6.1 Lalace's Equation

We have so for dealt primarily with the wave eq. $u_{t t}=c^{2} u_{x x}$ and the diffusion eq. $u_{t}=k u_{x x}$. Now, we think of what happens for large times when (prarkaps) the solution has settled to some steady-state. Then, if everything is steady we expect that $u_{t}=0$ and $u_{t t}=0$.
In bork cases, this leaves us with $u_{x x}=0$. This is called Laplace's equation, which we shall consider in higher dimensions too:

ID: $\quad u_{x x}(x)=0$
2D: $\quad \Delta u(x, y)=u_{x x}(x, y)+u_{3 y}(x, y)=0$
SD: $\quad \Delta u(x, y, z)=u_{x x}(x, y, z)+u_{y y}(x, y, z)+u_{z z}(x, y, z)=0$.
The operator $<u=\Delta u$ is called the Laplacian.
Any solution is called a harmonic jumetion.

We consider higher dimensions since 1D is rather boring: solutions have the form $u(x)=A x+B$.

If the right hand side is nonzero: $\Delta u=f$ the eq. is called Poisson's eq.

So, now we wort have a time variable. Just spatial variables (x, y) or (x, y, z) which will topically belong to some open set D in \mathbb{R}^{2} or \mathbb{R}^{3}.
("open" mems that D doesint include its boundary) the boundary

Laplace's eq. satisfies a max. principle, much like the diffusion eq. It holds in any dimension, we stick to $2 D$ for simplicity.
Theorem: (Maximum Principle)
Let $D \subset \mathbb{R}^{2}$ be a connected open set. Let ∂D be its boundary, and $\bar{D}=D \cup \partial D$ its closure. Let $u(x, y)$ be a havsuonic function in D that is continuous in \bar{D}. Then the mardmuerer and minimum values of u in \bar{D} are attained in ∂D and nowhere is D (unless u is a constant function).

Proof: We need to prove that:
(1) $\exists \vec{P}_{m}=\left(x_{m}, y_{m}\right)$ and $\vec{P}_{M}=\left(x_{m}, y_{m}\right)$ in ∂D st. $u\left(\vec{P}_{m}\right) \leqslant u(\vec{P}) \leqslant u\left(\vec{P}_{m}\right)$ $\forall \vec{p}=(x, y) \in D$.
(2) There are no points in D that satisfy this.
 I.e. There are no $\vec{q}_{m}, \vec{q}_{M} \in D$ sit.

$$
u\left(\overrightarrow{q_{m}}\right) \leqslant u(\vec{p}) \leqslant u\left(\vec{q}_{m}\right) \quad \forall \vec{p}=(x, y) \in D .
$$

we prove (i) now (similar to the prof were seen before) and (2) will be woven later.
Let $\varepsilon>0$ and define $v(\vec{p})=u(\vec{p})+\varepsilon|\vec{p}|^{2}$ (where we recall that $\left.|\vec{p}|^{2}=x^{2}+y^{2}\right)$. Then:

$$
\begin{aligned}
\Delta v & =\Delta u+\varepsilon \Delta\left(|\vec{p}|^{2}\right)=\Delta u+\varepsilon\left(\partial_{x x}+\partial_{3 y}\right)\left(x^{2}+y^{2}\right) \\
& =\Delta u+\varepsilon(2+2)=\underset{\substack{\text { sin } \\
\text { sincornenc } \\
\text { is harmonic }}}{\Delta u}+4 \varepsilon=4 \varepsilon>0
\end{aligned}
$$

At a local max $\vec{p} \in D, \Delta V(\vec{p})=\partial_{x x} V(\vec{p})+\partial_{3 y} V(\vec{p}) \leqslant 0$, sother's no local max
of v inside D. Since $v(x, y)$ is continuous in the dosed set \bar{D}, it must attain its max (and min) there, and, in particular, these unst be attained in ∂D (the boundary). Suppose $V(\vec{p})$ attains its max at $\vec{p}_{0} \in \partial D$. So $\forall \vec{p} \in \bar{D}$:

$$
u(\vec{p}) \leqslant v(\vec{p}) \leqslant v\left(\vec{p}_{0}\right)=\underbrace{u\left(\vec{p}_{0}\right)}+\varepsilon \mid \underbrace{\left|\vec{p}_{0}\right|^{2}}
$$ The distance of the point in aD which is

$$
\Rightarrow u(\vec{p}) \leqslant \max _{\vec{q} \in \partial D} u(\vec{q})+\varepsilon l^{2} \quad \downarrow \quad \begin{aligned}
& \text { farthest from the origin. Call Pis distance } l \text {, }
\end{aligned}
$$

This is true for any $\varepsilon>0$ (as small as we wish) so it must still hold true for $\varepsilon=0$, i.e. $u(\vec{p}) \leqslant \max _{q \in \partial D} u(\vec{q}), \forall \vec{p} \in \bar{D}$. Since ∂D is a closed set, $\max _{\vec{q} \in \partial D} u(\vec{q})$ is attained at some point on the boundary, call it $\vec{p}_{M} \in \partial D$, So:

$$
\forall \vec{P} \in \bar{D}, \quad u(\vec{p}) \leqslant \max _{\vec{q} \in \partial D} u(\vec{q})=u\left(\vec{P}_{M}\right)
$$

Similarly, there exists $\vec{p} m \in \partial D$ sit, $u(\vec{P} m) \leqslant u(\vec{P}) \quad \forall \vec{p} \in \bar{D}$,
(Proof of (2) will follow later).

Theorem: (Uniqueness of Solutions)
The Dirichlet problem for Poisson's eq. $\begin{cases}\Delta u=f & \text { in } D \\ u=h & \text { on } \partial D\end{cases}$ hos a unique solution.

Proof: Suppose that there exist solutions u and v. Let $w=u-v$.
Then: $\quad \Delta w=\Delta(u-v)=\Delta u-\Delta v=f-f=0$ and $w=u-v=h-h=0$ on ∂D.
So w solves the problem: $\quad \begin{cases}\Delta w=0 & \text { in } D \\ w=0 & \text { on } \partial D\end{cases}$
From the maximum priveiple we know that the max of w in \bar{D} is achieved on ∂D. But w is 0 there. Similarly for the min of w. so $w \equiv 0$ ever g where. $0 \equiv w=u-v \quad \Rightarrow \quad u=v$ everywhere.

Invariance under rigid trasformertions:
Proposition:
The Laplacian is unaffected by translations and rotations.
Proof is an exercise (it is in the book, 20:p,156, 30: p.158).

This uneams that moving D or rotations it wort change the result. It also suggests to look at rabial/spherical symuetry.

The Laplacian in 2D in polar coordinates:
Let $x=r \cos \theta, y=r \sin \theta$.
The Jacobson is: $J=\left(\begin{array}{ll}\partial_{r} x & \partial_{r} y \\ \partial_{0} x & \partial_{0} y\end{array}\right)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta\end{array}\right)$ and the Jacobian for the inverse transformation is

$$
\begin{gathered}
J^{-1}=\left(\begin{array}{ll}
\partial_{x} r & \partial_{x} \theta \\
\partial_{y} r & \partial_{j} \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\frac{\sin \theta}{r} \\
\sin \theta & \frac{\cos \theta}{r}
\end{array}\right) . \\
\Longrightarrow \frac{\partial}{\partial x}=\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial y}=\sin \theta \frac{\partial}{\partial r}+\frac{\cos \theta}{r} \frac{\partial}{\partial \theta}
\end{gathered}
$$

To compute $\frac{\partial^{2}}{\partial x^{2}}$ and $\frac{\partial^{2}}{\partial J^{2}}$ we need to proceed with caution, because we cant just square the se expressions. There will be cross-terms. It's best to the it on a function:

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} f=\left[\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\right]\left[\cos \theta \frac{\partial}{\partial r}-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\right] f \\
& = \\
& \cos ^{2} \theta \frac{\partial^{2}}{\partial r^{2}} f-\cos \theta \frac{\partial}{\partial r}\left(\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} f\right)-\frac{\sin \theta \frac{\partial}{r}}{\partial \theta}\left(\cos \theta \frac{\partial}{\partial r} f\right) \\
& \quad+\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\left(\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} f\right) \\
& =\cos ^{2} \theta \frac{\partial^{2}}{\partial r^{2}} f+\frac{\cos \theta \sin \theta}{r^{2}} \frac{\partial}{\partial \theta} f-\frac{\cos \theta \sin \theta}{r} \frac{\partial^{2}}{\partial r \partial \theta} f+\frac{\sin ^{2} \theta}{r} \frac{\partial}{\partial r} f \\
& \quad-\frac{\sin \theta \cos \theta}{r} \frac{\partial^{2}}{\partial \theta \partial r} f+\frac{\sin \theta \cos \theta}{r^{2}} \frac{\partial}{\partial \theta} f+\frac{\sin ^{2} \theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} f
\end{aligned}
$$

Similarly: $\quad \frac{\partial^{2}}{\partial y^{2}} f=$

$$
=\left[\sin ^{2} \theta \frac{\partial^{2}}{\partial r^{2}}+2 \frac{\cos \theta \sin \theta}{r} \frac{\partial^{2}}{\partial r \partial \theta}+\frac{\cos ^{2} \theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}-2 \frac{\sin \theta \cos \theta}{r^{2}} \frac{\partial}{\partial \theta}+\frac{\cos ^{2} \theta}{r} \frac{\partial}{\partial r}\right] f
$$

Hence we get: $\quad \Delta f=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f$

$$
=\left[\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \frac{\partial}{\partial r^{2}}+\frac{\sin ^{2} \theta+\cos ^{2} \theta}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\sin ^{2} \theta+\cos ^{2} \theta}{r} \frac{\partial}{\partial r}\right] f
$$

Using the fart that $\sin ^{2} \theta+\cos ^{2} \theta=1$ we conclucle that

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

For functions that are radially symmetric (ie. do not depend upon θ) all θ derivatives vamish, so the operator becomes:

$$
\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \quad \text { (for functions that are radially symmetric) }
$$

We can easily solve the homogeneous problem coming from this:

$$
\begin{aligned}
\underbrace{u_{r}+\frac{1}{r} u_{r}}_{\frac{1}{r}\left(r u_{r}\right)_{r}} & =0 . \\
& \Longleftrightarrow \text { checkthio: }\left(r_{r}\right)_{r}=\left(v_{r} r\right) u_{r}+r u_{r r}=u_{r}+r u_{r} \\
\frac{1}{r}\left(r u_{r}\right)_{r}=0 & \Longleftrightarrow\left(u_{r}\right)_{r}=0 \quad u_{r}=\frac{c_{1}}{r} \\
& \Longleftrightarrow c_{1} \\
& \Longleftrightarrow u(r)=c_{1} \operatorname{lu} r+c_{2}
\end{aligned}
$$

$\ln r=\ln \left(\sqrt{x^{2}+y^{2}}\right)$ is an extremely important harmonic function in 2D.

The Laplacian is 3D in spherical coordinates: We use the convention that ϕ is the angle in the (x, y) plane (azimuthal angle) and θ is the angle from the z-axis (polar angle) to be consistent with the book.

We skip the details of the derivation of the formula for Δ in spherical coordinates (42 it for yourselves!) and write the final expression:

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

In the case of a radial function (i.e. no θ or ϕ dependence) this reduces tr

$$
\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}
$$

Solutions of this are as follows: $\quad \underbrace{u_{r}+\frac{2}{r} u_{r}}_{\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}}=0$

$$
\begin{aligned}
\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}=0 & \Longleftrightarrow\left(r^{2} u_{r}\right)_{r}=0 \Longleftrightarrow r^{2} u_{r}=c_{1} \\
& \Longleftrightarrow u_{r}=\frac{c_{1}}{r^{2}} \\
& \Longleftrightarrow u(r)=-\frac{c_{1}}{r}+c_{2}
\end{aligned}
$$

$\frac{1}{r}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ is an extremely important harmonic function in SD.

Example: (Section 6.1 Q5)
Solve $u_{x x}+u_{3 y}=1$ in $r<a$ with $u(x, y)=0$ on $r=a$.

In 2D we know that the Laplacian takes the form

$$
\Delta u=u_{r r}+\frac{1}{r} u_{r}
$$

for radial functions. So our problem becomes:

$$
\left\{\begin{aligned}
u_{r}(r)+\frac{1}{r} u_{r}(r) & =1 \quad \text { i }(0, a) \\
u(a) & =0
\end{aligned}\right.
$$

Wave seen that $u_{r r}+\frac{1}{r} u_{r}=\frac{1}{r}\left(r u_{r}\right)_{r}$ so that our equation is reduced to $\frac{1}{r}\left(r u_{r}\right)_{r}=1 \leftrightarrow\left(r u_{r}\right)_{r}=r$

$$
\begin{aligned}
& \longleftrightarrow u_{r}=\frac{r^{2}}{2}+c_{1} \longleftrightarrow u_{r}=\frac{r}{2}+\frac{c_{1}}{r} \\
& \longleftrightarrow u(r)=\frac{r^{2}}{4}+c_{1} \ln r+c_{2} .
\end{aligned}
$$

Now we impose the boundary conditions. Notice that we only have the condition $u(a)=0$. However notice another important aspect: our domain P inches $r=0$ (the origin) where $\ln _{n}$ is not defined. So we need that term to vanish, \rightarrow we require $c_{1}=0$. Hence were left with $u(r)=\frac{r^{2}}{4}+c_{2}$. Imposing $u(a)=0$ leads to $c_{2}=-\frac{a^{2}}{4} \rightarrow u(r)=\frac{1}{4}\left(r^{2}-a^{2}\right)$.

