6.2 Rectangles and Cubes

In the case of $\Delta u=0$ in an open set D which is a rectangle (2D) or cube (3D), we cam use our favorite method of separation of variables because of the special geometry. Here we outs fans on $2 D$ for sinplicits. The several approach is as follows:
(i) Separate $u(x, y)=X(x) Y(y)$.
(ii) Impose the homogeneous BCs to get the eigenvalues.
(iii) Sum the series.
(iv) Impose the inhowogeneons conditions.

We see this through em example.

Example: Find the hassuonic function $n(x, y)$ is the square $D=\{(x, y) \mid 0<x<\pi, 0<y<\pi\}$ with the $B C$:
$u(0, y)=u(\pi, y)=u(x, 0)=0, \quad u(x, \pi)=g(x)$.
(i) Separate variables: $\quad u(x, y)=X(x)^{Y}(y)$.

$$
\begin{aligned}
& 0=\Delta u=\Delta(X Y)=X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(\xi) \\
\rightarrow & \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0 \\
\longrightarrow & \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda, \quad \lambda \in \mathbb{C} \\
\rightarrow & X^{\prime \prime}(x)=-\lambda X(x) \quad 0<x<\pi \\
& Y^{\prime \prime}(y)=+\lambda Y(y) \quad 0<3<\pi
\end{aligned}
$$

(ii) $X(x)$ satisfies: $\quad\left\{\begin{array}{l}x^{\prime \prime}(x)+\lambda X(x)=0 \quad 0<x<\pi \\ x(0)=X(\pi)=0\end{array}\right.$
we already know that this problem (Dirichlet problem) has positive eigenvalues $\quad \lambda_{n}=\left(\frac{n \pi}{l}\right)^{2}=n^{2} \quad n=1,2, \ldots$. (since $l=\pi$).
with eigerfunctions: $X_{n}(x)=\sin (n x) \quad n=1,2, \ldots$
$Y(y)$ satisfies: $\left\{\begin{array}{l}Y^{\prime \prime}(y)-\lambda Y(3)=0 \quad 0<y<\pi \\ Y(0)=0 \quad\left[\begin{array}{l}\text { The inlomegecers condition }] \\ Y(\pi) X(x)=g(x) \text { comes later }\end{array}\right]\end{array}\right.$
We already know that $\lambda=\lambda_{n}>0$, so that the eq. $Y^{\prime \prime}-\lambda Y=0$
has solutions of the form $Y_{n}(3)=A \cosh \left(\beta_{n} y\right)+B \sinh \beta_{n} y$ where $\beta_{n}^{2}=\lambda_{n}$. Now we impact $Y(0)=0: \quad 0=Y(0)=A$.
Hence $Y_{n}(y)=\sinh (n y)$
(recalling the $\beta_{n}=n$ here) and taking $B=1$
(iii) We cen now sum the series:

$$
\begin{gathered}
\text { We found: } \quad X_{n}(x)=\sin (n x) \\
Y_{n}(y)=\sinh (n y) \\
\Longrightarrow \\
\end{gathered} \quad n(x, y)=\sum_{n=1}^{\infty} A_{n} \sin (n x) \sinh (n y) \quad .
$$

\tilde{A}_{n}
(iv) Finally we impose $g(x)=n(x, \pi)=\sum_{n=1}^{\infty} A_{n} \sinh (n \pi) \sin (n x)$ This is a Fourier sine series, and we already thew that: $A_{n} \sinh (n \pi)=\tilde{A}_{n}=\frac{2}{\pi} \int_{0}^{\pi} g(x) \sin (n x) d x$, so that:

$$
A_{n}=\frac{2}{\pi \sinh ^{2}(n n)} \int_{0}^{\pi} g(x) \sin (n x) d x \text {. }
$$

