5.2 Even, Odd, Periodic and Complex functions

Fourier sine Series: $\phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right)$ on $(0, l)$.

Observe that $\sin (\alpha)$ is an odd function, i.e.
$\sin (-\alpha)=-\sin \alpha$

This means that if we extend $\phi(x)$ to $(-l, 0)$, we will get an odd extern stow since each
 of the sines making up $\phi(x)$ are odd. That is, an extension with sines will give $\phi(x)$ or $(-l, l)$ with $\phi(-x)=-\phi(x)$.

Fourier Cosine Series: $\quad \phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{l} x\right) \quad \begin{aligned} & \text { on } \\ & (0, l)\end{aligned}$
$\cos (\alpha)$ is an even function:

$$
\cos (-\alpha)=\cos \alpha
$$

So if we extend $\phi(x)$ to $(-l, 0)$ with cosines, well get an even extension. That is, wéll get $\phi(x)$ on $(-l, l)$ with $\phi(-x)=\phi(x)$,

Full Fourier Series:

$$
\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{l} x\right)+B_{n} \sin \left(\frac{n \pi}{l} x\right) \quad \text { on }(l, l)
$$

Observe that $\cos \theta$ and $\sin \theta$ have period of 2π :

$$
\cos \theta=\cos (\theta+2 \pi k) \quad \sin \theta=\sin (\theta+2 \pi k) \quad k \in \mathbb{Z} .
$$

Therefore $\cos \left(\frac{\pi}{l} n x\right)=\cos \left(\frac{\pi}{l} n x+2 \pi k\right)=\cos \left(\frac{\pi}{l}(n x+2 l k)\right)$

$$
\sin \left(\frac{\pi}{l} n x\right)=\sin \left(\frac{\pi}{l} n x+2 \pi k\right)=\sin \left(\frac{\pi}{l}(n x+2 l k)\right)
$$

have periods of $2 l$.
\Rightarrow If we extend $\phi(x)$ outside of (l, l) it will extend periodically:

So we can think of the full Fourier series of $\phi(x)$ either as an expansion in sines and cosines of ϕ on $(-l, l)$ or as an expansion of the periodic extension of ϕ on \mathbb{R}.

Complex Form of the Full Fourier Series:
Using the DeMoivre formulas

$$
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}
$$

to replace the besis $\left\{1, \cos \left(\frac{\pi}{l} x\right), \sin \left(\frac{\pi}{2} x\right), \cos \left(\frac{2 \pi}{2} x\right), \sin \left(\frac{2 \pi}{e} x\right), \ldots\right\}$ with: $\left\{1, e^{i \frac{\pi}{i x} x}, e^{-i \frac{\pi}{1} x}, e^{i \frac{2 \pi}{i} x}, e^{-i \frac{2 \pi}{f x}}, \ldots\right\}$ which can simply be written as: $\left\{e^{i \frac{n \pi}{l} x}\right\}_{n=-\infty}^{\infty}$

$$
\Longrightarrow \quad \phi(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{n \pi}{l} x}
$$

Lemma: $\quad \int_{-l}^{l} e^{i \frac{n \pi}{l} x} e^{-i \frac{m \pi}{l} x} d x= \begin{cases}0 & n \neq m \\ 2 l & n=m\end{cases}$
Proof: $\quad \int_{-l}^{l} e^{i \frac{n \pi}{l} x} e^{-i \frac{n \pi}{l} x} d x=\int_{-l}^{l} e^{i(n-m) \frac{\pi}{l} x} d x=: I$
if $n \neq m: \quad I=\left.\frac{1}{i(n-m) \frac{\pi}{l}} e^{i(n-m) \frac{\pi}{l} x}\right|_{x=-l} ^{l}$

$$
=\frac{e}{i(n-m) \pi}\left[e^{i((n-m) \pi}-e^{-i(n-m) \pi}\right]
$$

$$
=\frac{l}{i(n-m) \pi}\left[(-1)^{n-m}-(-1)^{-(n-m)}\right]=0
$$

if $n=m: I=\int_{-1}^{l} 1 d x=2 l$.

Since these exporentials are orthogonal, we com identify the coefficients c_{n} as we have done before (inspired from the finte-dimensioned cased:

$$
C_{n}=\frac{1}{2 l} \int_{-l}^{l} \phi(x) e^{-i \frac{n \pi}{l} x} d x \quad n=0, \pm 1, \pm 2, \pm 3, \ldots \ldots
$$

