6.1 Lalace's Equation

We have so for dealt prinnily with the wave eq. $u_{tt} = C^2 u_{XX}$ and the diffusion eq. $u_t = k u_{XX}$. Now, we thick of what happens for <u>large times</u> when (perhaps) the solution has settled to some steady-state. Then, if everything is steady we expect that

 $u_{z}=0$ and $u_{zz}=0$. In both cases, this leaves us with $u_{xx}=0$. This is called Laplace's equation, which we shall consider in higher dimensions too: $1D: u_{xx}(x) = 0$

$$2D: \qquad \Delta u(x,y) = \mathcal{U}_{XX}(x,y) + \mathcal{U}_{3Y}(x,y) = 0$$

$$3D: \qquad \Delta u(x,y,z) = \mathcal{U}_{XX}(x,y,z) + \mathcal{U}_{3Y}(x,y,z) + \mathcal{U}_{ZZ}(x,y,z) = 0,$$

The operator $\mathcal{L}u = \Delta u$ is called the Laplacian. Any solution is called a harmonic function.

We consider higher dimensions since 1D is rather booring: solutions have the Joran u(x) = Ax + B. If the right hand side is nonzero: $\Delta u = f$ the eq. is called Poisson's eq.

haplaces eq. satisfies a max. principle, much likes the diffusion of.
It holds in any dimension, we stick to 2D for simplicity.
Theorem: (Maximum Principle)
Let
$$D \in \mathbb{R}^2$$
 be a connected open set. Let ∂D be its boundary, and
 $\overline{D} = D \cup \partial D$ its desture. Let $u(g, y)$ be a harmonic function in
D that is continuous in \overline{D} . Then the maximum and
minimum values of u in \overline{D} are attained in ∂D and
nowhere in D (unless u is a constant function).
Proof: We need to prove that:
() $\exists \end{pm} = (\chi_m, y_m)$ and $\end{pm} = (\chi_n, y_m)$ in ∂D
s.t. $u(\overrightarrow{p_m}) \leq u(\overrightarrow{p}) \leq u(\overrightarrow{p_m})$
 $\forall \end{pm} = (\chi_m, y_m)$ and $\end{pm} = (\chi_n, y_m)$ in ∂D
It are are no \end{pm} , $\end{pm} \in D$ s.t.
 $u(\overrightarrow{q_m}) \leq u(\overrightarrow{p_m}) \forall \end{pm} = (\chi, y) \in D$.
We prove (D now (similar to the proof we're seen before) and \end{pm}
will be prove \end{pm} .
Let $\varepsilon > 0$ and \end{pm}
 $v(\overrightarrow{p}) = u(\overrightarrow{p}) + \varepsilon (\overrightarrow{p_m})^2$ (where we
recall that $|\overrightarrow{p}|^2 = \chi^2 + \chi^2$). Then:
 $\Delta v = \Delta u + \varepsilon \Delta (\overrightarrow{p_m})^2 = \Delta u + \varepsilon (\partial_{xx} + \partial_{yy})(\chi^2 + \chi^2)$
 $= \Delta u + \varepsilon (2+2) = \Delta u + 4\varepsilon = 4\varepsilon > 0$

At a local max $\overline{p} \in D$, $\Delta V(\overline{p}) = \mathcal{D}_{xx} V(\overline{p}) + \mathcal{D}_{yy} V(\overline{p}) \leq 0$, so there's the local max

of \vee inside D. Since $\vee(X,Y)$ is continuous in the <u>clased</u> set \overline{D}_{i} , it must attain its max (and min) there, and, in particular, these must be attained in ∂D (the boundary). Suppose $\vee(\overline{P})$ attains its max at $\overrightarrow{P}_{o} \in \partial D$. So $\forall \overrightarrow{P} \in \overline{D}$: $u(\overrightarrow{P}) \leq \vee(\overrightarrow{P}) \leq \vee(\overrightarrow{P}_{o}) = u(\overrightarrow{P}_{o}) + \varepsilon |\overrightarrow{P}_{o}|^{2}$

This is smaller than $\max_{q \in D} u(q) \leftarrow$ This is smaller than the square of the distance of the point in 2D which is for the origin. Call this distance $(\vec{p}) \leq \max_{q \in D} u(q) + \epsilon l^2$

This is true for any $\varepsilon > 0$ (as small as we wish) so it must still hold true for $\varepsilon = 0$, i.e. $u(\overline{p}) \leq \max_{\overline{q} \in \partial D} u(\overline{q}), \forall \overline{p} \in \overline{D}$. Since ∂D is a closed set, $\max_{\overline{q} \in \partial D} u(\overline{q})$ is attained at some point on the boundary, call it $\overline{p}_n \in \partial D$. So:

$$\forall \vec{p} \in \overline{D}, \quad u(\vec{p}) \leq \max_{\vec{q} \in \partial D} u(\vec{q}) = u(\vec{p}_M)$$

Similarly, there exists $\vec{p}_m \in \partial D$ s.t., $u(\vec{p}_m) \leq u(\vec{p}) \quad \forall \vec{p} \in D$.

(Proof of (2) will follow later).

Theorem: (Uniqueness of Solutions)
The Dirichlet problem for Poisson's eq. { Au=f in D
how a unique solution.
Proof: Suppose that there exist
solutions u and v. Let w=u-v.
Then:
$$\Delta w = \Delta (u-v) = \Delta u - \Delta v = f - f = 0$$

and $w = u - v = h - h = 0$ on ∂D .
So w solves the problem: { $\Delta w = 0$ in D
 $w = 0$ on ∂D .
From the maximum priveiple we know that the max
of w in D is achieved on ∂D . But w is 0
there. Similarly for the unin of w. So w=0 everywhere.
Invariance under rigid transformations:
Poposition:
The Laplacian is maffected by translations and rotations.

Proof is an exercise (it is in the book, 2D: p. 156, 3D: p. 158).

This means that moving D or retating it won't change the result. It also suggests to look at radial/spherical symmetry. The Laplacian in 2D is polar coordinates:

Let $X = r \cos \theta$, $y = r \sin \theta$. The Jacobsen is: $J = \begin{pmatrix} \partial_r X & \partial_r y \\ \partial_0 X & \partial_0 y \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix}$ and the Jacobsen for the inverse transformation is $J^{-1} = \begin{pmatrix} \partial_x r & \partial_x \theta \\ \partial_y r & \partial_z \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\frac{\sin \theta}{r} \\ \sin \theta & \frac{\sin \theta}{r} \end{pmatrix}$.

To compute $\frac{\partial^2}{\partial x^2}$ and $\frac{\partial^2}{\partial y^2}$ we need to proceed with cartion, because we coult just square these expressions. There will be crass-terms. It's best to try it on a function:

$$\frac{\partial^{2}}{\partial x^{2}} f = \left[c_{a}s\theta \frac{\partial}{\partial r} - \frac{\delta s_{h}\theta}{r} \frac{\partial}{\partial \theta} \right] \left[c_{a}s\theta \frac{\partial}{\partial r} - \frac{\delta s_{h}\theta}{r} \frac{\partial}{\partial \theta} \right] f$$

$$= c_{a}s^{2}\theta \frac{\partial^{2}}{\partial r^{2}} f - c_{a}s\theta \frac{\partial}{\partial r} \left(\frac{s_{i}u\theta}{r} \frac{\partial}{\partial \theta} f \right) - \frac{s_{i}u\theta}{r} \frac{\partial}{\partial \theta} \left(\omega s\theta \frac{\partial}{\partial r} f \right)$$

$$+ \frac{s_{i}u\theta}{r} \frac{\partial}{\partial \theta} \left(\frac{s_{i}u\theta}{r} \frac{\partial}{\partial \theta} f \right)$$

$$= c_{a}s^{2}\theta \frac{\partial^{2}}{\partial r^{2}} f + \frac{c_{a}s\theta}{r^{2}} \frac{\partial}{\partial \theta} f - \frac{c_{a}s\theta}{r} \frac{\delta s_{i}z\theta}{r} \frac{\partial^{2}}{\partial \theta} f + \frac{s_{i}u^{2}\theta}{r} \frac{\partial}{\partial r} f f$$

$$- \frac{s_{i}u\theta}{r} \frac{c_{a}\theta}{r^{2}} f + \frac{s_{i}u\theta}{r^{2}} \frac{\partial}{\partial \theta} f + \frac{s_{i}u^{2}\theta}{r^{2}} \frac{\partial}{\partial \theta} f + \frac{s_{i}u^{2}\theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} f$$

$$= \left[c_{a}s^{2}\theta \frac{\partial^{2}}{\partial r^{2}} - 2 \frac{c_{a}s\theta}{r} \frac{\delta iu\theta}{r} \frac{\partial^{2}}{\partial \theta} f + \frac{s_{i}u^{2}\theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + 2 \frac{s_{i}u\theta}{r^{2}} \frac{\partial}{\partial \theta} f + \frac{s_{i}u^{2}\theta}{r^{2}} \frac{\partial}{\partial r} f \right] f$$

Similarly:
$$\frac{\partial^2}{\partial z^2} f =$$

 $= \left[\sin^2\theta \frac{\vartheta^2}{\vartheta r^2} + 2 \frac{\cos^2\theta \sin^2\theta}{r} \frac{\vartheta^2}{\vartheta r \vartheta \theta} + \frac{\cos^2\theta}{r^2} \frac{\vartheta^2}{\vartheta \theta^2} - 2 \frac{\sin^2\theta \cos^2\theta}{r^2} \frac{\vartheta}{\vartheta \theta} + \frac{\cos^2\theta}{r} \frac{\vartheta}{\vartheta r} \right] f$

Hence we get:
$$\Delta f = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f$$

$$= \left[\left(\cos^2 \theta + \sin^2 \theta\right)\frac{\partial}{\partial r^2} + \frac{\sin^2 \theta + \cos^2 \theta}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\sin^2 \theta + \cos^2 \theta}{r} \frac{\partial}{\partial r}\right] f$$
Using the fact that $\sin^2 \theta + \cos^2 \theta = 1$ we conclude that
 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$

For functions that are radially symmetric (i.e. do not depend
upon B) all
$$\theta$$
 derivatives vanish, so the operator becomes:
 $\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$ (for functions that are radially symmetric)

We can easily solve the homogeneous problem cominy from this:

$$\underbrace{\mathcal{N}_{rr} + \frac{1}{r} \mathcal{N}_{r}}_{+r} = 0.$$

$$\frac{1}{r}(r\mathcal{N}_{r})_{r} \qquad check this: (r\mathcal{N}_{r})_{r} = (r\mathcal{N}_{r})_{r} + r\mathcal{N}_{rr} = \mathcal{N}_{r} + r\mathcal{N}_{rr}$$

 $\frac{1}{r}(ru_{0})_{r}=0 \iff (ru_{r})_{r}=0 \iff ru_{r}=c_{1}$ $\iff u_{r}=\frac{c_{1}}{r}$ $\iff u(r)=c_{1}lur+c_{2}$

 $lur = ln(VX^2+g^2)$ is an extremely important harmonic function in 2D. The haplacian in 3D in spherical coordinates: We use the convention that ϕ is the angle in the (x,y) plane (azimuthal angle) and θ is the angle from the z-axis (polar angle) to be consistent with the book.

We skip the details of the derivation of the formula for Δ in spherical coordinates (try it for yourselves!) and write the final expression:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2 s \ln \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{r^2 s \ln^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

In the case of a readial function (i.e. $vo \ \theta \ os \ \phi \ dependence$) this reduces to $\frac{\partial^2}{\partial r^2} + \frac{z}{r} \frac{\partial}{\partial r}$

Solutions of this are as follows:
$$u_r + \frac{2}{r}u_r = 0$$

 $\frac{1}{r^2(r^2u_r)_r}$

$$\frac{1}{r^2}(r^2u_r) = 0 \iff (r^2u_r)_r = 0 \iff r^2u_r = c,$$

$$\iff u_r = \frac{c_i}{r^2}$$

$$\iff u(r) = -\frac{c_i}{r} + c_2$$

I = VX2+y2+Z2 is an extremely important harmonic function in 3D.

Example: (Section 6.1 R5) Solve $u_{xx} + u_{3y} = 1$ in r < a with u(x,y) = 0 on r = a.

We've seen that $urr + \frac{1}{r}ur = \frac{1}{r}(rur)r$ so that our equation is reduced to $\frac{1}{r}(rur)r = 1$ \Rightarrow (rur)r = r \Rightarrow $rur = \frac{r^2}{2} + c_1$ \Rightarrow $ur = \frac{r}{2} + \frac{c_1}{r}$ \Rightarrow $u(r) = \frac{r^2}{4} + c_1 \ln r + c_2$.

Now we impose the boundary conditions. Notice that we only have the condition u(a) = 0, itowever notice another important aspect: our domain Dincludes r=0 (the origin) where len is <u>not defined</u>. So we need that term to <u>vanish</u>, \rightarrow we require $c_1=0$. Hence were left with $u(r) = \frac{r^2}{4} + c_2$, Imposing u(a) = 0 leads to $c_2 = -\frac{a^2}{4} \longrightarrow u(r) = \frac{1}{4}(r^2 - a^2)$.