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The use of a translation dictionary between English or Welsh and another language, provided
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1. The Diffusion Equation. Consider the diffusion equation on the real line:
up(z,t) — kg, (x,t) =0, —oo <x <400, t>0,
where k > 0 is fixed. Let 2y < 1 and 0 <ty < t; and define the rectangle
R := [xg, 1] X [to, 1]
in the (z,t) plane. Define I' to be the union of the bottom, right and left edges of R.

(a) State the maximum principle for R. 3]

(b) Prove the maximum principle for R. [20]
Solution: this was proved in class (notes of 27 Oct)

1 |z| <a,

(¢) Fora > 0, solve the the diffusion equation with initial condition ¢(z) = {0 2]
x| > a.

Express your answer in terms of the error function

2 T
Erf(z) = ﬁ/o e P dp.

You may use the formula

1 & _(z—p)?
wat) = —— / T o(y) dy.

Solution: this is Q2.4.1 from the book (which I solved)
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2. The Wave Equation. Consider an infinite string with density p > 0 and tension
T > 0 (both assumed to be constant). The associated wave equation is

(a)

(b)

T
g (x,t) — —uge(z,t) =0, —0o<xr<+oo, t>0. (*)
p

What is the wave speed ¢? 3]
Solution: ¢ = +/T/p

Let g € R and let tg > 0. Sketch and label clearly the domains of influence and
of dependence of the point (xg,to) in space-time, ensuring to specify the slopes of
their boundaries. [5]

Solution: this was discussed in class (notes of 26 Oct)

Let u be a solution of (*) and assume that u, u; and wu, all tend to 0 as z — +oo.
Prove that u does not satisfy a maximum principle. In your proof you may choose
initial conditions u(x,0) = ¢(x) and u:(x,0) = (x) so long as they satisfy that
u, uy and u, all tend to 0 as x — oo (so, for instance, ¢(x) cannot be periodic!)
10]

Solution: this was a homework problem (Q2.5.1), but see my solu-
tion because you are not allowed to take ¢ that is periodic (which is
something many of you relied on in your solutions!)

Consider the wave equation for a finite string with mixed Dirichlet/Neumann
boundary conditions:

u(x,t) — %um(:v,t) =0, O<z<t, t>0,
u(0,t) = u,(¢,t) =0, t>0.
u(z,0) = ¢(z), u(2,0) = P(z), 0<z <L

i. Separate the variables u(z,t) = X (x)T'(t) to express u in series form (you
may assume that the equation —X” = AX with mixed Dirichlet/Neumann
boundary conditions has only non-negative eigenvalues). [10]
Solution: this (is almost identical to) Q4.2.2 from the book (which
I solved). The only difference is that the BCs are reversed

ii. If ¢(x) = 5sin(Fx) and 1 (z) = 0, what are the coefficients in the preceding
expansion? (You may use the fact that f(f sin®(3x)dr = £ and that the
eigenfunctions are mutually orthogonal without proof). 5]

Solution: this is very similar to the last part of Q5.1.9 from the
book (which I solved)
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3. Properties of Differential Operators and First-Order PDEs.

()

Solve the first-order equation 8]
.t( ’ y) COoS xuy(x y) O)
u(0,y) =

Solution: this was solved in class (notes of 13 Oct)

Let £ be the operator given by Lf(x) = f'(x) on the interval (0, 1) with Dirichlet
boundary conditions (i.e. f(0) = f(1)). Find its eigenvalues and eigenfunctions,
and show that the eigenfunctions are mutually orthogonal. 8]

Solution: this is Q5.3.6 from the book (which I solved)

Let {X,,}22, be the standard eigenfunctions of the operator LX = —X" on (a, b)
with periodic boundary conditions. Let f be a real-valued, twice continuously
differentiable function on [a, b], with f(a) = f(b) and f'(a) = f'(b). Consider its
Fourier series f(xz) = >~ A, X, (z). Prove that this series converges uniformly.
[17]

Solution: this was proved in class (notes of 30 Nov)



MA3016/23

4. The Laplace Equation.

(a)

(b)

Let @ > 0. Solve Au = 0 in the disk D = {r < a} with the boundary condition
u=1+3sinf onr =a. [10]
Solution: this is Q6.3.2 from the book (which I solved)

Let D C R? be an open, bounded and connected set. Prove that any solution to
the problem

Au=f inD
u=nh on 0D
is unique. You may rely on the maximum principle in your proof. [10]

Solution: this was proved in class (notes of 7 Dec)

Find the harmonic function u(z,y) in the square
R={(z,y)|0<z<m0<y<m}

satisfying the boundary conditions u,(0,y) = u.(7,y) = u(x,0) = 0 and u(z, 7) =
g(x). You may assume that the equation —X” = AX with Neumann boundary
conditions has only non-negative eigenvalues. [13]
Solution: a very similar problem was solved in class, with slightly dif-
ferent BCs (notes of 8 Dec), also Q6.2.3 (which I solved) is very similar
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