5.1 The coefficients of a Fourier series

As reive seen in the previous section, on $(0, l)$ the initial condition $\phi(x)$ was represcated as
$\phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right) \quad$ Fourier sine series
$\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{l} x\right)$ in the Newham case.
Fourier cosine series
This was the for both the wale and diffusion equations.

It turns out that on ($0, l$) essentially any function can be repsecented as a Fourier sine series and as a Fourier cosine series.
$\sin \left(\frac{n \pi}{l} x\right)$ on $(0, l)$

$$
\cos \left(\frac{n \pi}{l} x\right) \text { on }(0, l)
$$

$n=1,2,3,4$

(have we took $l=\pi$)

That is, both the sines and the cosines forth a basis for functions on $(0, l)$. However, notice that the sines are always O at the endpoints, and the cosines always have a derivative which is O at the endpoints.

Compare to \mathbb{R}^{n}, suppose that $\left\{v_{i}\right\}_{i=1}^{n},\left\{u_{i}\right\}_{i=1}^{n}$ are two bases for \mathbb{R}^{n}. Then any $v \in \mathbb{R}^{n}$ can be represented as $v=\sum_{i=1}^{n} a_{i} v_{i} \quad$ and as $\quad v=\sum_{i=1}^{n} b_{i} u_{i}$
uniquely.

If the basis elements are orthogonal to one another (ie. $\left(v_{i}, v_{j}\right)=0$ and $\left(u_{i}, u_{j}\right)=0$ iff $\left.i \neq j\right)$ then we can find the esepficients:

$$
\begin{aligned}
& \left(v, v_{j}\right)=\left(\sum_{i=1}^{n} a_{i} v_{i}, v_{j}\right)=\sum_{i=1}^{n} a_{i}\left(v_{i}, v_{j}\right)=a_{j}\left\|v_{j}\right\|^{2} \\
& \longrightarrow \quad a_{j}=\frac{1}{\left\|v_{j}\right\|^{2}}\left(v_{,} v_{j}\right) .
\end{aligned}
$$

So first we check for orthogonality of these bases. what does orthogonality even mean for functions on $(0, l)$?
It mems that their joint integred is 0 : $f(x), g(x)$ are orthogonal if $\int_{0}^{l} f(x) g(x) d x=0$.

Lemura:

$$
\begin{aligned}
& \int_{0}^{l} \sin \left(\frac{n \pi x}{l}\right) \sin \left(\frac{n \pi x}{l}\right) d x= \begin{cases}0 & \text { if } n \neq m \\
\frac{l}{2} & \text { if } n=m\end{cases} \\
& \int_{0}^{l} \cos \left(\frac{n \pi x}{l}\right) \cos \left(\frac{n \pi x}{l}\right) d x= \begin{cases}0 & \text { if } n \neq m \\
\frac{l}{2} & \text { if } n=m\end{cases}
\end{aligned}
$$

Proof: We shaw just for the sines. It is identical for the cosines. Suppose that $n \neq m$. Ussr the identity

$$
\sin \alpha \sin \beta=\frac{1}{2} \cos (\alpha-\beta)-\frac{1}{2} \cos (\alpha+\beta)
$$

we have:

$$
\sin \left(\frac{n \pi x}{l}\right) \sin \left(\frac{m \pi x}{l}\right)=\frac{1}{2} \cos \left(\frac{\pi x}{l}(n-m)\right)-\frac{1}{2} \cos \left(\frac{\pi x}{l}(n+m)\right)
$$

Integrating \int_{0}^{l} we find:

$$
\begin{gathered}
\int_{0}^{l} \frac{1}{2} \cos \left(\frac{\pi x}{l}(n-m)\right) d x=\left.2 \frac{l}{(n-m) \pi} \sin \left(\frac{\pi x}{l}(n-m)\right)\right|_{x=0} ^{l} \\
=\frac{1}{2(n-m) \pi}[\underbrace{\sin (\pi(n-m))}_{0}-\underbrace{\sin 0}_{0}]=0
\end{gathered}
$$

For $n=m$ we use $\sin ^{2} \alpha=\frac{1}{2}-\frac{1}{2} \cos (2 \alpha)$

$$
\begin{array}{r}
\int_{0}^{l} \sin ^{2}\left(\frac{n \pi x}{l}\right) d x=\int_{0}^{l}\left(\frac{1}{2}-\frac{1}{2} \cos \left(\frac{2 n \pi x}{l}\right)\right) d x \\
\quad=\frac{1}{2} l-\left.\frac{l}{4 n \pi} \sin \left(\frac{2 n \pi x}{l}\right)\right|_{x=0} ^{l} \\
=\frac{1}{2} l-\frac{l}{4 n \pi}[\underbrace{\sin (2 n \pi)}_{0}-\underbrace{\sin 0}_{0}]=\frac{1}{2} l
\end{array}
$$

Furies Sine Series: Consider again

$$
\phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right)
$$

Proposition:
We can compute the coefficients A_{n} and we have:

$$
A_{n}=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{m \pi}{l} x\right) d x
$$

Prof: Multiply \circledast by $\sin \left(\frac{\mu \overline{1}}{l} x\right)$ and integrate \int_{0}^{l} :

$$
\begin{aligned}
& \int_{0}^{l} \phi(x) \sin \left(\frac{m \pi}{l} x\right) d x=\int_{0}^{l} \sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right) \sin \left(\frac{n \pi}{l} x\right) d x \\
&=\sum_{n=1}^{\infty} A_{n} \int_{0}^{l} \sin \left(\frac{n \pi}{l} x\right) \sin \left(\frac{m \pi}{l} x\right) d x \\
& \text { using the } \\
& \text { Lemme }=A_{m} \cdot \frac{1}{2} l \\
& \longrightarrow \quad A_{m}=\frac{2}{l} \int_{0}^{l} \phi(x) \sin \left(\frac{n \pi}{l} x\right) d x
\end{aligned}
$$

This expression (and the proof) is completely analogous to what weiv seen is the finite-dimensional case $\left(\mathbb{R}^{n}\right)$ above:

$$
a_{j}=\frac{1}{\left\|V_{j}\right\|^{2}}\left(V_{,} V_{j}\right) .
$$

Fourier Cosine Series: Now we consider:

$$
\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{l} x\right)
$$

Proposition: The coefficients are given by :

$$
A_{n}=\frac{2}{l} \int_{0}^{l} \phi(x) \cos \left(\frac{n \pi}{l} x\right) d x
$$

(this explains why we put a $\frac{1}{2}$ in front of A_{0} : otherwise the foremuler for A_{0} would differ from the formulas for $A_{n}(n \neq 0)$ by a factor of 2).

Profs: The prop is identical to the previous proof, so we skip. We just prove for A_{0}, which is different:

$$
\begin{aligned}
\int_{0}^{l} \phi(x) \cdot 1 d x & =\int_{0}^{l}\left[\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{l} x\right)\right] \cdot 1 d x \\
& =\int_{0}^{l} \frac{1}{2} A_{0} d x+\sum_{n=1}^{\infty} A_{n} \underbrace{\int_{0}^{l} \cos \left(\frac{n \pi}{l} x\right) d x}_{0} \\
& =\frac{l}{2} A_{0} \\
\Longrightarrow A_{0} & =\frac{2}{l} \int_{0}^{l} \phi(x) d x .
\end{aligned}
$$

Full Fourier Series: Now we work on $(-l, l)$

It turns out that on the interval $(-l, l)$ we need all the eigenfuntions used both in the Fourier sine series and in the Fourier essive series. That is, we need
$\sin \left(\frac{n \pi}{l} x\right)$ and $\cos \left(\frac{n \pi}{l} x\right)$
as well as the constant function 1 (which is the first team in the Fourier cosine series).

S, on $(-l, l)$ we can represent $\phi(x)$ as:

$$
\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{n \pi}{l} x\right)+B_{n} \sin \left(\frac{n \pi}{l} x\right)\right)
$$

Lemur:

$$
\begin{aligned}
& \int_{-l}^{l} \cos \left(\frac{n \pi}{l} x\right) \sin \left(\frac{m \pi}{l} x\right) d x=0 \quad \text { in,m=1,2,..} \\
& \int_{-1}^{l} \cos \left(\frac{n \pi}{l} x\right) \cos \left(\frac{n \pi}{l} x\right) d x= \begin{cases}0 & \text { if } n \neq m \\
l & \text { if } n=m\end{cases} \\
& \int_{-1}^{l} \sin \left(\frac{n \pi}{l} x\right) \sin \left(\frac{m \pi}{l} x\right) d x= \begin{cases}0 & \text { if } n \neq m \\
l & \text { if } n=m\end{cases} \\
& \int_{-l}^{l} 1 \cdot \sin \left(\frac{n \pi}{l} x\right) d x=\int_{-l}^{l} 1 \cdot \cos \left(\frac{n \pi}{l} x\right) d x=0
\end{aligned}
$$

$$
\int_{-l}^{l} \cos ^{2}\left(\frac{n \pi}{l} x\right) d x=\int_{-l}^{l} \sin ^{2}\left(\frac{n \pi}{l}\right) d x=\frac{1}{2} \int_{-l}^{l} 1^{2} d x=l
$$

The proof is as before, so we skip. This allows us to compute the coefficients:

Proposition: The coefficients of the fall Fourier series are given by:

$$
\begin{array}{ll}
A_{n}=\frac{1}{l} \int_{-l}^{l} \phi(x) \cos \left(\frac{n \pi}{l} x\right) d x & n=0,1,2, \ldots \\
B_{n}=\frac{1}{l} \int_{-l}^{l} \phi(x) \sin \left(\frac{n \pi}{l} x\right) d x & n=1,2,3, \ldots
\end{array}
$$

These formulas are not identical to the ones we had before, since the interval is now $(-l, l)$ rather than $(0, l)$. The proof is as before, so we skip it here.

Example: We shall now consider the function $\phi(x)=x$ in 3 different ways:

1) Represent as a Fourier sine series on $(0, Q)$.
2) Represent as a Fourier cosine series on ($0, l$).
3) Represent as a full Fourier series on ($-b l$).
4) We want to write $x=\phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right)$. in $(0, l)$

We kure that: $A_{n}=\frac{2}{l} \int_{0}^{l} x \sin \left(\frac{n \pi}{l} x\right) d x$

$$
\text { We kure that : } \begin{aligned}
& A_{n}=l J_{0} x \sin (\bar{l} x) d x \\
& \begin{array}{l}
\text { int. bs } \\
\text { parts }
\end{array}=-\left.\frac{2 x}{n \pi} \cos \left(\frac{n \pi}{l} x\right)\right|_{x=0} ^{l}+\frac{2}{n \pi} \int_{0}^{l} \cos \left(\frac{n \pi}{l} x\right) d x \\
&=-\frac{2 l}{n \pi} \cos (n \pi)+0+\left.\frac{2 l}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{l} x\right)\right|_{x=0} ^{l} \\
&=-\frac{2 l}{n \pi}(-1)^{n}+\frac{2 l}{n^{2} \pi^{2}}[{\underset{0}{\sin (n \pi)}-\underbrace{\sin 0}_{0}]}=(-1)^{n+1} \frac{2 l}{n \pi} \\
& \longrightarrow x=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 l}{n \pi} \sin \left(\frac{n \pi}{l} x\right)=\frac{2 l}{\pi}\left[\sin \left(\frac{\pi}{l} x\right)-\frac{1}{2} \sin \left(\frac{2 \pi}{l} x\right)+\frac{1}{3} \sin \left(\frac{3 \pi}{l} x\right) \cdots\right]
\end{aligned}
$$

2) Now we wite $x=\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{l} x\right)$ in $(0, l)$

$$
\begin{aligned}
& A_{n}=\frac{2}{l} \int_{0}^{l} x \cos \left(\frac{n \pi}{l} x\right) d x \\
&=\left.\frac{2 x}{n \pi} \sin \left(\frac{n \pi}{l} x\right)\right|_{x=0} ^{l}-\frac{2}{n \pi} \int_{0}^{l} \sin \left(\frac{n \pi}{l} x\right) d x \\
&=0 \quad+\left.\frac{2 l}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{l} x\right)\right|_{x=0} ^{l} \\
&=\frac{2 l}{n^{2} \pi^{2}}(\underbrace{\cos (n \pi)}_{(-1)^{n}}-\underbrace{\cos 0}_{1}) \\
&=\left\{\begin{array}{cc}
0 & n \text { even } \\
-\frac{4 l}{n^{2} \pi^{2}} & n \text { odd }
\end{array}\right. \\
& A_{0}=\frac{2}{l} \int_{0}^{l} x d x=\left.\frac{2}{l} \frac{1}{2} x^{2}\right|_{x=0} ^{l}=l \\
& \Rightarrow x=\frac{1}{2} l-\sum_{n \operatorname{odd}} \frac{4 l}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{l} x\right)=\frac{1}{2} l-\frac{4 l}{\pi^{2}}\left[\cos \left(\frac{\pi}{l} x\right)+\frac{1}{9} \cos \left(\frac{3 \pi}{l} x\right)+\cdots\right]
\end{aligned}
$$

3) Finally $x=\phi(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\frac{n \pi}{l} x\right)+B_{n} \sin \left(\frac{n \pi}{l} x\right)\right]$

$$
\begin{aligned}
A_{0} & =\frac{1}{l} \int_{-l}^{l} x d x=0 \\
A_{n} & =\frac{1}{l} \int_{-l}^{l} x \cos \left(\frac{n \pi}{l} x\right) d x=\left.\frac{x}{n \pi} \sin \left(\frac{n \pi}{l} x\right)\right|_{x=-l} ^{l}+\left.\frac{l}{n^{2} \pi^{2}} \cos \left(\frac{n \pi}{l} x\right)\right|_{x=l} ^{l} \\
& =\frac{l}{n \pi} \underbrace{\sin (n \pi)}_{0}+\frac{l}{n \pi} \underbrace{\sin (-n \pi)}_{0}+\frac{l}{n^{2} \pi^{2}}[\underbrace{\cos (n \pi)}_{(-1)^{n}}-\frac{\left.\left.\cos \frac{l n \pi}{\left(-0^{2}\right.}\right)\right]=0}{B_{n}}=\frac{1}{l} \int_{-l}^{l} x \sin \left(\frac{n \pi}{l} x\right) d x=-\left.\frac{x}{n \pi} \cos \left(\frac{n \pi}{l} x\right)\right|_{x=-l} ^{l}+\left.\frac{l}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{l} x\right)\right|_{l=-l} ^{l} \\
& =-\frac{l}{n \pi} \underbrace{\cos (n \pi)}_{\left(-0^{n}\right.}-\frac{l}{n \pi} \underbrace{\cos (-n \pi)}_{0}+\frac{l}{n^{2} \pi^{2}}[\underbrace{\sin (n \pi)}_{0}-\underbrace{\sin (-n \pi)}_{0}] \\
& \left.=(-1)^{n+1} \frac{l l}{n \pi}\right)^{n} \\
\Rightarrow x & =\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 l}{n \pi} \sin \left(\frac{n \pi}{l} x\right)=\frac{2 l}{\pi}\left[\sin \left(\frac{\pi}{l} x\right)-\frac{1}{2} \sin \left(\frac{2 \pi}{l} x\right)+\frac{1}{3} \sin \left(\frac{\beta \pi}{l} x\right) \cdots\right]
\end{aligned}
$$

Notice that this is identical to the Fourier sine series that we found before!
We will see why this is not surprising a bit later.
(Hint: $\phi(x)=x$ is an odd function
$\sin \left(\frac{n \pi}{l} x\right)$ are odd functions $\cos \left(\frac{n \pi}{l} x\right)$ are even functions)

