Do not turn this page over until instructed to do so by the Invigilation Supervisor

Academic Year: 2023
Examination Period: Autumn
Module Code: MA3016
Examination Paper Title: Partial Differential Equations
Duration: $2 / 3$ hours

## Please read the following information carefully:

## Structure of Examination Paper:

- There are $X$ pages including this page.
- There are $\mathbf{X}$ questions in total.
- The following appendices areappendix is attached to this examination paper: Statistical tables Some Fundamental Distributions and their Properties
- There are no appendices.
- The maximum mark for the examination paper is $100 \%$ and the mark obtainable for a question or part of a question is shown in brackets alongside the question.


## Instructions for completing the examination:

- Complete the front cover of any answer books used.
- This examination paper must be submitted to an Invigilator at the end of the examination.
- Answer THREE questions.
- Each question should be answered on a separate page.

You will be provided with / or allowed:

- ONE answer book.
- Squared graph paper.
- The following items are provided as an Appendix: Statistical tables
- The use of calculators is not permitted in this examination.
- The use of a translation dictionary between English or Welsh and another language, provided that it bears an appropriate departmental stamp, is permitted in this examination.
- The use of the student's own notes, up to 1 sheet ( 2 sides) of A4 paper, is permitted in this examination.

1. The Wave Equation. Consider an infinite string with density $\rho>0$ and tension $T>0$ (both assumed to be constant). The associated wave equation is

$$
\begin{equation*}
u_{t t}(x, t)-\frac{T}{\rho} u_{x x}(x, t)=0, \quad-\infty<x<+\infty, \quad t>0 \tag{*}
\end{equation*}
$$

(a) What is the wave speed $c$ ?
(b) Assume that $u, u_{t}$ and $u_{x}$ all tend to 0 as $x \rightarrow \pm \infty$. Prove that the string's energy $E(t)$ is conserved, where

$$
E(t):=\frac{1}{2} \rho \int_{-\infty}^{\infty} u_{t}(x, t)^{2} d x+\frac{1}{2} T \int_{-\infty}^{\infty} u_{x}(x, t)^{2} d x
$$

(c) The damped wave equation for some damping constant $r>0$ is

$$
u_{t t}(x, t)-\frac{T}{\rho} u_{x x}(x, t)+r u_{t}(x, t)=0, \quad-\infty<x<+\infty, \quad t>0 .
$$

Prove that in this case the energy may decrease over time.
(d) Assume that a string satisfying the wave equation $\left(^{*}\right)$ is initially "plucked", i.e. with the initial conditions (for some fixed $a>0$ )

$$
\left\{\begin{array}{l}
u(x, 0)=\phi(x)= \begin{cases}a-|x| & \text { for }|x|<a \\
0 & \text { for }|x| \geq a\end{cases} \\
u_{t}(x, 0)=\psi(x)=0, \quad-\infty<x<+\infty
\end{array}\right.
$$

i. When will the disturbance be felt at the point $b \in \mathbb{R}$, where $b>a$ ?
ii. Will the string ever stop vibrating at the same point $b$ ? If so, when? Explain using d'Alembert's formula:

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

2. The Diffusion Equation. Consider the diffusion equation in the interval $(0, \ell)$ with Dirichlet boundary conditions:

$$
\begin{cases}u_{t}(x, t)-k u_{x x}(x, t)=0, & 0<x<\ell, \quad t>0 \\ u(0, t)=u(\ell, t)=0, & t>0 \\ u(x, 0)=\phi(x), & 0<x<\ell\end{cases}
$$

Assume that $k>0$ and that the function $\phi$ is continuous on $[0, \ell]$, non-negative and not identically 0 . Let $T>0$ and define the rectangle

$$
R:=[0, \ell] \times[0, T]
$$

in the $(x, t)$ plane. Define $\Gamma$ to be the union of the bottom, right and left edges of $R$.
(a) State the maximum principle for $R$.
(b) State the strong maximum principle for $R$.
(c) Use the energy method to prove that $\int_{0}^{\ell} u(x, t)^{2} d x$ is a strictly decreasing function of $t$. Hint: multiply the equation by $u$ and integrate.
(d) Separate the variables $u(x, t)=X(x) T(t)$ to express $u$ in series form (you may assume that the equation $-X^{\prime \prime}=\lambda X$ with Dirichlet boundary conditions has only positive eigenvalues).
(e) If $\phi(x)=\sin \left(\frac{2 \pi}{\ell} x\right)$, what are the coefficients in the preceding expansion? (You may use the fact that $\int_{0}^{\ell} \sin ^{2}\left(\frac{2 \pi}{\ell} x\right) d x=\frac{\ell}{2}$ and that the eigenfunctions are mutually orthogonal without proof).

## 3. The Laplace Equation.

(a) Let the function $u$ be harmonic in a disk $B \subset \mathbb{R}^{2}$ of radius $a>0$ centred at the origin, with $u=h(\theta)$ on $\partial B$. Poisson's formula is

$$
u(r, \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{h(\phi)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi
$$

State and prove the mean value property.
(b) Let $D \subset \mathbb{R}^{2}$ be an open, bounded and connected set. Let the function $u$ be harmonic in $D$ and continuous in $\bar{D}=D \cup \partial D$. State and prove the strong maximum principle.
(c) Find the harmonic function $u(x, y)$ in the square

$$
R=\{(x, y) \mid 0<x<\pi, 0<y<\pi\}
$$

satisfying the boundary conditions $u(0, y)=u(\pi, y)=u(x, 0)=0$ and $u(x, \pi)=$ $g(x)$. You may assume that the equation $-X^{\prime \prime}=\lambda X$ with Dirichlet boundary conditions has only positive eigenvalues.

## 4. Properties of Differential Operators and First-Order PDEs.

(a) Solve the first-order equation

$$
\left\{\begin{array}{l}
5 u_{x}(x, y)-2 u_{y}(x, y)=0 \\
u(x, 0)=\cos x
\end{array}\right.
$$

(b) Let $\mathcal{L}$ be the operator given by $\mathcal{L} f(x)=-f^{\prime \prime}(x)$ on some interval $(a, b)$ with either Dirichlet, Neumann or Periodic boundary conditions. Prove that $\mathcal{L}$ has only real eigenvalues, and that its eigenfunctions can be taken to be real-valued. In your proof you may use Green's second identity for two twice continuously differentiable functions $y_{1}(x), y_{2}(x)$ on $(a, b)$, and continuous on $[a, b]$ :

$$
\int_{a}^{b}\left(-y_{1}^{\prime \prime} \overline{y_{2}}+y_{1}{\overline{y_{2}}}^{\prime \prime}\right) d x=\left.\left(-y_{1}^{\prime} \overline{y_{2}}+y_{1} \overline{y_{2}^{\prime}}\right)\right|_{x=a} ^{b} .
$$

(c) If $\mathcal{L}$ is subject to Neumann boundary conditions, can 0 be an eigenvalue? Explain your answer.

