Do not turn this page over until instructed to do so by the Invigilation Supervisor

Academic Year: 2023/24
Examination Period: Autumn
Module Code: MA3016
Examination Paper Title: Partial Differential Equations
Duration: 2 hours

Please read the following information carefully:

Structure of Examination Paper:

- There are 5 pages including this page.
- There are 4 questions in total.
- There are no appendices.
- The maximum mark for the examination paper is 100 and the mark obtainable for a question or part of a question is shown in brackets alongside the question.

Instructions for completing the examination:

- Complete the front cover of any answer books used.
- This examination paper must be submitted to an Invigilator at the end of the examination.
- Answer THREE questions.
- Each question should be answered on a separate page.

You will be provided with / or allowed:

- ONE answer book.
- The use of calculators is not permitted in this examination.
- The use of a translation dictionary between English or Welsh and another language, provided that it bears an appropriate departmental stamp, is permitted in this examination.
- The use of the student's own notes, up to $\mathbf{1}$ sheet (2 sides) of A4 paper, is permitted in this examination.

1. The Diffusion Equation. Consider the diffusion equation on the real line:

$$
u_{t}(x, t)-k u_{x x}(x, t)=0, \quad-\infty<x<+\infty, \quad t>0,
$$

where $k>0$ is fixed. Let $x_{0}<x_{1}$ and $0 \leq t_{0}<t_{1}$ and define the rectangle

$$
R:=\left[x_{0}, x_{1}\right] \times\left[t_{0}, t_{1}\right]
$$

in the (x, t) plane. Define Γ to be the union of the bottom, right and left edges of R.
(a) State the maximum principle for R.
(b) Prove the maximum principle for R.

Solution: this was proved in class (notes of 27 Oct)
(c) For $a>0$, solve the the diffusion equation with initial condition $\phi(x)= \begin{cases}1 & |x| \leq a, \\ 0 & |x|>a\end{cases}$

Express your answer in terms of the error function

$$
\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-p^{2}} d p
$$

You may use the formula

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y
$$

Solution: this is Q2.4.1 from the book (which I solved)
2. The Wave Equation. Consider an infinite string with density $\rho>0$ and tension $T>0$ (both assumed to be constant). The associated wave equation is

$$
\begin{equation*}
u_{t t}(x, t)-\frac{T}{\rho} u_{x x}(x, t)=0, \quad-\infty<x<+\infty, \quad t>0 . \tag{*}
\end{equation*}
$$

(a) What is the wave speed c ?

Solution: $c=\sqrt{T / \rho}$
(b) Let $x_{0} \in \mathbb{R}$ and let $t_{0}>0$. Sketch and label clearly the domains of influence and of dependence of the point (x_{0}, t_{0}) in space-time, ensuring to specify the slopes of their boundaries.
Solution: this was discussed in class (notes of 26 Oct)
(c) Let u be a solution of $\left(^{*}\right)$ and assume that u, u_{t} and u_{x} all tend to 0 as $x \rightarrow \pm \infty$. Prove that u does not satisfy a maximum principle. In your proof you may choose initial conditions $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=\psi(x)$ so long as they satisfy that u, u_{t} and u_{x} all tend to 0 as $x \rightarrow \pm \infty$ (so, for instance, $\phi(x)$ cannot be periodic!) [10]
Solution: this was a homework problem (Q2.5.1), but see my solution because you are not allowed to take ϕ that is periodic (which is something many of you relied on in your solutions!)
(d) Consider the wave equation for a finite string with mixed Dirichlet/Neumann boundary conditions:

$$
\begin{cases}u_{t t}(x, t)-\frac{T}{\rho} u_{x x}(x, t)=0, & 0<x<\ell, \quad t>0 \\ u(0, t)=u_{x}(\ell, t)=0, & t>0 \\ u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x), & 0<x<\ell\end{cases}
$$

i. Separate the variables $u(x, t)=X(x) T(t)$ to express u in series form (you may assume that the equation $-X^{\prime \prime}=\lambda X$ with mixed Dirichlet/Neumann boundary conditions has only non-negative eigenvalues).
Solution: this (is almost identical to) Q4.2.2 from the book (which I solved). The only difference is that the BCs are reversed
ii. If $\phi(x)=5 \sin \left(\frac{5 \pi}{2 \ell} x\right)$ and $\psi(x)=0$, what are the coefficients in the preceding expansion? (You may use the fact that $\int_{0}^{\ell} \sin ^{2}\left(\frac{5 \pi}{2 \ell} x\right) d x=\frac{\ell}{2}$ and that the eigenfunctions are mutually orthogonal without proof).
Solution: this is very similar to the last part of Q5.1.9 from the book (which I solved)

3. Properties of Differential Operators and First-Order PDEs.

(a) Solve the first-order equation

$$
\left\{\begin{array}{l}
u_{x}(x, y)+\cos x u_{y}(x, y)=0 \\
u(0, y)=y^{2}
\end{array}\right.
$$

Solution: this was solved in class (notes of 13 Oct)
(b) Let \mathcal{L} be the operator given by $\mathcal{L} f(x)=f^{\prime}(x)$ on the interval $(0,1)$ with Dirichlet boundary conditions (i.e. $f(0)=f(1)$). Find its eigenvalues and eigenfunctions, and show that the eigenfunctions are mutually orthogonal.

Solution: this is Q5.3.6 from the book (which I solved)

(c) Let $\left\{X_{n}\right\}_{n=0}^{\infty}$ be the standard eigenfunctions of the operator $\mathcal{L} X=-X^{\prime \prime}$ on (a, b) with periodic boundary conditions. Let f be a real-valued, twice continuously differentiable function on $[a, b]$, with $f(a)=f(b)$ and $f^{\prime}(a)=f^{\prime}(b)$. Consider its Fourier series $f(x)=\sum_{n=1}^{\infty} A_{n} X_{n}(x)$. Prove that this series converges uniformly. [17]
Solution: this was proved in class (notes of 30 Nov)

4. The Laplace Equation.

(a) Let $a>0$. Solve $\Delta u=0$ in the disk $D=\{r<a\}$ with the boundary condition $u=1+3 \sin \theta$ on $r=a$.
Solution: this is Q6.3.2 from the book (which I solved)
(b) Let $D \subset \mathbb{R}^{2}$ be an open, bounded and connected set. Prove that any solution to the problem

$$
\begin{cases}\Delta u=f & \text { in } D \\ u=h & \text { on } \partial D\end{cases}
$$

is unique. You may rely on the maximum principle in your proof.
Solution: this was proved in class (notes of 7 Dec)
(c) Find the harmonic function $u(x, y)$ in the square

$$
R=\{(x, y) \mid 0<x<\pi, 0<y<\pi\}
$$

satisfying the boundary conditions $u_{x}(0, y)=u_{x}(\pi, y)=u(x, 0)=0$ and $u(x, \pi)=$ $g(x)$. You may assume that the equation $-X^{\prime \prime}=\lambda X$ with Neumann boundary conditions has only non-negative eigenvalues.
Solution: a very similar problem was solved in class, with slightly different BCs (notes of 8 Dec), also Q6.2.3 (which I solved) is very similar

