IIfll 2(rey then yields

”emf”L;(Rd) < Ot G Dl (gey, Tor t#0. (1.3)

and2 < r<oo,where I + 1 =1.
Fraunhofer formula:

lim

t—+o0

=0. (1.4)

itA ridn/4_€" 2 X
(e

(4n t)d/2 anli
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Linear theory Mass-critical

Dynamics of mass-critical NLS

m The pointwise convergence problem is to ask what the minimal s is to ensure

lim e f(x) =f(x), ae.x, VfeH(RY). (1.5)
Equivalently,
sup |e™Af < Cs.allflls (re)- 1.6
[sup 1", g g, < Coslflincse (1.6)
Pointwise convergence
d=1 s> JT Carleson [23] Dahlberg-Kenig[46]s < ]T fails
d=2| s=23+ S.Lee[126], S.Shao[214]
s>1 X.Du, L. Guth, X. Li[60] Bourgain [19]s < 1 fails
d>3 s> 1 Sjolin[216], Vega[234]
s>3-4 Bourgain[18] s<}-lfailsind>5
Luca-Rogers[138],DG[47] s<3- g failsind>5
Bourgain [19] s<i- M
d>1 s> ]—1 Gigante-Soria[80] radial initial data
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Strichartz estimate

itA
lle' f”LfLX’ S Ifllz-

Proposition 1.1 (Strichartz estimate, Ginibre-Velo[82], Strichartz[220], Keel-Tao[96])

Suppose u : I x R? — C is a solution to (id; + A)u = h. Then, for 2 < g, r < co and
% + ¢ =¢ and (g,r,d) # (2,0,2) (Denoteby (g, r) € A for simplicity),

el g ey 10t ey + i 5

for every fp € I.

0 The key ingredient for the proof of Proposition 1.1 is the estimate (1.3).

e For the non-endpoint case, Proposition 1.1 is a direct result of (1.3) and the
standard TT* argument.

e For the endpoint (2, 7 2) see Keel-Tao[96].
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Application of Strichartz estimate

Let u be the solution to idiu + Au = |ulPu with
u(0, x) = up(x) € H'(IR®), then, the solution is global and

ue C(R, H'(R®) | Lt (R, W3(R?)).

loc

Banach fixed point argument and Strichartz estimate.

Scattering is equivalent to scattering size to be finite.

Jigiang Zheng Université de Nice Dynamics of NLS



Linear theory Mass-critical
Dynamics of mass-critical NLS

Morawetz multiplier method

Let the multiplier

and u solves idiu+ Au = 0. Then

d . ,
E(AU, u)z :/([A,A]u, u), 5| < Cllu(t,')llH%

A simple computation shows the commutator

—2Ag|x[® +c5(x)  ifd=3,
[A A= (1.7)
—20got|XI2+ F(d=1)(d=-3)xI*  ifd>4.

t ]
- 2 (%lu(t,0) dt if d=3,

"'<A“f“>L2|12:2f f Vouf g+ Jy uct,0)
x Ity t RY |X| 1(d_1)(d_3)ftt2 lul? dxdt if dsa.

RY ‘X‘a

lu(t )Pt
£

For idiu 4 Au = p|ulP~"u, additional term 2% +1 T f’z Jeo dx dt.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Morawetz estimate

Let u solve
ius +Au =N, (1.8)

Define Morawetz action at 0 as following

MO(t) =2 f dja(x)Im(ao;u)dx. (1.9)
Rd

A simple computation shows

Lemma 1.3 (Morawetz’s identity)

—Mo(t) f( AAa)Iulzdx+4f a,-k%(a,-aaku)dx+2f a,-(x){N,u'
R4 R4

B (1.10)
where {f, g} = R(fVg — gVf).
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Remark 1.1 (Morawetz’s identity-I)
If a(x) = |x|, and N = |u|’~'u, then

0,
aj( )= |x|’ ajk(X) |)I(k| T;(T;, Aa =21 |X| N, U}] 7_P (|u|p+1)

- AAa =4nd(x), d=3,
—AAa_(‘“—3 d> 4.

Hence,

2 2(p—1)(d—1 p+1
%Mg(t)_f(—AAa)|u(x)|2dx+4f Hotl® g -+ 22001 )f LB ok
Rd Rd Rd

where Vo denotes the complement of the radial portion of the
gradient.

2
Fou = Vu- Vu), | Foult = [Vult = |5 - Vil £ [Vuf = Vo0l

X ( X
IxI\|x| | |
By duality argument, and Hardy inequality, we obtain

= . uVudx| < C||ul?,
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Theorem 1.4 (The classical Morawetz estimate, Lin-Strauss)

Ifd>3,u: IxRY— C solves id;u + Au = |ulP~'u, then, there holds

u(t, )Pt
ff lu(t, x)PPT dx dt < |lul® (1.11)
| JRA [x] LAz
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Theorem 1.4 (The classical Morawetz estimate, Lin-Strauss)

Ifd>3,u: IxRY— C solves id;u + Au = |ulP~'u, then, there holds

u(t, )Pt
f lu(t, x)PPT dx dt < |lul® (1.11)
I JRe | LrH2

X|

Proposition 1.5 (Space-localized Morawetz estimate)

Letp >3 andu:IxR®— C be a solution to idyu + Au = |ufP~"u.
Then for C > 1, we have

t X |p+1 dx dt < (C|I|1/2)ZSC_1 ||U||2 ) +||u||p+
meome X = L (IXR3) L (IR
(1.12)

3

~
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Interaction Morawetz estimate

m Interaction Morawetz identity [40]. For a fixed weight a : R — R
and a function ¢ solving

(idt +A)p = N,

Morawetz action at y

M) =2 [ 3a(x - y)im(gopp)ax.
R

Interaction Morawetz potential

—25 [ MowIFey =23 [ lo)Pax-y)p) deay,
]Rd><]Rd

(1.13)
Mass bracket and momentum bracket

{{f, gim = 3(f9), Mass bracket
{f,glp := R(fVg - gVf), Mmomentum bracket.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Proposition 1.6 (Morawetz identity)

lp(y)Pajik (X — ¥)lp(x)? dx dy

+ [[[4ax = liew )RR - S0 Go00ldk oy

(1.14)

(1.15)

+ [[[ o plmtyax - 0S@000) o (1.16)

+ [[[lowrzvae-y)- N ple(x) ax . (1.17)
Interaction Morawetz estimate (d > 3) Choosing weight a(x) = |x]|,

we have

lp(t, y)Plp(t, x
fff (L, y) 90(3 i dx dy dt < 1pIP.., o pgen VPl L2(1xRe) -
RIXRY Ix -yl FHED -

Interaction Morawetz estimate (d = 1, 2). [40, 196, 32, 33]]

V1%

2
(uP)|f,
Jigiang Zheng

gy S Nollellull® o d>1. (1.18)

]
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Linear theory Mass-critical
Dynamics of mass-critical NLS

A simple example of interaction Morawetz estimate

One can use this to give a simple proof of Ginibre-Velo about the defocusing
energy-subcritical NLS. In fact, we take 3d cubic NLS id, + Au = |u?u for example. By
interaction Morawetz estimate,

||U||L:X(IR><]R3) < C(M,E).

Interpolating this with [|ufl s < Cllull, » g < CE(uo) implies
X t

lull , g
LPLZ (RXR®)

This implies scattering. Indeed, letting the aympotic state

< C(E, M).

00

e () = Uo(x) + i fo &2 (luPu)(s) ds

lu= " uylly 5 f (98 (uRu)(s) ds|, < [[V)(uu)|

L2L, 5 ([t,4-o0)xIR3)

s||<V>u|| R TR A e
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Local smoothing estimate

m Let u(t,x) = e f. Then

sup —ff IVu(t, x)|? dx dt ~ C||f||2‘, Ve Hz(RY,
B(xo,R)

Xo€RY, R>U

vu(
ff' u(t dtdx<C||f||2 a1
RY |X|a R9)

vt (1.19)
ffR <X>1+é i ot < Clfllyy oy ¥ 0> 0.

Lemma 1.7 (B.Simon-Local smoothing estimate[215])

|Iviz e"Af(x)|
f f—dt dx<—||f||L2(]Rd d>3 (1.20)
itA 2
f IO 4 v < By 923 (1.21)
R JR x|
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Lemma 1.8 (Ben-Artzi and Klainerman-local smoothing estimate [6])

(1-4A e"Afx
ff' )A eof ot dx < ClIfiE, ey, d 2 3. (1.22)

The above Kato smoothing estimate is sharp. In fact, for every 6 > 0,

||Ps1(—A)%e'vtA(ef‘X‘ze"X'v)||fo ~1
while

sup ||p<1( A)ﬁ"’ /tA(e x[2 lx\/)” +co. (1.23)

veR?

Proposition 1.9 (Planchon-Vega[196])

Let u be a solution to the linear Schrédinger equation on R:

sup f 193U (x, t) dit = Arlupl (1.24)
X R Hz
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Theorem 2 (Kato smoothing for radial functions, Li-Zhang[132])

Let the dimension d > 2. Then for any radial function f on RY, we have

3% w12 et oty S Ml
and
[l 01 [ 2115 15, ) 0], oy < Mtz
While, the following estimate
t
(il fo SIBYIT1(5,y) 08| . gy < Mstzcreey

fails in general. An e-version of (1.27) holds, namely

t
= o< [ et
0

= f(s,y) ds

L@ L2(RIXR

S Il L2 (roxr)-

(1.25)

(1.26)

(1.27)
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Blow up for focusing NLS

Symmetries not in energy space H':
e Pseudo-conformal transformation: if u(t, x) solves (0.1), then

1 (1 x\ ;2
v(t, x) = |T|T/2 (? ?)e’ ar

This additional symmetry yields the conservation of the
pseudo-conformal energy for initial data up € ¥ := H' N {xug € L2},
which is most frequently expressed as

dt2f|x| lu(t, x)| _4—Imfx Vuu(t, x)

:16E(u0)+4y(d— %)[Bdw(ax)w dx.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Review the argument of Glassey

We review the classic argument of Glassey for blow-up in finite
time. Thus, assume ug € H', xug € L2. Let | be the maximal interval
of existence. For t € I,

f XBlu(t)Rdx, v/ (t) — 4Tm f VU x,

2(d+2
" (1) =16E(uo) + 4u(d - %) It 0P o,

Thus,
y(t) < 8E(uo)t? + y'(0)t + y(0),

which implies [ is finite if
(iI)\E(up) < 0; (ii)E(ug) = 0, y’(0) < 0; (i) E(uo) > 0,y (0) < —4 V2E(up)y(0).

lluollZ, = llu(OIIF. < [Idu(t)]] Nu(llz-
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Mass critical NLS
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Mass critical NLS

m Consider
i+ Au=plulau, (t,x) e RxRY,
(1.28)
u(0,x) = up(x), x eRY,
u(t,x) : RxRY — C, u = +1 corresponding to defocusing/focusing. For notational
purpose, we shall introduce the following invariant:

EC(u) = E(u) -

1(Im(fz9xufl))2 (1.29)

2\" iz

Symmetries in energy space H':

o Translation invariance: if u(t, x) solves (1.28), then so does u(t + to, X + Xo);

e Phase invariance: if u(t, x) solves (1.28), then so does e u(t, x), v € R;

« Galilean invariance: if u(t, x) solves (1.28), then for § € RY, so does /2" *~£0u(t, x);
o Scaling invariance: if u(t, x) solves (1.28), then so does u,(t, x) = A92u(Ax, A%t),

A> 0, and by direct computation [|ux (0, ).z = lluoll,z-
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Defocusing case: y = 1

m For any up € L2(IR%), the solution to (1.28) is global and scatters in the sense that

there exists u. € L2(IRY) such that
Jim lu(t, x) - e" u | 2rey = 0. (1.30)

Defocusing mass-critical Schrédinger equation

d=1 d=2 d>3
radial Killip-Tao-Visan [106] | TVZ [229, 230]
nonradial | Dodson[53] Dodson[52] Dodson[51]

Difficult: The lifespan-time depends not only the norm of ||upl|.2 but also the profile of
the initial data up.

Outline of proof: The proof follows the concentration-compactness approach [8, 98],
see also [107, 200, 194]. We argue by contradiction. The failure of scattering result
would imply the existence of very special class of solutions. But these critical elements

have so many good properties that they do not exist. Thus we get a contradiction.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

We will make some further reductions, the main property of the critical elements (special
counterexamples) is almost periodicity modulo symmetries:

Definition 1.10 (Almost periodic solutions)

A solution u to (1.32) with lifespan / is called almost periodic (modulo symmetries) if there
exist (possibly discontinuous) functions N: | - R*, x: [ > R?, &: - RYand

C:R" > R such that forallt € land 1 > 0,

f |ut, ) dx +f la(t, &) d& < n. (1.31)
\x—x(t)lz% le-£(1)=C(mN(t)
Where we call

@ N(t) the frequency scale function;

@ (1) is the frequency center function, and x(t) the spatial center function;

© C(1) the compactness modulus function.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Remark 1.2

o The Arzela-Ascoli theorem tells us that a family of functions ¥ is precompact in

L2(RY) if and only if it is norm-bounded and there exists a compactness modulus

function C(7) such that

f IF(X)P dx + f HEP ds <1
IXI=C(n) 1€1=C(n)

uniformly for f € #. Thus we see that a solution u : | x RY — C is almost periodic if and
only if
{u(t) te I} c {Ad/zf()\(erxo)) :A€(0,00), o €RY, and f € K}

for some compact K ¢ L2(RY).
o This perspective also clarifies why we use the term “almost periodic”. In the radial
case, x(t) = &(t) = 0.
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Theorem 1.11 (Three enemies, Killip,Tao,Visan,Zhang[106, 229, 230])

Suppose that the scattering result fails. Then there exists a maximal-lifespan solution

u: IxRY — C, which is almost periodic modulo symmetries, blows up both forward
and backward in time. Moreover, we can also ensure that the lifespan / and the

frequency scale function N(t) : | — R* match one of the following three scenarios:
@ (Soliton-like solution) We have | = R and N(t) = 1 forall t € R.

e (Double high-to-low frequency cascade) We have | = R,
Iitm infN(t) = Itim+inf N(t) =0, and sup N(t) < +co.
o0 oo s
© (Self-similar solution) We have | = (0, +c0) and

N(t) =t=2 forall tel.
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Focusing mass critical NLS
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Linear theory Mass-critical
Dynamics of mass-critical NLS

Focusing case

m We will focus on the focusing mass critical NLS

i+ A)u=—|ulfu, (tx)eRxRY,
(it +A) (t,x) (1.32)
u(0, x) = uo(x),
In this case, special solutions play an important role. They are the so-called solitary
waves such that u(t, x) = e“'W,,(x), w > 0, where W,, solves

AW, + W W, |7 = oW, (1.33)

o For d = 1, there exists a unique solution in H' up to translation to (1.33);

e For d > 2, there are infinitely many solutions with growing L2-norm for d > 2, but
there is a unique positive solution Q, to (1.33) up to scaling translation,
Berestycki-Lions[8], Gidas-Ni- Nirenberg[76], Kwong[123];

© Q. is in addition radially symmetric, letting Q,,(x) = w¥*Q(w'/2x), from scaling
property, we know that Q(x) is a unique positive solution to (1.33) with v = 1.
Therefore,[|Qull.2 = ||Qll 2. Moreover, multiplying (1.33) by 4Q,, + x - VQ,, and
integrating by parts yields the so-called Pohozaev identity E(Q,) = wE(Q) = 0.
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In particular, none of the three conservation laws (mass, energy, momentum of (1.32) ) in
H' sees the variation of size of the stationary solutions Q,,. These two facts are deeply
related to the criticality of the problem, that is the value p = 1+ §. Note that in dimension
d =1, Q can be written explicitly

Q) = (%)1“

cosh?(2x

Proposition 1.12 (Variational characterization of the ground state)

Let v € H' such that

flvlgdx:f Q%dx, and E(v)=0,
Rd Rd

then y _
v(x) = A§ Q(Aox + x0)e"°,

for some parameters Ag € R, , Xo € RY, Y0 € R.
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Below threshold of ground state: M(up) < M(Q)
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Scattering in LZ(IR?)

If up € L2(IRY), we refer to Dodson [54] and references therein by using compactness
concentration, Long-time Strichartz estimate and frequency-localized interaction

Morawetz estimate.

Focusing mass-critical Schrédinger equation

d=1 d=2 d>3
radial Killip-Tao-Visan [106] | Killip-Visan-Zhang[111]
nonradial | Dodson[54] Dodson[54] Dodson[54]

We remark that the above condition is sharp: for lluoll z = ||Q||L3, blow-up may occur.
Indeed, since E(Q) = 0 and VE(Q) = —Q, there exists ugp, € X with |lug.ll.2 = [IQll;2 + ¢
and E(uo:) < 0, and the corresponding solution must blow up from virial identity.
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Threshold solutions of ground state: M(up) = M(Q)
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Solitary wave conjecture

Conjecture 1 (Solitary wave conjecture)

Let d > 1. For general initial data u € LZ(IR?) with ||ug|l .2 = [|Ql|.2- Then, either the
corresponding solution scatters, or the non-scattering solution must be the solitary wave
e Q up to symmetries of the equation (1.32) (Space-time translation, phase, Galilean,

scaling, conformal transformation).

H! Hs L?
radial | KLVZ[103,133]d>2 | LZ[129] | LZ[131]d > 4
nonradial Merle[157] T < 40 Open

Finite time blowup
The pseudo-conformal transformation applied to the stationary solution e Q yields an

explicit solution
1
t]972

o}

S(t,x) = 7

Jo 5+, 1Sl = Qs (1:34)
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which scatters as t — —oo, and blows up at T = 0 at the speed

1
IVS()lle ~ i

An essential feature of (1.34) is compact up to the symmetries of the flow, meaning that
all the mass goes into the singularity formation

IS(t)P — [IQI2,6x=0 @s t — 0. (1.35)

Theorem 1.13 (Determination of minimal blow-up solutions, Merle [157])

Let up € H'(RY) and
llwollz = 11QIl.2,

and assume the corresponding solution u(t) blows up in finite time 0 < T < +oco. Then,

there exists 8 € R, @ > 0, xp € R?, x; € R? such that fort < T

d
u(t,x) = (TL—t)z l0+ile—x; |2/4(f—T)—im?/(t—T)Q(TL_t((X “x)—(T- t)xo)).
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The existence of minimal elements in various settings has been a long standing open
problem, mostly due to the fact that the existence of the minimal element for NLS relies
entirely on the exceptional pseudo conformal symmetry.
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Beyond threshold solutions of ground state: M(up) > M(Q)
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m Assume the corresponding solution u(t) blows up in finite time 0 < T < 4oc0. By direct
scaling argument, a known lower bound on the blowup rate is

IVu(t)llz(rey 2 C(uo)/ VT ~t. (1.36)
Indeed, fixed t € [0, T), then
Vi(r, 2) = VUl ut + IVu(tIZe, IVt 2)
also solves (1.32). It is easy to see that
VvV (Ol =1, IV'(0)liLe = llu(t)lle = lluoll,z-

By the local well-posedness, we derive that there exists 7o > 0 independent of t such
that v! is defined in [0, 7o]. Hence

70

t+1IVuliZT < T = [IVu(t)lle >
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Two type solutions

m The sharp upper and lower bound on the blow-up rate and universality of
blow-up profile. The question of the description of stable blow up bubbles has attracted
a considerable attention which started in the 80’s with the development of sharp
numerical methods. Most results on blow-up dynamics for (1.32) deal with the

perturbative situation where

Up € By = {Uo € H'(RY) : f Q%dx < f |uplPdx < f Q2dx +zx*},
Rd Rd Rd

for some small (explicit) constant a* > 0. At least two different blow-up mechanisms are
known to occur:

e In dimension d € {1, 2}, Bourgain and Wang[20] proved that there exists a family of
solutions of type S(t) with blowup speed

1
IVu()llcz ~ -1
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o By making use of numerical simulations, Landman, Papanicolaou, Sulem and Sulem
[124], and heuristic (formal) arguments in Sulem-Sulem [222], suggest existence of

solutions blowing up like

In|In(T = t)]\2
IVU(0)ll2 e ~ (%,)') d=2

In dimension d = 1, Perelman[193] proves the existence of an even solutions of this type
and its stability in some space E c H'.
Theorem 1.14 (Bourgain-Wang solutions, [20])
Letd = 1,2. Let u* be such that
U € Xa = {f € HA with (1 + |x|*)f € L2} (1.37)
D*u*(0) =0, for 1 <|a| <A, (1.38)
for some A large enough. Then, there exists a solution ugw € C((—0,0), H') to (1.32)

which blows up at t = 0, x = 0 and satisfies:

usw(t) = S(t) > w'in H' as t — 0. (1.39)

V.
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Instability of Bourgain-Wang solutions

Theorem 1.15 (Instability of Bourgain-Wang solutions, [169])

Let d = 2. Let u* satisfy (1.37) and (1.38) and let ugw € C((—0,0), H") be the

corresponding Bourgain-Wang solution. Then there exists a continuous map
nel-1,1] - ul(-1)eXx

such that u(t) being the solution of (1.32) with initial data u(—1) att = -1,
o Uyl:o(t) E Ugw(t);

eV nel0,1], u" e C(R, X) is global in time and scatters;

eV 1ne[-1,0), uT e C((—oo, T"),X) blows up in the log-log regime at -1 < T" < 0.

The situation has been clarified by Merle and Raphaél in the series of papers
[159, 160, 147, 162, 197, 163]. Let us define the differential operator
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d
/\—§+Y'V,

which will be of constant use. Then we introduce the following property:
Spectral property. Let d > 1. Consider the two real Schrdédinger operators

Li=-A+ %(g + 1)03-1y~vo, Lo=-A+ %Q%'1y~vo, (1.40)

and the real quadratic form

H(e, €) = (Lie1,€1) + (e262,€2), fore =¢1+iez € H'.

Then there exists a universal constant §; > 0 such that for all ¢ € H', if
(61, Q) = (&1, Q1) = (£1,¥Q) = (e2, Q1) = (e2, Q2) = (£2,VQ) =0,

then
Hie,€) > 54 f (VP +1ePe2 ¥ )a,
RY

where Q; = Q+y-VQand Q2 = §Q +y-VQ.
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Dynamics of mass-critical NLS

Theorem 1.16 (Dynamics of NLS, Merle-Raphael[159, 160, 147, 162, 197, 163])
Letd € {1,2,3,4}. Then there exist &* > 0 and a universal constant C* > 0 such that the

following is true. Let up € B,- and u(t) € C([0, T), H' (RY)) be the corresponding

maximal life-span solution on right to (1.32).
(i) Estimates on the blow-up speed: assume u(t) blows up in finite time i.e.,

0 < T < oo, for t close enough to T , we have either

IVl T-t \F 4
o Qll.z (Inlln(T— t)|) ~ Ven (1.41)
or f
C* N 1 (Im( | dxul)\2
||VU(t)||L2 > W’ E (U) = E(U) = 5(w) . (142)
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(ii) Description of the singularity: Assume u(t) blows up in finite time, then there exist
parameters (A(t), x(t),7(t)) € Rt x RY x R and an asymptotic profile u* € L2(IRY) such
that
1 X=X(\ i o 2md
- —— Q| ——— i L*(R t—>T. 1.43
u(t) /\(t)d/zo( 00 )e - U in (RY) as t— (1.43)
Moreover, the blow up point is finite in the sense that

x(t) » x(T)eRY, as t—T.
Moreover, assume u(t) satisfies (1.41), x(T) be its blow up point. Set

=1
V27t [ 1.44
Ao(t) = In||n( 1) (1.44)
then there exists a phase parameter y,(t) € R such that:
1 x=x(T)\ 5 0 L Doy
“(t)_;\o(t)d/zo( 0 Jor® s v i L3RY) as toT. (1.45)
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(iii) Universality of blow up profile in H': Assume that u(t) blows up in finite time with

val
(1.41), then there exist parameters Aq(t) = an(—\L\: xo(t) € RY and y,(t) € R such that
e MAg(t)2u(t, Ao()x + xo(t)) > Q in H', as t—T. (1.46)

If u(t) satisfies (1.42), then (1.46) holds on a sequence t, — T.

(iv) Sufficient condition for log-log blow-up: if E¢(up) < 0, then u(t) blows up in finite
time with the log-log speed (1.41). More generally, the set of initial data uy € B, such
that the corresponding solution u(t) to (1.32) blows up in finite time 0 < T < +co with the
log-log speed (1.41) is open in H'.
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(iv) Asymptotic of u* on the singularity: assume T < +oo; if u(t) satisfies (1.41), then
for R > 0 small,

1 C*
—_— u(x)© < 1.47
ST = O = G (147
which implies u* ¢ H' and u* ¢ LP with p > 2. If u(t) satisfies (1.42), then

f lu*(x)[2 < C'EgR?, and u” € H'. (1.48)
Ix-x(T)I<R
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Now existence of log-log solutions in Eq(M, a*(M)) for arbitrarily large M > 0 follows from

the following stability result.

Theorem 1.17 (Stability of the log-log dynamic, Merle-Raphael[164])

Let d = 1 or d > 2 assuming spectral property holds true. Let M > f Q?, then
@ H' stability of the log-log regime: the set of initial data up € Ey(M, a*(M)) such
that u(t) satisfies log-log law (1.41) is open in H'.
@ Stability of the log-log regime under large H' deformation: let tp € Eo(M, a*(M))
such that (1.41) holds. Then for all vy € H', there exists a time t(v) such that
VY 1y € [t(vo), Tu), the solution w(t) to (1.32) with initial data w(0) = u(%) + vo

satisfies:

w(0) EO(M + Ivollp2, & (M + ||V0||L2)) and w(t) satisfies log-log law (1.41).
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soliton resolution conjecture for mass-critical focusing NLS

Conjecture 2 (soliton resolution conjecture for mass-critical focusing

Let u(t) € H' be a solution to (1.32) which blows up in finite time 0 < T < +co. Then

Il ol\2

\IOHZ and u* € L? such that: Y R > 0

there exist {Xj}1<j<t € RY with L <
ut)y v in L3(R- | ] B(x,R)),
1<i<L

and

lu(t)R — Zm,ox x +1uP with m; € [IQIfE,, +eo).
i=1

m We will see in Section 3 that such conjecture does not hold for mass-supercritical.
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Mass concentration for mass-critical focusing NLS

m Merle and Tsutsumi [171] proved that any blowup solution must concentrate at least

the mass of the ground state at the blowup time; more precisely,

Theorem 1.18 (Mass concentration,Merle, Tsutsumi [171])

Let up € H'(RY) and u be the solution to (1.32) which blows up in finite time

0 < T < +o0. Then, there exists x(t) € R? such that

Iimf lu(t, x)I? dx > f QP dx, VR>O0. (1.49)
=T Jix—x(t)I<R RY

m The first blowup result for general L2 initial data belongs to Bourgain [15], where he
obtained the following parabolic concentration of mass at the blowup time:

1
im sup  ( [1u(t0F o) > clluollguey) > O, (1.50)
]

=T cube(/)cR?
side(l)<(T-t) ¢
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with ¢(Jluoll 2(rey) being a small constant depending on the mass of the initial data. This
result was extended to dimension d = 1 by Keraani [101], and to dimensions d > 3 by
Begout and Vargas [5].

Conjecture 3 (Mass concentration)

Let up € L?(RY). Assume the solution u to (1.32) blows up in finite time 0 < T < +co.
Then,
lim  sup flu t, x)? dx zf |QJ? dx. (1.51)
t—>T RY

cube I)C]R2
side(l)<(T-t)2
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Theorem 1.19 (H*(RY)-initial data, Visan, Zhang[240])

Assume d > 3 and s > sp(d) with

@ 1+5 B for d=3,
So =
8-d+ V9d?164d+-64
W' for d >4,

Let up € H¥(RY) such that the corresponding solution u to (1.32) blows up at time
0 < T* < co. Let a(t) > 0 be such that

lim a-n: —0.
t/T a(t)
Then, there exists x(t) € R? such that
lim sup lu(x, t)[Pdx > f Q2dx.
12T Jxex(t)l<alt) R

(1.52)
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Energy subcritical NLS

Consider

idru+ Au= pluP'u, (t,x) eRxRY, @1
u(0, x) = up(x), .

u(t,x): RxRY— C, u = =1 corresponding to defocusing/focusing. The equation (2.1)

is He%-critical with s, = ¢ - 2, s <1

Jigiang Zheng Université de Nice Dynamics of



Energy-critical NLS
Energy subcritical NLS Energy-supercritical

Defocusing case in energy space H' (IR9)

m Ginibre-Velo [81] proved the scattering in spatial dimension d > 3 by making use of

the almost finite propagation speed

f lu(t, x)2 dx < fmin(m,1)|u(to)|2 dax+ Colt— 1
Ixi>a a a

for large spatial scale and the classical Morawetz inequality in Lin-Strauss[135]

t X | p+1 5
f f didx < [lul ;< C(M(uo), E(uo)) (2.2)
xR H?

T

for small spatial scale to show
tL'Too”u(t’X)”Lf*' =0.

0 For classical argument of proof, please see Miao’s lecture on "Scattering Theory
of the Critical Nonlinear Dispersive Equations”

9 One easily give a simple proof by usingthe interaction Morawetz estimate, see
Tao-Visan-Zhang[231].
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Remark on the Interactive Morawetz estimates

We can use the interaction Morawetz estimates to give a new proof of the scattering for
the subcritical Schrdédinger equations.

MY (t) = 2Imf (Ii yl Vu)udx Morawetz Action at y.

Mimteract ¢y — f lu(t,y)BMY(t)dy, Interaction Morawetz Potential.
RY

2
ff lu(t, x)|* dxdt < ||u(0)||f2(sup||u(t)||,-_,|,2) , Interaction Morawetz.
1 JRR3 tel

Case-(I) 13/5<p <5. Strichartz estimates and interpolation imply

lu(D)lljoraxr) + VU L2 + lu(ll

%
(R3XR i (R®xR)

5p-10

2(5-p)
<Nl +||u||LA oy Vg sesmy + VU o+ 10O
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Case-(ll) 7/3 <p < 13/5.

oMy + IV, o+ IO,
6p—14 14-5p
<lplln + 1l IRMR)[||u||LX‘3(IRSX,R)+||u(t)||L§o(]R3X IV,

For the case d > 4, we have the following interactive Morawetz estimate

lu()Plu(y)?
|||V| |U|2)”L2 (IxR9) ff fle [x — Y|3 dxclyat

S e VU2 re) Su T,
Note that

v <[V (u?

U”U (IXR9) )”LZ (IxRY) <u .

interpolate with u € L= (I; H') yields that

el Su'l.

Lo+1( /LT (R9))
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Critical norm conjecture

Inspired by the global well-posedness results for the mass- and energy-critical cases,
one is led to the following conjecture.

Conijecture 4 (Critical norm conjecture)

Let s; > 0and p = 1. Suppose u : Ix RY — C is a maximal-lifespan solution to (2.1)
such that

ueLPHE(IxRY). (2.3)

Then u is global and scatters in the sense that there exist unique u. € FSe (R9) such that

H itA _
) =& <O

The first result in this direction was due to Kenig and Merle [99], who treated the cubic
problem in three dimensions.
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Critical norm conjecture

Sc=% 0<s,<1 1<sc <3 Se>3

d=3 KM[99] Murphy [191] | Murphy [191] rad

d=4 | Murphy [190] | Murphy [189] | DMMZ [56, 180] | LZ[137]rad
d>5 | Murphy[190] | Murphy [189] | Killip-Visan[108] KV[108]
da=1,2 Open

Conjecture 5 (Low regularity conjecture)

Letsc >0, u=1and up € Hse. Then u is global and scatters in the sense that there exist

unique U, € H? (RY) such that liMy— . [lu(t) — €™ talljsc gy = O.

m The interaction Morawetz inequality plays also an important role in the study of a low
regularity problem. Where we ask what is the minimal s to ensure that problem (2.1) has
either a local solution or a global solution for which the scattering hold?
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d = 3 cubic
s>1 s>2 s>3 s> 2 s> 2 s>1
Bourgain [14] | I-term [40] | Dodson[49] | Su[221] | CGT [31] | Dodson [50] radial

@ Such a problem was first considered by Cazenave and Weissler [27], who proved
that problem (2.1) is locally well posed in H¥(IR?) with s > max({0, s;} and globally
well posed together with scattering for small data in A5 (IR9) with s; > 0. They
used Strichartz estimates in the framework of Besov spaces. On the other hand,
since the lifespan of local solutions depend only on the H®-norm of the initial data

for s > max{0, s¢}, one can easily obtain the global well-posedness for (2.1) in two
special cases: the mass subcritical case (p < g) for L2(IR%)-initial data and the
energy-subcritical case (for p < ﬁ,if d>3orforp<+eoifde{1,2}) for

H} (R%)-initial data by using the conservation of mass and energy respectively.
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@ This leaves the open problem on global well-posedness in H¥(IR?) in the
intermediate regime 0 < s; < s < 1. The first progress on this direction came from
the Bourgain ‘Fourier truncation method [14] where refinements of Strichartz’
inequality [15], high-low frequency decompositions and perturbation methods
were used to show that problem (2.1) with p = 3 is globally wellposed in H$(R%)
with s > 3 such that

u(t) — e uy € H'(R®). (2.4)

@ This leads to the I-method which was derived by Keel and Tao in the study of wave
maps [97]. Subsequently, I-team developed the I-method to treat many low
regularity problems including the nonlinear Schrédinger equations with
derivatives, the one dimensional quintic NLS, and the cubic NLS in two and three
dimensions[34, 35, 36, 37, 38, 39]. Compared with the result in [14], |-team also
obtained the scattering in H*(R®) with s > by using the I-method and the
interaction Morawetz estimate in [40]. ------
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Focusing case

m Consider the subcritical focusing NLS equations

(idf + A)u = pluP'u, (t,x) eRxRY,

(2.5)
u(0,x) = up(x),
Let Q be the ground state of the elliptic equation
AQ-Q+QP'Q=0. (2.6)

Then the soliton solution e Q is global but does not scatter.

m There are various ways to construct solutions to (2.6), the simplest one being to look
for radial solutions via a shooting method Berestycki-Lions-Peletier[9].

m The exact structure of the set of solutions to (2.6) is not known in dimension d > 2. An
important rigidity property however which combines nonlinear elliptic techniques and
ODE techniques is the uniqueness of the nonnegative solution to (2.6).
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Existence of solitary waves

Proposition 2.1 (Existence of solitary waves, Berestycki-Lions-Peletier[9])
(i) For d = 1, all solutions to (2.6) are translates of
p—1
alx) = (%) : 2.7)
2cosh?(*252)
(ii) For d > 2, there exist a sequence of radial solutions {Qp}n=0 with increasing L2 norm

such that Q, vanishes n times on R9.

Theorem 2.2 (Uniqueness of the ground state)

All solutions to

AQ-Q+lQP'Q=0, Qe H'(RY), Q(x)>0 (2.8)

are a translate of an exponentially decreasing C2 radial profile Q(r) (see

Gidas-Ni-Nirenberg[76]) which is the unique nonnegative radially symmetric solution

to (2.6) (see Kwong[123]). Q is the so called ground state solution.
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@ Let us now observe that we may let the full group of symmetries of (2.5) act on the
solitary wave u(t, x) = e Q to get a 2d + 2 parameters family of solitary waves:
for (Ao, X0, 0, B) € Ry X R x Rx RY,

2 . B N
u(t, x) = Aéﬂ O(AO(X +x0) - /\gﬁt)el/\g{el/E-(,\o(x+xo)—/t§{)t)'

@ These waves are moving according to the free Galilean motion and oscillating at a
phase related to their size: the larger the Ag, the wilder the oscillations in time. An
explicit computation reveals that the solitary wave can be made arbitrarily small in
H' in the subcritical regime s, < 0 only. This corresponds to the orbital stability

of the ground states in the mass subcritical case.
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Below threshold of ground state: M(up)E(up) < M(Q)E(Q)
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By compactness concentration, one can prove the scattering/blowup dichotomy as:

Theorem 2.3 (Scattering/blowup dichotomy, Duyckaerts-Holmer-Roudenko[61, 91])

Let p = d = 3. Let up € H}(IR®) satisfy M(uo)E(uo) < M(Q)E(Q).
(i) If [luoll zlluolly < IQIl21IQll:, then the solution to (2.5) with initial data up is
global and scatters.
(i) T luollzlluollyy > IQILlIQIlg and up is radial or xuo € L2(IR®), then the solution to
(2.5) with initial data up blows up in finite time in both time directions.

If ¥ € H}(R®) satisfies %||¢||f2||¢||i‘ < M(Q)E(Q), then there exists a global solution to

(2.5) that scatters to 1 forward in time. The analogous statement holds backward in time.
v

@ Theorem 2.3 holds for general sy € (0, 1) under the assumption
M(uo)® E(up)'~% < M(Q)SE(Q)'%.

@ Dodson and Murphy [57, 58] give another simple proof that avoids the use of
concentration compactness, by using the radial Sobolev embedding and a

virial/Morawetz estimate.
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The condition [luoll.zlluolly; <IIQII2llQIl &= lluoll,2lluolZ, < 1IQIIlIQIZ,. Indeed,

Lemma 2.4 (T. Duyckaerts, S. Roudenko[66])

Let fbein H',0 < s; < 1. Then

( f |Vf|2dx)so M[f]'=% < ( f |VQ|2dx)SC M[Q]'~* =
R4 Rd
(f |f|"+1dx) ’ M[f]'=% < (f—lRﬂQW“dx) ) M[Q]'"%. (2.9)
RY

Assume furthermore that

1.

< E[Q]. (2.10)

M[f] =" E[f] < M[Q]

Then the reverse implication to (2.9) holds, and we obtain
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( f}R ) IVfIZdX)S" M[A]= < ( fR d |vo|2dx)s° miQ->

= (f]RdW“dx) CM[f]1‘SC <(fmd|o|"+1dx) ‘ M[Q]'"%.  (2.11)

Moreover, (2.11) also holds with non-strict inequalities (in the case of equality, f is equal

to Q up to space translation, scaling and phase.)

Theorem 2.5 (T. Duyckaerts, S. Roudenko[66])

Let u be a solution of (2.5), and assume that T (u) = +co and

Sc Sc
lim sup(f |u(t)|p+1dx) Mu]'=% < (f |O|p+1dx) M[Q]'%.
R R

to+o0

Then u scatters forward in time in H'.
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Threshold solutions of ground state: M(up)E(uo) = M(Q)E(Q)
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Existence of special solutions

Theorem 2.6 (Existence of special solutions besides e'Q at the critical mass-energy
threshold, Duyckaerts-Roudenko[65])

Let p = d = 3. There exist two radial solutions Q" and Q~ of (2.5) with initial
conditions Q¢ such that QF € NscrH*(R®) and

@ v[Qt] = M[Q] = M[Q], E[Q*] = E[Q7] = E[Q], [0, +o) is in the (time)

domain of definition of Q* and there exists gy > 0 such that
vt=0, [Q*(t)-e"Ql,, <Ce™,

e IVQ7llz < [IVQIl2, Q™ is globally defined and scatters for negative time,

e ||VQO+ ll2 > [IVQJl2, and the negative time of existence of Q™ is finite.
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Classification of solution

Theorem 2.7 (Classification of solution, T. ckaerts, S. Roudenko [65])

Let u be a solution of (2.5) satisfying M(uo) E(up) = M(Q)E(Q).

0 If [[Vull2lluollz < IVQII2IIQIl2, then either u scatters or u = Q™ up to the

symmetries.
Q@ 1 IVusllalitollz = IIVQIL2NIQllz, then u = e Q up to the symmetries.

e If [[Vugll2lltollz > IVQIl2||Qll2 and ug is radial or of finite variance, then either the

interval of existence of U is of finite length or U = Q" up to the symmetries.
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Beyond threshold solutions of ground state: M(up)E(up) > M(Q)E(Q)
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Beyond threshold solutions of ground state

In [192], Nakanishi and Schlag described the global dynamics of H' solutions slightly
above the mass-energy threshold, ||uollzlltolly; < (1 +€)lIQIIL2lIQIl: - Note that, in [66],
Duyckaerts and Roudenko can describe solutions which are not necessarily e-close to

the threshold. Define the variance as
v(t) =f IXPlu(x, 1) dx. (2.12)
RY

Assuming finite variance V(0) < oo, the following virial identities hold:

Vi(t) = 4Imf x-Vu(x,t)u(x,t)dx, and (2.13)
RA
B o, 4d(p-1) T
Vie(t) = sfw [Vu(t)Pdx i fww(t)w dx (2.14)
- 4d(p - 1) E[u] - 4(p - 1)30 ||VU(t)||f2(]Rd). (2-15)
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Theorem 2.8

Let u be a solution of (2.5). Assume V(0) < oo, Uy € H'(RY), and

(V1(0))?

M[u] = E[u]
"~ 32 E[u] V(0) ‘

1-s¢

M[Q] =" E[Q]

(2.16)

M&M1 kuwﬂm:

Part 1 (Blow up) If

MMW%mefKer%mef (2.47)

Vi(0) <0, (2.18)

and

then u(t) blows-up in finite positive time, T (u) < co.
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Part 2 (Boundedness and scattering) If

M[uo]'~* (fluOl”“) "< Mm[Q)'-= (flOV’*‘) c (2.19)

V:(0) > 0, (2.20)

and

then T, = 40, U scatters forward in time in H' and

limsup Mup]'~* (flu(t)lp“)sc < M[Q]'~® (flolp’f‘)sc. (2.21)

t—+oco
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Blowup rate
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Blowup rate

m In the setting of arbitrarily large initial data, little is known regarding the description of
the singularity formation. This is mainly a consequence of the fact that the virial blow up

argument does not provide any insight into the blow up dynamics.

m More generally, the a priori control of the blow up speed ||Vu]|,= which plays a
fundamental role for the classification of blow up dynamics for example for the heat or
the wave equation, is poorly understood. However a general lower bound on the blow up
rate holds as a very simple consequence of the scaling invariance of the problem:
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Scaling lower bound on blow up rate

Theorem 2.9 (Scaling lower bound on blow up rate,Cazenave[24])

Letd>1, 0<s; <1.Let uy € H' such that the corresponding solution u(t) to (2.5)

blows up in finite time 0 < T < oo, then there holds:

C(wo)

IVu()ll2 ey = | , Vtelo,T). (2.22)

1-sc

Tt

@ One can ask for the sharpness of the bound (2.22), or equivalently for the
existence of self similar solutions in the energy space, i.e. solutions which blow

according to the scaling law

C(uo)
IVu(ll2rey ~ — 5% (2.23)
% (R) TS
@ For s, =0, it is an important open problem, see Bourgain [17]. It is however
proved in Merle-Raphael, [197, 162] that the lower bound (2.22) is not sharp for
data near the ground state in connection with the log log law, see Theorem 1.16.
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On the contrary, for s, > 0, a stable self-similar blow up regime in the sense of (2.23) is
observed numerically, C. Sulem, P.-L. Sulem[222], and a rigorous derivation of these
solutions is obtained in Merle-Raphael-Szeftel[168] for slightly super critical problems:

Theorem 2.10 (Existence and stability of self similar solutions, Merle-Raphael-Szeftel

[168])

Let1 <d<5and0 < s, < 1. Then there exists an open set of initial data uy € H' such
that the corresponding solution to (2.5) blows up with in finite time T = T(up) < +co with

the self similar speed:
C(uo)

i-sc *

Vu(t)ll,2 =
IVu()llL2 (e T

(2.24)

m The extension of this result to the full critical range s; < 1 is an important open
problem, in particular to address the physical case d = p = 3,s; = % but is confronted
to the construction and the understanding of the stationary self similar profiles which is

poorly understood, see [168] for a further discussion.
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Blow up of the critical norm

Theorem 2.11 (Blow up of the critical norm, Merle-Raphael[165])

Letd >2, 0 <s; <1, p<5. There exists a universal constant y = y(d, p) > 0 such that
the following holds true. Let Ug € H' with radial symmetry and assume that the
corresponding solution to (2.5) blows up in finite time T < 4-co. Then there holds the

lower bound for t close enough to T:

lu(t)lges > og(T = )PP, (2.25)

Theorem 2.12 (General upper bound on blow up rate, Merle[155])

Let 0 < s¢ < 1 and yp € X such that the corresponding solution to (2.5) blows up in finite

time 0 < T < 40, then:

.
fo (T- T)HVU(T)”;(W) dt < +oo. (2.26)
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Theorem 2.13 (Sharp upper bound for radial data, F. Merle-Raphael-Szeftel[170])

Letd>2, 0 <s; <1, p<b5. Let the interpolation number

__5-p
“p-Nd-1)

Let up € H' with radial symmetry and assume that the corresponding solution

a (2.27)

u e C([0, T), H'") blows up in finite time T < -+oc0. Then there holds the space time upper
bound:

;
ft (T- T)”VU(T)“ZZ(]RC,) dt < C(up, T)(T — t) . (2.28)

v

Theorem 2.13 shows that there exists a sequence t, — T such that

||Vu(t,,

)”L;(]Rd) S (Tt

Note that it would be very interesting to obtain the pointwise bound for all times.
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Energy critical NLS
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Energy critical NLS

Consider

iU+ Au=plulezu, (t,x) e RxRY,
t H (t,x) (2.29)

u(0,x) = uo(x),
u(t,x) : RxRY — C, u = +1 corresponding to defocusing/focusing.

Defocusing case: u = 1. Forany up € A (RY), the solution to (2.29) is global and

scatters.
Defocusing energy-critical
d=3 d=4 d>5
radial Bourgain [16] Tao [226] Tao [226]
nonradial I-term[39] Ryckman-Visan [210, 239] | Visan [237, 238]
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Focusing case: y = —1.

(idy + A)u = —|ulezu, (t,x) e RxRY,

(2.30)
u(0, x) = uop(x),
Let W be the ground state of the elliptic equation AW + [W|az W = 0. An explicit
solution is the stationnary solution in H' (but in L2 only if d > 5)
1
WwW=———. (2.31)

%
[x[2
(1 + (272))
The works of Aubin and Talenti [1, 223], give the following elliptic characterization of W

vueH', [l < Callully (2.32)

e = Calluly = 3 40,%,20 u(x) = 20W( (233)

where Cy is the best Sobolev constant in dimension d.

Jigiang Zheng Université de Nice Dynamics of



Energy-critical NLS

Energy subcritical NLS Energy-supercritical

Below threshold of ground state E(up) < E(W)
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Then, W is global but does not scatter. The first work is due to Kenig-Merle[98], where
they obtain that for E(up) < E(W), if ||VU0||L3 < ||VW||LX2, then the solution is global and
scatters; if IVuoll e > ||VW||LX2, then the solution blows up in finite time.

Focusing energy-critical

d=3 d=4 d>5
radial Kenig-Merle [98] | Kenig-Merle [98]
nonradial Open! Dodson[55] Killip-Visan [109]
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Lemma 2.14

Let fbein H'. Then
V1lle < IVWe = f 1% < f Wi, (2.34)

Assume furthermore that
E[f] < E[W]. (2.35)

Then the reverse implication to (2.34) holds, and we obtain
Vflle < VW = f 112 < f Wi (2.36)

Moreover, (2.36) also holds with non-strict inequalities (in the case of equality, f is equal

to W up to space translation, scaling and phase.)
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Theorem 2.15 (Duyckaerts-Roudenko[66])

Let u be a solution of (2.30) with maximal time of existence T (u), and assume

lim sup lu(x, t)|c%d2 dx < le(x)lﬂ dx. (2.37)

t—>T4 (u) JRN

Assume furthermore that u is radial if d = 3,4. Then T4 (u) = 4+ and U scatters

forward in time.

Remark 2.1

| A\

The assumption (2.37) is weaker than ||[Vug||;2 < [[VW]|| 2, due to (2.34). Try to remove

the radial restriction in dimension four.
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Threshold solutions of ground state E(up) = E(W)
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Existence of special solutions(besides W) at threshold

Theorem 2.16 (Existence of special solutions, Duyckaerts-Merle[64])

Let d € {3,4,5}. There exist radial solutions W~ and W™ of (2.30) such that

E(W) = E(W*) = E(W"), (2.38)

T(W) =Ty (W¥) = +eand lim W(t) = WinH', (2.39)
(Wl <IWIlg,  T-(W7) = +oo, W lls((ceo)) < 0, (2.40)
W, > IWIlg, and, if d =5, T_(W*) < 4oo. (2.41)

Remark 2.2

As for W, W+(t) and W~(t) belongs to L2 if and only if d = 5. We still expect
T_(W+) < +co ford = 3,4.
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Theorem 2.17 (Classification of solutions, Duyckaerts-Merle [64])

Letd € {3,4,5}. Let uyp € H' radial, such that
E(uo) = E(W) = 1/(NC9). (2.42)
Let u be the solution of (2.30) with initial condition Uy and /its maximal interval of

definition. Then the following holds:

Q fquO|2 < flVWl2 = é then | = R. Furthermore, either u = W~ up to the
d

symmetry of the equation, or ||ul| S(R) < -
Q it fIVuol2 = flVle then u = W up to the symmetry of the equation.

Q fquolz > fIV W2, and ug € L2 then either u = W+ up to the symmetry of the

equation, or /is finite.
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Beyond threshold solutions of ground state E(up) > E(W)
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Define the variance as

V(t) = flxlzlu(x, t)I? dx. (2.43)
Assuming V(0) < oo (referred to as finite variance), the following virial identities hold:
Vi(t) = 4Imfx~Vu(x, t)u(x,t)dx, and (2.44)
Vie(t) = 8f|Vu I - flu (1)1%2 (2.45)
= r Elu] - ||Vu(t)||L2 Ry (2.46)
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Theorem 2.18 (Classification of solutions, Duyckaerts-Roudenko[66])

Let u be a solution of (2.30). Assume V/(0) < oo, up € H'(RV), and
(Vi(0))? ) IVull2
MEU 11— 5= | <1, ME[Y] := . 2.47
(- eV L= i B
Part 1 (Blow up) If
f|uo|% > f|W|%, and V;(0) <0, (2.48)
then u(t) blows-up in finite positive time, T (u) < co
Part 2 (Boundedness and scattering) If
f|uo|% < f|W|%, and V;(0) >0, (2.49)
then
limsup [ |u(t)l |72 < f|W|d 2 (2.50)
t—>T (u)
Furthermore, u scatters forward in time in A provided d > 5 or u is radial.
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Existence of standing ring solutions

Theorem 2.19 (Existence and stability of a solution blowing up on a sphere in
R®,Raphael-Szeftel[205])

1
)4 be the ground state of the one dimension elliptic equation

Let Q(x) = (

3
cosh?(x)

AQ-Q+Q*=0.

There exists an open subset $ C Hi a (R3) such that the following holds true:

@ Let ug € P, then the corresponding solution u(t) to idyu + Au + |u[*u = 0 blows
up in finite time 0 < T < 400 according to the following dynamics. There exist
A(t) > 0,r(t) > 0 and y(t) € R such that

1 ( r—r(t)

—_ o —=22)\ei(d) * ; 2
u(t,r) A(t)%o G )e Su(r) in L2ast—T. (2.51)
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Here the radius of the singular circle converges
r(t) > r(T)>0ast—> T

and

A(O(bglggfc—tﬂ)z_%”zﬁz

Moreover, one derivatives propagate outside the singularity:

VR>0, ueH (r-r(T)>R).

ast— T.

(2.52)

(2.53)

(2.54)

Standing ring solutions: log-log blow up solutions..
Collapsing ring solutions: polynomial blow up solutions.
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Energy supercritical NLS
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Existence of weak solutions Let Q ¢ R? be any open domain, and i >0, p > 1.

Consider
i+ Au=pluPlu, (t,x) eRxQ

u(0, x) = up(x).

(2.55)

@ Ifp-1< 745 (p <+, if d = 1,2), the problem (2.55) has a solution
e L(R, H}(R)) N W'(R, H (Q)
for every up € H} ().
@ |In addition, if Q = RY, orif d = 1, orif d = 2 and p < 3, the solution is unique.

@ However, those results do not apply when p — 1 > 4.

Here, we present a result of Strauss [218](see also [217]) that applies for arbitrarily large
p by using compactness method.
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Theorem 2.20 (Strauss [218], or [24] Theorem 9.4.1)

Let 7> 0 and p > 1. It follows that for every U € V := H} () N LP*'(Q), there exists a
solution u € L*(R, V) N W'=(R, V*) with V* = H-(Q) P L% (2) of equation (2.55)

satisfies

lu(t)llz = lluollz,  forall t € R; (2.56)
E(u(t)) < E(up), forallteR. (2.57)

Remark 2.3

(i) Note that, in particular, u € C(RR, V*), and so u is weakly continuous R — H} () and
R — LPH'(Q); in particular, u(t) € V for all t € R. Therefore, u(0) makes sense in V and
E(u(t)) is well defined for all t € R.

(ii) Note that when p — 1 < -4, then H}(Q) < LPT1(Q), therefore, V = H}().

Theorem 2.20 in this part follows from the above classical argument.

(iii) The proof of Theorem 2.20 does not apply in the focusing energy supercritical case.
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Consider
idiu+ Au= pluP'u, (t,x) e RxRY,
t H (%) (2.58)

u(0,x) = up(x), x € R4

u(t,x) : RxRY - C, u = +1 corresponding to defocusing/focusing. s, > 1, i.e.

>14 i
P -2
Critical norm conjecture
Se=1% 0<sc<1 1<s.<$ S¢ >3
d=3 KM[99] Murphy [191] | Murphy [191] rad

d=4 Murphy [190] | Murphy [189] | DMMZ [56, 180] | LZ[137]rad
d=>5 Murphy [190] | Murphy [189] | Killip-Visan[108] KV[108]
d=1,2 Open
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Type | Blow up

Consider

(idf + A)u = pluP~'u, (t,x) eRxRY,

u(0, x) = uop(x),

(2.59)
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m If s; > 1, The problem (2.59) is not well-posed in H'. To prove LWP in the critical
Sobolev space H*, one needs the nonlinearity to be at least C*, i.e. p is an odd

integer or

d+2+ Vd?2-4d-28
4

d<7 or p> (4=>sc<p) (2.60)

Theorem 2.21 (The sufficient condition leading to blow-up, Duyckaerts-Roudenko[66])

Suppose that Uy € H' and V(0) < co. If 5. > 1, assume furthermore uy € H% and p is
odd or (2.60). The following is a sufficient condition for blow-up in finite time for (2.59)

with s; > 0 and E[u] > 0:

U < Veds: (g S2), E = ELl, M= My 261)
where
& +x=(1+1) if0<x<t (p—1)s;

with k =

9(x) =
i x=(1+1) ifx>1 2
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Theorem 2.22 (The sufficient condition leading to blow-up)

Suppose that ug € H' and ||xup|| 2 < .If S¢ > 1, assume furthermore g € Hse and pis
odd or (2.60). The following is a sufficient condition for blow-up in finite time for NLS
(2.59) with s; > 0 and E[u] > 0:

Vi(0)  4V2(M'-%E%)a ET9 V(0
0 v e L g|ce BN (2.63)
I\/I1Jr d(p-1)
where
_2
(p+1) A0 4 (o )) D)
Cpd 2.64
(2 (e &ey
and Cp 4 is a sharp constant in the interpolation inequality
M- AEE )
llullz < Cpn (IIXUIILZ2 IIUII‘L’L) (2.65)
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Type Il Blow up
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Theorem 2.23 (Type Il blow up for the super critical NLS

equation,Merle-Raphael-Rodnianski[167])

LetdZ11.Leta:y—%andassume:

p=2g9+1, ge N,

P> pu, (2.66)
Discr > 4
and
@ 1 1/d 1 1(d 2
EiIN, §+§(§— )iN, §+§(§—F)€N (2.67)
Fix an integer
(e N with £> g (2.68)

and an arbitrary large Sobolev exponent

st €N, s; >5(f) > +o0 as £ — +co.
Then there exists a radially symmetric initial data ug(r) € H%+(R%, C) such that the
corresponding solution to (2.55) blows up in finite time 0 < T < 40 via concentration

of the soliton profile:
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— 1 _r_\aiy(t)
u(t,r) = oE (Q+¢)(xf)e (2.69)
with:
(i) Blow up speed:
At) = c(uo)(1 + ot (1)) (T = 1), c(uo) > 0; (2.70)
(ii) Stabilization of the phase:
y(t) > y(T)eR as t > T; (2.71)

(iii) Asymptotic stability above scaling:
Ir|TrrT1 [[Vee(t, )l =0 forall s; <s<s;; (2.72)
(iv) Boundedness below scaling:

limsup [[u(t)llns < +oo forall 0<s < sg; (2.73)
0T

(v) Behavior of the critical norm:

(e = o £ + onr(1)] yllog(T - ). @74
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Existence of standing ring blowup solutions

Theorem 2.24 (Existence and stability of a solution blowing up on a sphere in
R3,Raphael-Szeftel[205])

1
Let Q(x) = (ﬁ%x)) * be the ground state of the one dimension elliptic equation
AQ - Q + Q* = 0. There exists an open subset P C Hr"a d (RY) such that the following

holds true. Let up € P, then the corresponding solution u(t) to

idiu+ Au+|ufu=0, (t,x) e RxR?, d >4
blows up in finite time 0 < T < +co according to the following dynamics. There exist
A(t) > 0,r(t) > 0 and y(t) € R such that

u(t,r) - —Eo(r;(—rt()t))e’ﬂ” Su(r) in Llast—T. (2.75)
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and

log | log(T - 3
og log( t)|)2 — lm ast— T. (2.77)

(25 QL2

Moreover, %—derivatives propagate outside the singularity:

VR >0, u eHZ (Ir-r(T) > R). (2.78)
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Mass subcritical NLS

Consider

idiu+ Au= pylulP'u, (t,x) e RxRY,
t u (t,x) 2.79)

u(0,x) = uo(x),

u(t,x) : RxRY — C, u = +1 corresponding to defocusing/focusing.
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m When s, < 0, the solution u(t, x) to (2.86) with up € H' (IR?) is global in both

defocusing and focusing case.

Theorem 2.25 (Strauss index)

Assume thatd>1and 1 <p <1+ %. Let u be a nontrivial, smooth solution to (2.86),
and asymptotical free, i.e. A v, € L3(R") s.t.
itA

Jim flu(t) - e velliz (gr) = O- (2.80)

Then, v. = 0. Combining this with mass conservation, we obtain u = 0.

Theorem 2.26

Let1<p<1+ 5 Then, there exists u; € L?(R?) of arbitrarily small mass norm such

that there cannot be any strong solution u of (2.86) satisfying the following

Jim fJu(t) - e ue] 2 gey = 0. (2.81)

v
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Theorem 2.27 (Scattering in X space, Cazenave [24] Theorem 7.4.1, 7.5.11)

Let up € ¥, a(d) = =4 Vdii2ord “‘ff”*“,y: 1,

@ a(d) +1 < p <2 -1 (see Tsutsumi[232]);
@ d=1ord=>3, p=1+ a(d) (see Cazenave-Weissler [28]).

Then, the solution to (2.86) is global and scatters.

Remark 2.4

It is easy to check that a(d) is the positive root of the polynomial da? + (d — 2)a — 4 = 0.
We note that a > 0 satisfies da? + (d — 2)a — 4 > 0 if and only if & > a(d). We also that
that

<-4 <a(d)<%, if d>2
2 <ald) < § -

Qi aln

<a(d)<2 if d=1.

Jigiang Zheng Université de Nice Dynamics of NLS



Energy-critical NLS
Energy subcritical NLS Energy-supercritical

Theorem 2.28 (Scattering in critical weight space, Killip-Masaki- Murphy-Visan[104])

Assume max(%, #2) <p-1< %, u € {x1}. Let ty € [-00, 00) and
Up € FHS! .= {|x|*!f € L2(RY)}.

Let U : Inax X R? — C be the maximal-lifespan solution to (2.86) with initial condition

e ™2 u(ty) = up € FH®!. (2.83)
Suppose

sup [le™ 2 u(t)llyggee < 0. (2.84)

t€lmax

Then u is forward-global and scatters forward in time; that is, there exists u; € F Hisel

such that

lim e u(t) = U llygyee = 0. (2.85)
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Orbital stability
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Mass-subcritical

Consider the mass-subcritical NLS
itu+ Au+uP'lu=0, 1<p<1+%. (2.86)

Let us first observe that two trivial instabilities are given by the symmetries of the
equation:

@ Scaling instability: ¥ A > 0, the solution to (2.86) with initial data
Uo(x) = ABT Q(Ax) is u(t, x) = 177 Q(Ax)ei*t;

e Galilean instability: V g > 0, the solution to (2.86) with initial data
up(x) = eP*Q(x) is u(t, x) = eft+50=EDQ(x — pt).
In both cases,
sup|u(t, x) — e"Q(x)| > |Q(x)!.

teR

and thus the solution does not stay uniformly close to Q.
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Orbital stability in mass subcritical

Theorem 2.29 (Orbital stability of the ground state, Cazenave and Lions[25])

Letd>1and1<p <1+ 2. Forall e > 0, there exists §(¢) such that the following holds
true. Let up € H' with
lluo = Qllkr < 6(e).

then there exist a translation shift x(t) € C°(R; R?) and a phase shift y(t) € C°(R; R)
such that:

llut, x) — €7D Q(x = x(1))lly ey < &, ¥ tER. (2.87)
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Orbital instability in mass critical

Theorem 2.30 (Orbital instability in mass critical, Weinstein [243])

Let @ > 0 and Q be the ground state. Then u(t, x) = €“!Q is an unstable solution of

(1.32) in the following sense. There exists a sequence {¢pm} C H' such that
¢m—Q in H'

and such that the corresponding maximal solution uny, of (1.32) blows up in finite time

for both sides.

One can refer to Berestycki and Cazenave [7] for the instability of mass-supercritical

case.
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Theorem 2.31 (Modified orbital instability in mass critical, Raphael[199])

Letd > 1. For all & > 0 small enough, there exists 6(a*) with 6(a*) — 0 as a* — 0 such

that the following holds true. Let ug € H' with

f |uoPdx < f Qdx +a’, E(u)<a’ f |Vuldx, (2.88)
R4 RY RY

and let u(t) be the corresponding solution to (1.32) with lifespan time 0 < T < +oo0, then
there exists (x(t),7(t)) € C°([0, T),IR? X R) such that

A Eu(t, A(D)x + x(1)e™D - Q)| <o(a”), Vte[o,T), (2.89)
with A(t) = ng?tl)‘lﬁz . In other words,
u(t,x) = /\(1?(0 n e)(t, X ;(’gt)) PO el < 5(a). (2.90)
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Theorem 2.32 (Non-squeezing, lllip-Visan-Zhang[113])

Letpu € {1}, p=38, d =1. Fix z. € L?3(R), | € L3(R) with |||l = 1,a € C,
0<r<R<ooand T > 0. Then there exists up € B(z., R) such that the solution u to
(2.86) with y = 1 and initial data u(0) = up satisfies

KL, u(T)) —al > r. (2.91)

OU(T)

B(z.,R) Coal)
r\&,

Figure:
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Theorem 2.33 (Modified wave operators)

Let (x)2¢ € L?(R?) and ¢ € A~ with 1 < 6 < 2, and ||[(x)?@||,, + lI¢ll-. < 1. Then, there
exists a unique global solution u of id;u+ 1 Au=u?, (t,x) € RxR? such that
ue C(RT;L2)and

s:uPt%[llu(t)—up(t)llLXz +10(t) = Up (s, [,m)xmz)] <c9, (2.92)
>
where up(t) = te el (ﬁ(%) Furthermore, the modified wave operator

W, ¢ — u(0)

is well-defined.
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Some model of dispersive equations |

(1) NLS on domain: idiu + Au = |ulP~'u, x € M.
(1) Wave equation
Pu-Au= F(u) (2.93)

(2) KdV equation (Korteweg-de Vries equation)

dtu+ d3u - 6udyu = 0. (2.94)
Generalized KdV
U+ 3u— uPoyu = 0. (2.95)
(3) Klein-Gordon equation
Pu-Au+u=F(u) (2.96)
(4) Derivative NLS
i0tu + Uy + ilufPuy = 0. (2.97)
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Some model of dispersive equations Il

(5) Zakharov system
idiu + Au = nu,

(2.98)
#2n-An= Alul?.
(6) Nonlinear Boussinesq equation
Utt — Uxx — Uxxxx + S(Uz)xx = Or (299)
and modified Boussinesq equation
1§utt — Utlxx — %U)Z(Uxx + Uxxx = 0. (2100)

(7) Schrédinger map: d;u = ux Au, (t,x) e RxR?
(8) Wave map equation: D*d,u = 0.
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