5.3 Orthogonality and General Fourier Series We now consider som general properties of Fourier series.
NOTE THAT EVERYTHING HERE IS COMPLEX-VALUED!

Consider the general interval: (a, b)
Let $f(x), g(x)$ be function on (a, b) (thee can be couylex-valued). Define an imer-product (a,k, a, lot product) for f, g as:

$$
(f, g):=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

where an overlive - means the complex conjugate. We san that f, g are orkozound if $(f, g)=0$.

Recall the operators and boundary conditions:
$\mathscr{L}_{D}=$ (negative) second derivative operator with Dirichlet $B C S$:

$$
\begin{equation*}
\mathcal{L}_{D} f(x)=-f^{\prime \prime}(x), \quad f(a)=f(b)=0 \tag{D}
\end{equation*}
$$

$\mathscr{L}_{N}=$ (negative) second derivative operator with Neman BCS:

$$
\begin{equation*}
\mathscr{L}_{N} f(x)=-f^{\prime \prime}(x), \quad f^{\prime}(a)=f^{\prime}(b)=0 \tag{N}
\end{equation*}
$$

$\mathscr{L}_{p}=$ (negative) second derivative operator with periodic $B C S$:
(P) $\quad \mathscr{L}_{N} f(x)=-f^{\prime \prime}(x), \quad f^{\prime}(a)=f^{\prime}(b), f(a)=f(b)$

C This last $B C$ is a new one, corresponding to the full Fourier sesies

Green's Second Identity: Take two functions $y_{1}(x), y_{2}(x)$ on (a, b).
Then: $\quad\left(-y_{1}^{\prime} \bar{y}_{2}+y_{1} \bar{y}_{2}^{\prime}\right)^{\prime}=-y_{1}^{\prime \prime} \bar{y}_{2}-y_{1}^{\prime} \bar{y}_{2}^{\prime}+y_{1}^{\prime} \bar{y}_{2}^{\prime}+y_{1} \bar{y}_{2}^{\prime \prime}$

$$
=-y_{1}^{\prime \prime} \bar{y}_{2}+y_{1} \bar{y}_{2}^{\prime \prime} .
$$

We can integrate and use the fundamental then. of calculus to get:

$$
\left.\left(-y_{1}^{\prime} \bar{y}_{2}+y_{1} \bar{y}_{2}^{\prime}\right)\right|_{x=a} ^{b}=\int_{a}^{b}\left(-y_{1}^{\prime \prime} \bar{y}_{2}+y_{1} \bar{y}_{2}^{\prime \prime}\right) d x
$$

This is called Green's second Identity.

Lemma: Ascus that both y_{1}, y_{2} satisfy either Dirichlet, or Neman on periodic BCS. Then the Lets of \otimes is O.

Proof: Let's check for Dirichlet (check Newman yourself!)

$$
\begin{aligned}
\text { LHS of } \circledast & =-y_{1}^{\prime}(b) \underbrace{y_{2}}_{0}(b)
\end{aligned} \underbrace{y_{1}(b)}_{0} y_{2}^{\prime}(b)-(-y_{1}^{\prime}(a) \underbrace{\bar{y}_{2}}_{0}(a)+\underbrace{y(a)}_{0} y_{2}^{\prime}(a))
$$

Let's check the periodic case:

$$
\text { LHS of } \circledast=-\underbrace{y_{1}^{\prime}(b) \bar{y}_{2}(b)}_{I}+\underbrace{y_{1}(b) y_{2}^{\prime}(b)}_{I I}-(\underbrace{-y_{1}^{\prime}(a) \bar{y}_{2}(a)}_{I}+\underbrace{\left.y_{I}(a) y_{2}^{\prime}(a)\right)}_{I}
$$

The two terms I are equal (with opposite signs), as are the two terms \mathbb{I}. S we get O.

Observation: Let \mathscr{L} be one of $\mathscr{L}_{D}, \mathscr{L}_{N}$ or \mathscr{L}_{p}.
Supprase that (λ, X) are an eigenvalue-eigenfuetion pair:
$\mathscr{L} X=\lambda x$. Then:

$$
\mathscr{L} \bar{x}=\overline{\mathscr{L}} \bar{X}=\overline{\mathscr{L} X}=\overline{\lambda x}=\lambda^{*} \bar{X}
$$

$\Longrightarrow\left(\lambda^{*}, \bar{X}\right)$ are also an eigavalue-eigenfunction pair.

Theorem: In all three cases ((D), (N), or (P)) there are no complex eigenvalues and any eigenfunction can be taken to be real-valued.

Proof: In Green's Second Identity $*$ replace y_{1}, y_{2} with some fruction $X(x)$. Then

$$
\left.\left(-x^{\prime} \bar{x}+x \bar{x}^{\prime}\right)\right|_{x=a} ^{b}=\int_{a}^{b}\left(-x^{\prime \prime} \bar{x}+X \bar{x}^{\prime \prime}\right) d x
$$

Now suppose that X is an eigenfunction of $\mathscr{L}_{D}, \mathscr{L}_{N}$ or \mathcal{L}_{p} with eigavalue λ.
From the Lemur we knows that the LHS $=0$. Hence:

$$
\begin{aligned}
O & =\int_{a}^{b}\left(-X^{\prime \prime} \bar{X}+X \bar{X}^{\prime \prime}\right) d x=\int_{a}^{b}\left(\lambda X \bar{X}-X \lambda^{*} \bar{X}\right) d x \\
& =\left(\lambda-\lambda^{*}\right) \int_{a}^{b} X(x) \bar{X}(x) d x=\left(\lambda-\lambda^{*}\right) \int_{a}^{b}|X(x)|^{2} d x
\end{aligned}
$$

Since $|X(x)|^{2} \geqslant 0$ and $\operatorname{since} X(x)$ is rot trivially 0 , the integral $\int_{a}^{b}|X(x)|^{2} d x$ is strictly positive (why?). Therefore we must have $\lambda-\lambda^{*}=0$ which cen only be true if $\lambda \in \mathbb{R}$.

We need t shows that $X(x)$ cam be taken to be real-valued. Suppose that $X(x)$ is complex-valued and write it as $X(x)=Y(x)+i Z(x)$ where Y, Z are real-valued. Then:

$$
-Y^{\prime \prime}(x)-i Z^{\prime \prime}(x)=-X^{\prime \prime}(x)=\lambda X(x)=\lambda Y(x)+i \lambda Z_{(x)}
$$

Taking real and imagivens parts we have:

$$
-Y^{\prime \prime}(x)=\lambda Y(x) \quad-Z^{\prime \prime}(x)=\lambda Z(x)
$$

We know that X satisfies $(D),(N)$, or (P). Y and Z will satisfy the same BCs as well (check this!).

So Y, Z are real-valued eigenferctions satisfying the same $B C S$ as X. Since \bar{X} has eigenvalue $\lambda^{*}=\lambda$ (eigenvalues ar real!) we conclude that we can replace X, \bar{X} bs $, 1, Z$, observing that $\operatorname{span}\{X, \bar{X}\}=\operatorname{span}\{Y, Z\}$.
So we have shown that λ can be taken with eigenfunction Y and Z (which are both real) rather than X, \bar{X}.

Theorem In all three cases ((D), (N), or (P)), ans two eigenfunctions corresponding to different eigenvalues are outhoyoual.

Prof: We already know that all eigenvalues are real, and that eighufuctions can be taken to be real-valued.
Take $X_{1}(x)$ and $X_{2}(x)$ corresponding to two different eigenvalues λ_{1}, λ_{2}.

In Green's second Identity, replace y_{1}, y_{2} by X_{1}, X_{2}. The LHS is 0 from the Lemener.

So we have:

$$
\begin{aligned}
0 & =\int_{a}^{b}\left(-x_{1}^{\prime \prime} x_{2}+x_{1} x_{2}^{\prime \prime}\right) d x \\
& =\int_{a}^{b}\left(\lambda_{1} x_{1} x_{2}+x_{1}\left(-\lambda_{2} x_{2}\right)\right) d x \\
& =\left(\lambda_{1}-\lambda_{2}\right) \int_{a}^{b} x_{1} x_{2} d x
\end{aligned}
$$

Since $\lambda_{1} \neq \lambda_{2}$ (by assumption) this means that

$$
\int_{a}^{b} x_{1} x_{2} d x=0 \quad \rightarrow \quad\left(x_{1}, x_{2}\right)=0
$$

Theorem: In all three cases (D, (N), or (P)), there are no negetive eigenvalues.

Proof: The starting point is Green's First Identity:

$$
\int_{a}^{b} f^{\prime \prime}(x) g(x) d x=-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x+\left.f^{\prime}(x) g(x)\right|_{x=a} ^{b}
$$

(this is just integration by parts)

Choose f, g to be a (real) eigenfunction $X(x)$ with a (real) eigenvalue λ. Then we have:

$$
\begin{aligned}
& \text { LHS }=\int_{a}^{b} X^{\prime \prime} X d x=\int_{a}^{b}-\lambda X(X) X(X) d X=-\lambda \int_{a}^{b} X^{2} d x \\
& \text { RHS }=-\int_{a}^{b} X^{\prime} X^{\prime} d x+\left.X^{\prime} X\right|_{X=a} ^{b} \\
&=-\int_{a}^{b}\left(X^{\prime}\right)^{2} d x+\underbrace{X^{\prime}(b) X(b)-X^{\prime}(a) X(a)} \\
& \rightarrow \lambda \text { for (D),(N),(P) } \\
& \Rightarrow \lambda \int_{a}^{b} X^{2} d x=\int_{a}^{b}\left(X^{\prime}\right)^{2} d x \\
& \Rightarrow \lambda=\frac{\int_{a}^{b}\left(X^{\prime}(X)\right)^{2} d x}{\int_{a}^{b}(X(X))^{2} d x} \geqslant 0
\end{aligned}
$$

(in fact, we get $\lambda=0$ iff $X(x)=$ const $\neq 0$ which is only possible for $(N),(P)$, but not (D))

Theorem: In all three cases (D), (N), or (P)), there are infinitely many eigenvalues tending to $+\infty$:

$$
0 \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \cdots \quad+\infty
$$

Corresponding to λ_{n} is an eigenfunction $X_{n}(x)$ which can be chosen to be real, and orthogonal to all other eigenfinctions.

We take this theorem without prof.

