CARDIFF UNIVERSITY

Do not turn this page over until instructed to do so by the Invigilation Supervisor

PRIFYSGOL
CAERDYB
Academic Year: 2023
Examination Period: Autumn
Module Code: MA3016
Examination Paper Title: Partial Differential Equations
Duration: $2 / 3$ hours

Please read the following information carefully:

Structure of Examination Paper:

- There are X pages including this page.
- There are \mathbf{X} questions in total.
- The following appendices areappendix is attached to this examination paper: Statistical tables
Some Fundamental Distributions and their Properties
- There are no appendices.
- The maximum mark for the examination paper is 100% and the mark obtainable for a question or part of a question is shown in brackets alongside the question.

Instructions for completing the examination:

- Complete the front cover of any answer books used.
- This examination paper must be submitted to an Invigilator at the end of the examination.
- Answer THREE questions.
- Each question should be answered on a separate page.

You will be provided with / or allowed:

- ONE answer book.
- Squared graph paper.
- The following items are provided as an Appendix: Statistical tables
- The use of calculators is not permitted in this examination.
- The use of a translation dictionary between English or Welsh and another language, provided that it bears an appropriate departmental stamp, is permitted in this examination.
- The use of the student's own notes, up to $\mathbf{1}$ sheet (2 sides) of A4 paper, is permitted in this examination.

1. The Wave Equation. Consider an infinite string with density $\rho>0$ and tension $T>0$ (both assumed to be constant). The associated wave equation is

$$
\begin{equation*}
u_{t t}(x, t)-\frac{T}{\rho} u_{x x}(x, t)=0, \quad-\infty<x<+\infty, \quad t>0 . \tag{*}
\end{equation*}
$$

(a) What is the wave speed c ?
(b) Assume that u, u_{t} and u_{x} all tend to 0 as $x \rightarrow \pm \infty$. Prove that the string's energy $E(t)$ is conserved, where

$$
\begin{equation*}
E(t):=\frac{1}{2} \rho \int_{-\infty}^{\infty} u_{t}(x, t)^{2} d x+\frac{1}{2} T \int_{-\infty}^{\infty} u_{x}(x, t)^{2} d x \tag{10}
\end{equation*}
$$

(c) The damped wave equation for some damping constant $r>0$ is

$$
\begin{equation*}
u_{t t}(x, t)-\frac{T}{\rho} u_{x x}(x, t)+r u_{t}(x, t)=0, \quad-\infty<x<+\infty, \quad t>0 . \tag{10}
\end{equation*}
$$

Prove that in this case the energy may decrease over time.
(d) Assume that a string satisfying the wave equation $\left(^{*}\right)$ is initially "plucked", i.e. with the initial conditions (for some fixed $a>0$)

$$
\left\{\begin{array}{l}
u(x, 0)=\phi(x)= \begin{cases}a-|x| & \text { for }|x|<a \\
0 & \text { for }|x| \geq a\end{cases} \\
u_{t}(x, 0)=\psi(x)=0, \quad-\infty<x<+\infty
\end{array}\right.
$$

i. When will the disturbance be felt at the point $b \in \mathbb{R}$, where $b>a$?
ii. Will the string ever stop vibrating at the same point b ? If so, when? Explain using d'Alembert's formula:

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

a) The wave speed is $c=\sqrt{\frac{T}{\rho}}$.
b) To show that the energy is conserved we show that $E^{\prime}(t)=0$. We compute:

$$
\begin{aligned}
E^{\prime}(t) & =\frac{d}{d t}\left(\frac{1}{2} \rho \int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x\right)+\frac{d}{d t}\left(\frac{1}{2} T \int_{-\infty}^{\infty} u_{x}^{2}(x, t) d x\right) \\
& =\frac{1}{2} \rho \int_{-\infty}^{\infty} 2 u_{t} u_{t t} d x+\frac{1}{2} T \int_{-\infty}^{\infty} 2 u_{x} u_{x t} d x \\
& =T \underbrace{\int_{-\infty}^{\infty} u_{t} u_{x x} d x}_{I}+T \int_{-\infty}^{\infty} u_{x} u_{x t} d x
\end{aligned}
$$

We integrate the first term by parts:

$$
\begin{aligned}
I & =\int_{-\infty}^{\infty} u_{t} \frac{\partial}{\partial x}\left(u_{x}\right) d x=-\int_{-\infty}^{\infty} \frac{\partial}{\partial x}\left(u_{t}\right) u_{x} d x+\underbrace{\left[u_{t} u_{x}\right]_{x=-\infty}^{\infty}}_{\substack{\text { This is } 0 \text { since } \\
\text { these factions } \\
\text { vanish at } \pm \infty .}} \\
& =-\int_{-\infty}^{\infty} u_{t x} u_{x} d x \\
\Rightarrow E^{\prime}(t) & =-T \int_{-\infty}^{\infty} u_{t x} u_{x} d x+T \int_{-\infty}^{\infty} u_{x} u_{x t} d x=0 .
\end{aligned}
$$

Therefore the energy doesit change over time \rightarrow it is conserved.
c) We repeat the same computation in the case of the danged wave eq:

$$
E^{\prime}(t)=\rho \int_{-\infty}^{\infty} u_{t} u_{t t} d x+T \int_{-\infty}^{\infty} u_{x} u_{x t} d x
$$

As before, we substitute $u_{t t}$ using the wave equation, which now takes the form: $u_{t t}=\frac{T}{\rho} u_{x x}-r u_{t}$.

$$
\begin{aligned}
E^{\prime}(t) & =\rho \int_{-\infty}^{\infty} u_{t}\left(\frac{T}{\rho} u_{x x}-r u_{t}\right) d x+T \int_{-\infty}^{\infty} u_{x} u_{x t} d x \\
& =T \int_{-\infty}^{\infty} u_{t} u_{x x} d x-\rho \int_{-\infty}^{\infty} r u_{t}^{2} d x+T \int_{-\infty}^{\infty} u_{x} u_{x t} d x \\
& =-T \int_{-\infty}^{\infty} u_{t x} u_{x} d x-\rho \int_{-\infty}^{\infty} r u_{t}^{2} d x+T \int_{-\infty}^{\infty} u_{x}^{2} u_{x t} d x \\
& =-\rho r \int_{-\infty}^{\infty} u_{t}^{2} d x \leqslant 0 .
\end{aligned}
$$

The last term is non-pasitive, so we conclude that $E^{\prime}(t) \leqslant 0$, i.e. The energy might decrease.

d) i) The disturbance unves at speed $C=\sqrt{\frac{T}{\rho}}$. Since $\psi=0$, the solution is simply

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]
$$

So the disturbance will be felt at $b>a$ at time $t_{1}=\frac{b-a}{c}=\sqrt{\frac{\rho}{T}}(b-a)$
ii) The disturbance will stop vibrating at $b>a$ since $\psi=0$. Once $t h$ left edge of the listurtace pusses through b, Were will be ho un ore vibrations there. This will happen at trim:

$$
t_{2}=\frac{b+a}{c}=\sqrt{\frac{p}{T}}(b+a)
$$

2. The Diffusion Equation. Consider the diffusion equation in the interval $(0, \ell)$ with Dirichlet boundary conditions:

$$
\begin{cases}u_{t}(x, t)-k u_{x x}(x, t)=0, & 0<x<\ell, \quad t>0 \\ u(0, t)=u(\ell, t)=0, & t>0 \\ u(x, 0)=\phi(x), & 0<x<\ell\end{cases}
$$

Assume that $k>0$ and that the function ϕ is continuous on $[0, \ell]$, non-negative and not identically 0 . Let $T>0$ and define the rectangle

$$
R:=[0, \ell] \times[0, T]
$$

in the (x, t) plane. Define Γ to be the union of the bottom, right and left edges of R.
(a) State the maximum principle for R.
(b) State the strong maximum principle for R.
(c) Use the energy method to prove that $\int_{0}^{\ell} u(x, t)^{2} d x$ is a strictly decreasing function of t. Hint: multiply the equation by u and integrate.
(d) Separate the variables $u(x, t)=X(x) T(t)$ to express u in series form (you may assume that the equation $-X^{\prime \prime}=\lambda X$ with Dirichlet boundary conditions has only positive eigenvalues).
(e) If $\phi(x)=\sin \left(\frac{2 \pi}{\ell} x\right)$, what are the coefficients in the preceding expansion? (You may use the fact that $\int_{0}^{\ell} \sin ^{2}\left(\frac{2 \pi}{\ell} x\right) d x=\frac{\ell}{2}$ and that the eigenfunctions are mutually orthogonal without proof).
a) The maximum principle: the maximum of u in R is obtained on $\Gamma: \max _{R} u=\max _{\Gamma} u$.
b) The strong maximum principle: ives u is constant, the maximum of u is R is strictly on Γ and not in the interior of R.
c) Multiples the eq by u to get: $u u_{t}=k u u_{x x}$.

Integrate: $\quad L H S=\int_{0}^{l} u u_{t} d x=\frac{1}{2} \frac{d}{4 t}\left(\int u^{2} d x\right)$.

$$
\begin{aligned}
& \text { LHS }=\int_{0}^{c} u u_{t} d x=\frac{1}{2} d t\left(u^{2} d x\right) . \\
& R H S=\int_{0}^{l} k u u_{x x} d x=-k \int_{0}^{l} u_{x}^{2} d x+\left[k u u_{x}\right]_{x=0}^{l}
\end{aligned}
$$

Since $u(x, 0)=\phi(x)$ is continuous, non-negative and not identically 0 , and $\phi(0)=\phi(l)=0$, take $R=[0, l] \times[0, T]$, and Γ its bottom and sides. So $\min _{\Gamma} u=0, \max _{\Gamma}>0$, so that x must be strictly greater them 0 inside R, Since $u(0, t)=u(b, t)=0$, this implies that u_{x} cannot be identically 0 along each tine slice. Therefore, RHS <0 (strictly!):

$$
\frac{d}{d t}\left(\int u^{2} d x\right)<0
$$

$\Longrightarrow \int u^{2} d x$ is strictly decreasing.
d)

$$
\begin{aligned}
& X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t) \Longrightarrow \frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X^{\prime}}=-\lambda=-\beta^{2} \\
& X^{\prime \prime}(x)+\lambda X(x)=0 \Longrightarrow X(x)=A \cos (\beta x)+B \sin (\beta \beta x) \\
& X(0)=X(l)=0 \Longrightarrow A=0, \quad \beta_{n}=\frac{n \pi}{l}, \quad X_{n}=\sin \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& T^{\prime}(t)=-\lambda k T(t) \Longrightarrow \quad u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right) e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \\
& \Longrightarrow \quad e^{-\lambda k t}
\end{aligned}
$$

e)

$$
\begin{gathered}
\sin \left(\frac{2 \pi}{l} x\right)=\phi(x)=u(x, 0)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right) \\
A_{n}= \begin{cases}1 & n=2 \\
0 & \text { otherwise }\end{cases} \\
\Rightarrow n(x, t)=\sin \left(\frac{2 \pi}{l} x\right) e^{-4\left(\frac{\pi}{l}\right)^{2} k t}
\end{gathered}
$$

3. The Laplace Equation.

(a) Let the function u be harmonic in a disk $B \subset \mathbb{R}^{2}$ of radius $a>0$ centred at the origin, with $u=h(\theta)$ on ∂B. Poisson's formula is

$$
\begin{equation*}
u(r, \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{h(\phi)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi \tag{5}
\end{equation*}
$$

State and prove the mean value property.
(b) Let $D \subset \mathbb{R}^{2}$ be an open, bounded and connected set. Let the function u be harmonic in D and continuous in $\bar{D}=D \cup \partial D$. State and prove the strong maximum principle.
(c) Find the harmonic function $u(x, y)$ in the square

$$
R=\{(x, y) \mid 0<x<\pi, 0<y<\pi\}
$$

satisfying the boundary conditions $u(0, y)=u(\pi, y)=u(x, 0)=0$ and $u(x, \pi)=$ $g(x)$. You may assume that the equation $-X^{\prime \prime}=\lambda X$ with Dirichlet boundary conditions has only positive eigenvalues.

Theorem: (Mean Value Property)
Let n be a hawusnic Jimetion in a disk D and continuous on $\bar{D}=D \cup O D$. Then the value of n at the center of D equals the average of u on its circumference ∂D.

Proof: Without loss of generality, assume that the center of D is at $(x, y)=(0,0)$, From Poisson's formula we knout that

$$
u(r=0)=\frac{a^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{u(\phi)}{a^{2}} d \phi=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(\phi) d \phi
$$

 which is, by definition, the average of u on $2 D$.

Theorem: (Strong Maximum Principle)
Let D be a connected and bounded open set in \mathbb{R}^{2}. Let $u(x, y)$ be harmonic in D and continuous in $\bar{D}=D \cup \partial D$. Then the max and min of u are attained on ∂D and nowhere inside D (unless u is a constant function).

Suppose the u attains ins max M at some point $\overrightarrow{P M} \in D$. Let $\vec{P} \in D$ be any other print. Let Γ be a curve contrived in D linking \vec{P}_{M} and \vec{P}. Let $d>0$ be the distomer between Γ and $D D$ (d is positive since both $\overrightarrow{P M}, \vec{P}$ are in D, Γ is chosen to be i D and D itself is open). Let B_{1} be a disk centered at $\overrightarrow{P M}_{M}$ with radius $\frac{d}{2}$.

Then $B_{1} \subset D$. By the mean value property,

$$
M=n\left(\overrightarrow{P_{M}}\right)=\text { average of } n \text { on } \partial B_{1}
$$

The average of n on ans set camot exceed M. So we howe: $M=$ are rage on $\partial B_{1} \leqslant M$. Hence the average must be $=M$. The value of u camint exceed M at any print on ∂B_{1}; so, in order for the average to be M, the value of n also cannot be $<M$ at cur point. Hence $u=M$ on ∂B_{1}.

The same argument com be reported for any dist of acinus $\alpha \frac{d}{2}$ aroma $\overrightarrow{P H}$, for ans $\alpha \in(0,1)$. Hence $n=M$ on the entire disk B_{1}.
Now, choose a point $\vec{p}_{1} \in \Gamma \cap \partial B_{1} . \quad u\left(\vec{p}_{1}\right)=M$.
Let B_{2} be a disk of radius $\frac{d}{2}$ centered at \vec{p}_{1}. By the same arguncut us before (applied to \vec{p}_{1} instead of $\left.\overrightarrow{P r}_{r}\right), \quad u \equiv M$ on B_{2}.
Chose a point $\vec{p}_{2} \in \Pi \cap \partial B_{2}$ and repeat tease arguments.

Important print: since Γ is a dosed curve, and all disks $B n$ are of a fixed radius, only finitely many are required $t>$ ever Γ.

Conclusion: $\quad u(\vec{p})=M$.
However, \vec{p} was arbitrary.

So $u=M$ everywhere in D

Conclusion: if the max is attained in D_{1}, then u is simply constants Otherwise,

4. Properties of Differential Operators and First-Order PDEs.

(a) Solve the first-order equation

$$
\left\{\begin{array}{l}
5 u_{x}(x, y)-2 u_{y}(x, y)=0 \\
u(x, 0)=\cos x
\end{array}\right.
$$

(b) Let \mathcal{L} be the operator given by $\mathcal{L} f(x)=-f^{\prime \prime}(x)$ on some interval (a, b) with either Dirichlet, Neumann or Periodic boundary conditions. Prove that \mathcal{L} has only real eigenvalues, and that its eigenfunctions can be taken to be real-valued. In your proof you may use Green's second identity for two twice continuously differentiable functions $y_{1}(x), y_{2}(x)$ on (a, b), and continuous on $[a, b]$:

$$
\int_{a}^{b}\left(-y_{1}^{\prime \prime} \overline{y_{2}}+y_{1}{\overline{y_{2}}}^{\prime \prime}\right) d x=\left.\left(-y_{1}^{\prime} \overline{y_{2}}+y_{1}{\overline{y_{2}}}^{\prime}\right)\right|_{x=a} ^{b} .
$$

(c) If \mathcal{L} is subject to Neumann boundary conditions, can 0 be an eigenvalue? Explain your answer.

Example: let $a=5, \quad b=-2$ and consider the auxiliary condition $u(x, 0)=\cos x$.

$$
\begin{aligned}
& 5 u_{x}-2 u_{y}=0 \\
& n(x, y)=f(-2 x-5 y)
\end{aligned}
$$

is the general solution.

$$
u(x, 0)=\cos x=f(-2 x)
$$

Substitute $u=-2 x \quad f(w)=\cos \left(-\frac{w}{2}\right)$
Hence the solution is: $u(x, y)=\cos \left(x+\frac{5}{2} y\right)$

We com check:

$$
5 u_{x}-2 u_{y}=-5 \sin \left(x+\frac{5}{2} 3\right)+2 \sin \left(x+\frac{5}{2} 3\right) \cdot \frac{5}{\neq}=0
$$

Proof: In Green's Second Identity $*$ replace y_{1}, y_{2} with some function $X(x)$. Then

$$
\left.\left(-x^{\prime} \bar{x}+x \bar{x}^{\prime}\right)\right|_{x=a} ^{b}=\int_{a}^{b}\left(-x^{\prime \prime} \bar{x}+x \bar{x}^{\prime \prime}\right) d x
$$

Now suppose that X is an eigenfunction of $\mathscr{L}_{D}, \mathscr{L}_{N}$ or \mathcal{L}_{p} with eigenvalue λ.
From the hemmer we knows that the LHS $=0$. Hence:

$$
\begin{aligned}
0 & =\int_{a}^{b}\left(-x^{\prime \prime} \bar{x}+x \bar{x}^{\prime \prime}\right) d x=\int_{a}^{b}\left(\lambda x \bar{x}-x \lambda^{*} \bar{X}\right) d x \\
& =\left(\lambda-\lambda^{*}\right) \int_{a}^{b} X(x) \bar{X}(x) d x=\left(\lambda-\lambda^{*}\right) \int_{a}^{b}|X(x)|^{2} d x
\end{aligned}
$$

Since $|X(x)|^{2} \geqslant 0$ and since $X(x)$ is not trivially 0 , the integral $\int_{a}^{b}|X(x)|^{2} d x$ is strictly positive (Why?). Therefore we must have $\lambda-\lambda^{*}=0$ which cam only be true if $\lambda \in \mathbb{R}$.

We need to show that $X(x)$ cam be taken to be real-volued. Suppose that $X(x)$ is complex-valued and wite it as $X(x)=Y(x)+i Z_{(x)}$ where Y, Z are real-valued. Then:

$$
-Y^{\prime \prime}(x)-i Z^{\prime \prime}(x)=-X^{\prime \prime}(x)=\lambda X(x)=\lambda Y(x)+i \lambda Z(x)
$$

Taking real and imaginary pants we have:

$$
-y^{\prime \prime}(x)=\lambda Y(x) \quad-Z^{\prime \prime}(x)=\lambda Z(x)
$$

We know that X satisfies $(D),(N), o r(P) . Y$ and Z will satisfy the same BCs as well (check this!).

So Y, Z are real-valued eigenfuctions satisfy ni the same $B C S$ as X. Since \bar{X} has eigenvalue $\lambda^{*}=\lambda$ (eigenvalues ar real!) we conclude that we cam replace X, \bar{X} bs i, Z, observing that $\operatorname{span}\{X, \bar{X}\}=\operatorname{span}\{Y, Z\}$.
So we have shown that λ can be taken with eigenfunction Y and Z (which are both real) rather than X, \bar{X}.

