42 The Nenmann Condition
we now consider:

The Newman $=$ Specifying the Value Condition of w_{x} on the Boundary

We now consider either the wave equation:

$$
\left\{\begin{array}{lr}
u_{t t}(x, t)=c^{2} u_{x x}(x, t) & 0<x<l \\
u_{x}(0, t)=u_{x}(l, t)=0 & t \geqslant 0 \\
u(x, 0)=\phi(x) \quad u_{t}(x, 0)=\psi(x) & 0<x<l
\end{array}\right.
$$

or the diffusion equation:

$$
\left\{\begin{array}{lc}
u_{t}(x, t)=k u_{x x}(x, t) & 0<x<l \quad t>0 \\
u_{x}(0, t)=u_{x}(l, t)=0 & t \geq 0 \\
u(x, 0)=\phi(x) & 0<x<l
\end{array}\right.
$$

Notice that now the boundary conditions involve u_{x} rather than n !

Using separation of variables $u(x, t)=X(x) T(t)$ we reach the save equations for X and T as before.

X part: As before, we have $X^{\prime \prime}(x)+\beta^{2} X(x)=0$ which leads to solutions of the form:

$$
X(x)=C \cos (\beta x)+D \sin (\beta x)
$$

Let's write the derivative of this, which we will need

$$
\begin{aligned}
& x^{\prime}(x)=-C \beta \sin (\beta x)+D \beta \cos (\beta x) \\
& u_{x}(0, t)=0 \rightarrow x^{\prime}(0)=0 \rightarrow-C_{\beta} \underbrace{\sin 0}_{0}+D_{\beta} \underbrace{\cos 0}_{1}=0 \\
& \Rightarrow D \beta=0 \Rightarrow D=0 . \\
& u_{x}(l, t)=0 \Longrightarrow x^{\prime}(l)=0 \Rightarrow-C_{\beta} \sin (\beta l)=0 \\
& \Rightarrow \beta l=n \pi \quad \rightarrow \quad \beta_{n}=\frac{n \pi}{l} \\
& \lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \quad n=1,2, \ldots \\
& x_{n}(x)=\cos \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

These are the EIGENFUNCTIONS for the Neunamu problem

Can we have eigenvalues that are not positive? I.e. can we solve $-x^{\prime \prime}(x)=\lambda x(x) \quad 0<x<l$ with the boundary cord: $x^{\prime}(0)=x^{\prime}(e)=0$ and with $\lambda \in \mathbb{C}$ which is not positive?

Try $\lambda=0$: we get $x^{\prime \prime}(x)=0$ so that

$$
x(x)=C+D x, \quad X^{\prime}(x)=D
$$

Apply $B C$ s: $0=X^{\prime}(0)=X^{\prime}(1)=D$.
\rightarrow We can satisfy the $B C s$ with $D=0$.

$$
X(x)=C
$$

(constant)
is a legitimate solution!
$\Longrightarrow \lambda=0$ is cm eigenvalue!
$\lambda<0$ or $\lambda \in \mathbb{C} \backslash \mathbb{R}$: It can be shown that such values of λ cannot be eigenvalues but veer skip that for mow.

So the eigenvalues are:

$$
\lambda_{n}=\left(\frac{n \pi}{l}\right)^{2} \quad n=0,1,2, \ldots
$$

There are the EIGENVALUES for the Newman problem

Ipart: The $T(t)$ part will be identical to what we san before, with the exception of the port coming from $\lambda=0$.

Diffusion equation: For $\lambda_{n} \neq 0$ we again have:

$$
\begin{aligned}
T^{\prime}(t) & =-\lambda_{n} k T(t) \\
\rightarrow T(t) & =A e^{-\lambda_{n} k t}
\end{aligned}
$$

For $\lambda=0$ we have $T^{\prime}(t)=0 \Longrightarrow T(t)=A$.

So, for $n=1,2,3, \ldots$ we have as before:

$$
u_{n}(x, t)=A_{n} e^{-\left(\frac{n \pi}{t}\right)^{2} k t} \cos \left(\frac{n \pi}{l} x\right) \quad n=1,2, \ldots
$$

Notice that the sine is now a coste!

And we also have a u_{0} now: the spatial part is $\cos \left(\frac{0 . \pi}{l} x\right)=1$ and the temporal port is a constant which we called A above. For reasons which will become clean, we call $A_{0}=2 A$, to find:

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n} A_{n} e^{-\left(\frac{n \pi}{l}\right)^{2} k t} \cos \left(\frac{n \pi}{l} x\right)
$$

In addition, the initial condition will have to satisfy 3 :

$$
\phi(x)=u(x, 0)=\frac{1}{2} A_{0}+\sum_{n} A_{n} \cos \left(\frac{n \pi}{l} x\right)
$$

Wave equation: For $\lambda>0$ we get the same behavior as were seen before, so we have:

$$
u_{n}(x, t)=\left[A_{n} \cos \left(\frac{n \pi}{l}(t)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)\right] \cos \left(\frac{n \pi}{l} x\right)\right.
$$

For $\lambda=0$ we get $X_{0}(x)=$ const as before. For the T part we have $T^{\prime \prime}(t)=\frac{\lambda}{0} c^{2} T(t)=0$ s that $T_{0}(t)=A+B t$. This $T_{0}{ }^{\circ}$ term goes with the Ko term which is a constant. So, to conchole, the general slention has the govern:

$$
\begin{aligned}
& u(x, t)=\frac{1}{2} A_{0}+\frac{1}{2} B_{0} t+\sum_{n}\left[A_{n} \cos \left(\frac{n \pi}{l} c t\right)+B_{n} \sin \left(\frac{n \pi}{l} c t\right)\right] \cos \left(\frac{n \pi}{l} x\right) \\
& \phi(x)=n(x, 0)=\frac{1}{2} A_{0}+\sum_{n} A_{n} \cos \left(\frac{n \pi}{l} x\right) \\
& \psi(x)=u_{t}(x, 0)=\frac{1}{2} B_{0}+\sum_{n} \frac{n \pi}{l} c B_{n} \cos \left(\frac{n \pi}{l} x\right)
\end{aligned}
$$

