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1. The Wave Equation. Consider an infinite string with density ⇢ > 0 and tension
T > 0 (both assumed to be constant). The associated wave equation is

utt(x, t)�
T

⇢
uxx(x, t) = 0, �1 < x < +1, t > 0. (*)

(a) What is the wave speed c? [3]

(b) Assume that u, ut and ux all tend to 0 as x ! ±1. Prove that the string’s energy
E(t) is conserved, where [10]

E(t) :=
1

2
⇢

Z 1

�1
ut(x, t)

2 dx+
1

2
T

Z 1

�1
ux(x, t)

2 dx.

(c) The damped wave equation for some damping constant r > 0 is

utt(x, t)�
T

⇢
uxx(x, t) + rut(x, t) = 0, �1 < x < +1, t > 0.

Prove that in this case the energy may decrease over time. [10]

(d) Assume that a string satisfying the wave equation (*) is initially “plucked”, i.e.
with the initial conditions (for some fixed a > 0)

8
>>>><

>>>>:

u(x, 0) = �(x) =

(
a� |x| for |x| < a,

0 for |x| � a,

ut(x, 0) =  (x) = 0, �1 < x < +1.

i. When will the disturbance be felt at the point b 2 R, where b > a? [5]

ii. Will the string ever stop vibrating at the same point b? If so, when? Explain
using d’Alembert’s formula: [5]

u(x, t) =
1

2
[�(x+ ct) + �(x� ct)] +

1

2c

Z x+ct

x�ct

 (s) ds.
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a The wavespeed is c E

b To show that the energy is conserved weshow that Elt 0

We compute
E t at tagSIUE x t dx t at t TSI UE x t dx

If I 2W tu te dx t t TSI 2UxUx t dxEFFIE kit

try
T JI wxw at dt

We integratethe first term byparts
I SI we GD ax S MD d MEIJIJI Uex Ux

vanishat In
thesefunctions

E E Tf u thx dx t TI next dx 0

Therefore the energydoesn'tchangeover time it is conserved

c Werepeatthe same computation in the case ofthedamped waveeq
E'E g SI une da t TS What dx

As before we substitute wet using the wave equation whichnow
takes the form Ute Fu xx rut

E gLIVE Jux rut dx t T FuxUx t dx
TL wthxxdx g f rue dat Tf un xt dx

TJ u x dx pts rue dx t Tf nxt dx
gr fue dx s o

The last term is non positive so weconclude that É 0

i ie the energymightdecrease



EO

a o a b

d i The disturbance moves at speed c tf
Since 4 0 the solution is simply

UK E Ect et 4K CH

So the disturbance will be felt at b a at
time t by b a

in Thedisturbance will stop vibrating at b a

since 4 0 Once the leftedgeof the disturbance
passesthrough b there will be no more vibration

there This will happen at town
t b I baa
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2. The Di↵usion Equation. Consider the di↵usion equation in the interval (0, `) with
Dirichlet boundary conditions:

8
><

>:

ut(x, t)� kuxx(x, t) = 0, 0 < x < `, t > 0,

u(0, t) = u(`, t) = 0, t > 0,

u(x, 0) = �(x), 0 < x < `.

Assume that k > 0 and that the function � is continuous on [0, `], non-negative and
not identically 0. Let T > 0 and define the rectangle

R := [0, `]⇥ [0, T ]

in the (x, t) plane. Define � to be the union of the bottom, right and left edges of R.

(a) State the maximum principle for R. [3]

(b) State the strong maximum principle for R. [3]

(c) Use the energy method to prove that
R `

0 u(x, t)
2 dx is a strictly decreasing function

of t. Hint: multiply the equation by u and integrate. [9]

(d) Separate the variables u(x, t) = X(x)T (t) to express u in series form (you may
assume that the equation �X 00 = �X with Dirichlet boundary conditions has
only positive eigenvalues). [9]

(e) If �(x) = sin(2⇡` x), what are the coe�cients in the preceding expansion? (You

may use the fact that
R `

0 sin
2(2⇡` x) dx = `

2 and that the eigenfunctions are mutually
orthogonal without proof). [9]
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a The maximum principle The maximum of u in R

is obtained on M my u Mf u

b The strong maximum principle Unless u is constant
the maximum of u in R is strictly on M and

not in the interiorof R

c Multiply thee by u toget MKE Kunxx

Integrate LHS flumedx I Mdx
RHS L kuna dx KITUIdx UMI

Since u x o p is continuous non negative and not
identically 0 and 48 441 0 take R E e x GT
and r its bottom and sides So my u 0 my O

so that u must be strictly greater than 0 inside R

Since U o t Uh t 0 this implies that Ux cannot
be identically O along each time slice Therefore
RIS CO strictly

ddt f ud x O

Ju dx is strictly decreasing

d XX TI WITH A É I X p

x X Xx O X A cos Pat B sinFx
X XL 0 A O But Xn sincex



T E X KT E T Ae that

UGH ZI An sink x
ht

e sin Ex 4 u Xo Er An since x

An I IFerwise

UK t sin Ex e
4 E ht
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3. The Laplace Equation.

(a) Let the function u be harmonic in a disk B ⇢ R2 of radius a > 0 centred at the
origin, with u = h(✓) on @B. Poisson’s formula is

u(r, ✓) =
a2 � r2

2⇡

Z 2⇡

0

h(�)

a2 � 2ar cos(✓ � �) + r2
d�.

State and prove the mean value property. [5]

(b) Let D ⇢ R2 be an open, bounded and connected set. Let the function u be
harmonic in D and continuous in D = D [ @D. State and prove the strong

maximum principle. [14]

(c) Find the harmonic function u(x, y) in the square

R = {(x, y) | 0 < x < ⇡, 0 < y < ⇡}

satisfying the boundary conditions u(0, y) = u(⇡, y) = u(x, 0) = 0 and u(x, ⇡) =
g(x). You may assume that the equation �X 00 = �X with Dirichlet boundary
conditions has only positive eigenvalues. [14]
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theorem Mean ValueProperty
Let u be a harmonicfunction in a disk D and continuous on

D DU DD Then the value of u at the centerof D equals

the average of u on its circumference ID

Proof Without lossof generality assume D

that the centerof D is at x y 0,01 g
FromPoisson'sformula we know that

OD

u ro GIJ ant de Laf re d

which is by definition the average of u on 2D

Theorem Strong MaximumPrinciple
Let D be a connected and brandedopen set in IR Let UKy
beharmonic in D and continuous in D DU 2D Then the

max and min of u are attained on 2D and nowhere inside
D unless u is a constantjumtion

Suppose the u attains its wax M at some point
pm ED Let p e D be any other point Let
M be a curve contained in D linking pin and F
Let d o be the distance between t and JD

d is positive since both pin F are in D T

is chosen to be in D and D itself is open
Let B be a disk centered at pin with radius da



Then B C D By the mean value property
M n pin average of u on OB

The average of u on any set cannot exceed M So

wehave M average on 2B E M Hence the
average must be M The value of u cant

exceed M at any point on 2B so in order for the
average to be M the value of u also cannot be or

at anypoint Hence n M on 2B

The same argument can be repeated for any disk of radius
24 around pm for any LEC D Hence u M on

the entire disk Bi
Now choose a point pi e r n OB u pi M
Let Ba be a disk of radius of centered at pi By
the same argument as before applied to pi instead
of poi 4 14 on Bz
Chose a point pie M n 2Bz and repeat these
arguments



Importantpoint since M is a closed curve and

all disks Bn are of a fixed radius onlyfinitely
many are required to ever P

However p was arbitrary Be

so u M everywhere in D

Conclusion if the wax is attained in
FD then u is simply constant Otherwise

the wax wouldnecessarilyhave to be on OD
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4. Properties of Di↵erential Operators and First-Order PDEs.

(a) Solve the first-order equation [8]

(
5ux(x, y)� 2uy(x, y) = 0,

u(x, 0) = cos x.

(b) Let L be the operator given by Lf(x) = �f 00(x) on some interval (a, b) with
either Dirichlet, Neumann or Periodic boundary conditions. Prove that L has
only real eigenvalues, and that its eigenfunctions can be taken to be real-valued.
In your proof you may use Green’s second identity for two twice continuously
di↵erentiable functions y1(x), y2(x) on (a, b), and continuous on [a, b]: [20]

Z b

a

(�y001y2 + y1y2
00) dx = (�y01y2 + y1y2

0) |bx=a.

(c) If L is subject to Neumann boundary conditions, can 0 be an eigenvalue? Explain
your answer. [5]
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Example let a 5 b 2

and consider the auxiliary any
condition uh o cost

Ix
5Wx 243 0

2 j
u Ky f 2 53

is the general solution

UH D Cost f tax

substitute w 2x f w cos Y

Hence the solution is u x y cos Xt Ey

We can check
54 245 5 sin Ey 21 sin Ey 0



Proof In Green's Second Identity replace y ya
with some function X x Then

C X It XX É S X It XI ax

Nowsuppose that X is an eigenfunction of Lo Lar
or Lp with eigenvalue X
From the Lemma we know that the LHS 0 Hence

O S EX I xx dx SabC XXI X ET dx

X X SI X IN dx X X J IX Pdx

Since Xp 0 and since Xx is nottrivially 0
the integral SabIX at dx is strictly positive why
Therefore we must have X Xt 0 which can

only be true if X E IR

We need toshow that xx can be takento be real valued

Suppose that Xx is complex valued and write it as
X D Y i ZN where Y Z are real valued Then

Y x iz'd X x XXX XYa t it ZM

Taking real and imaginaryparts we have

Y X XYA ZED E X Zx



Weknow that X satisfies CD N or P Y and Z willsatisfy
the same BC s as well check this

So Y Z are real valuedeigenfunctions satisfying the same BCS
as X Since I has eigenvalue X X eigenvalues are real
we conclude that we can replace X I by Y Z observingthat
span X I span Y Z

So we haveshownthat I can be taken with eigenfunctions
Y and Z which are bothreal rather than X X


