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1. The Wave Equation. Consider an infinite string with density p > 0 and tension
T > 0 (both assumed to be constant). The associated wave equation is

T
(2, t) — —uge(x,t) =0, —o0 <z <400, t>0. (*)

p
(a) What is the wave speed ¢? 3]
(b) Assume that u, u; and u, all tend to 0 as x — +00. Prove that the string’s energy
E(t) is conserved, where [10]

1 o 1 >
E(t) == —,0/ ut(x,t)de+§T/ uy(z,t)* dr.

2 o0 — 00

(¢) The damped wave equation for some damping constant r > 0 is
T
(2, ) — —uge(x,t) + rug(x,t) = 0, —oo <z < +oo, t>0.
p

Prove that in this case the energy may decrease over time. [10]

(d) Assume that a string satisfying the wave equation (*) is initially “plucked”, i.e.
with the initial conditions (for some fixed a > 0)

a—|z| for|z| <a,

u(z,0) = ¢(x) = {

0 for || > a,

u(x,0) = ¥(x) =0, —00 < & < +00.
i. When will the disturbance be felt at the point b € R, where b > a? 5]
ii. Will the string ever stop vibrating at the same point b7 If so, when? Explain
using d’Alembert’s formula: 5]

1 T+ct

ule,t) = Gl +et) + o —ct) + o [ w(s)ds.
xr—ct
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2. The Diffusion Equation. Consider the diffusion equation in the interval (0, ¢) with
Dirichlet boundary conditions:

ug(x,t) — kg (z,t) =0, O<x<{, t>0,
u(0,t) = u(l,t) =0, t >0,
u(z,0) = ¢(x), O<z<d.

Assume that k£ > 0 and that the function ¢ is continuous on [0, ¢], non-negative and
not identically 0. Let 7" > 0 and define the rectangle

R :=10,4] x [0,T]
in the (z,t) plane. Define I' to be the union of the bottom, right and left edges of R.

(a) State the maximum principle for R. 3]
(b) State the strong maximum principle for R. 3]

(c) Use the energy method to prove that f(f u(x,t)? dz is a strictly decreasing function

of t. Hint: multiply the equation by u and integrate. [9]

(d) Separate the variables u(z,t) = X (z)T'(t) to express u in series form (you may
assume that the equation —X” = AX with Dirichlet boundary conditions has
only positive eigenvalues). 9]

(e) If ¢(x) = sin(% x), what are the coefficients in the preceding expansion? (You

may use the fact that f(f Sin2(27’r$) dr = g and that the eigenfunctions are mutually
orthogonal without proof). 9]

-3- Please turn over
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3. The Laplace Equation.

(a)

Let the function u be harmonic in a disk B C R? of radius a > 0 centred at the
origin, with u = h(#) on 0B. Poisson’s formula is

B a? _ 7”2 2 h(¢)
u(r,8) = 27 /0 a? — 2ar cos(0 — @) + r? 4.

State and prove the mean value property. [5]

Let D C R? be an open, bounded and connected set. Let the function u be
harmonic in D and continuous in D = D U dD. State and prove the strong
mazximum principle. [14]

Find the harmonic function u(z,y) in the square
R={(x,y)|0<z<m0<y<m}

satisfying the boundary conditions u(0,y) = u(m,y) = u(z,0) = 0 and u(x, 7) =
g(z). You may assume that the equation —X” = AX with Dirichlet boundary
conditions has only positive eigenvalues. [14]
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4. Properties of Differential Operators and First-Order PDEs.
(a) Solve the first-order equation 8]

u(z,0) = cosz.

{5u$(x,y) — 2uy(z,y) =0,

(b) Let £ be the operator given by Lf(x) = —f"(x) on some interval (a,b) with
either Dirichlet, Neumann or Periodic boundary conditions. Prove that £ has
only real eigenvalues, and that its eigenfunctions can be taken to be real-valued.
In your proof you may use Green’s second identity for two twice continuously
differentiable functions y;(z),y2(z) on (a,b), and continuous on |[a, b]: [20]

b
/ (—o75 + 375" do = (—4T + 91T .

(c) If L is subject to Neumann boundary conditions, can 0 be an eigenvalue? Explain
your answer. [5]
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